1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
|
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "execution.h"
#include "global-handles.h"
#include "ic-inl.h"
#include "mark-compact.h"
#include "stub-cache.h"
namespace v8 { namespace internal {
// -------------------------------------------------------------------------
// MarkCompactCollector
bool MarkCompactCollector::compacting_collection_ = false;
int MarkCompactCollector::previous_marked_count_ = 0;
GCTracer* MarkCompactCollector::tracer_ = NULL;
#ifdef DEBUG
MarkCompactCollector::CollectorState MarkCompactCollector::state_ = IDLE;
// Counters used for debugging the marking phase of mark-compact or mark-sweep
// collection.
int MarkCompactCollector::live_bytes_ = 0;
int MarkCompactCollector::live_young_objects_ = 0;
int MarkCompactCollector::live_old_data_objects_ = 0;
int MarkCompactCollector::live_old_pointer_objects_ = 0;
int MarkCompactCollector::live_code_objects_ = 0;
int MarkCompactCollector::live_map_objects_ = 0;
int MarkCompactCollector::live_lo_objects_ = 0;
#endif
void MarkCompactCollector::CollectGarbage() {
// Make sure that Prepare() has been called. The individual steps below will
// update the state as they proceed.
ASSERT(state_ == PREPARE_GC);
// Prepare has selected whether to compact the old generation or not.
// Tell the tracer.
if (IsCompacting()) tracer_->set_is_compacting();
MarkLiveObjects();
if (FLAG_collect_maps) ClearNonLiveTransitions();
SweepLargeObjectSpace();
if (compacting_collection_) {
EncodeForwardingAddresses();
UpdatePointers();
RelocateObjects();
RebuildRSets();
} else {
SweepSpaces();
}
Finish();
// Save the count of marked objects remaining after the collection and
// null out the GC tracer.
previous_marked_count_ = tracer_->marked_count();
ASSERT(previous_marked_count_ == 0);
tracer_ = NULL;
}
void MarkCompactCollector::Prepare(GCTracer* tracer) {
// Rather than passing the tracer around we stash it in a static member
// variable.
tracer_ = tracer;
static const int kFragmentationLimit = 50; // Percent.
#ifdef DEBUG
ASSERT(state_ == IDLE);
state_ = PREPARE_GC;
#endif
ASSERT(!FLAG_always_compact || !FLAG_never_compact);
compacting_collection_ = FLAG_always_compact;
// We compact the old generation if it gets too fragmented (ie, we could
// recover an expected amount of space by reclaiming the waste and free
// list blocks). We always compact when the flag --gc-global is true
// because objects do not get promoted out of new space on non-compacting
// GCs.
if (!compacting_collection_) {
int old_gen_recoverable = 0;
int old_gen_used = 0;
OldSpaces spaces;
while (OldSpace* space = spaces.next()) {
old_gen_recoverable += space->Waste() + space->AvailableFree();
old_gen_used += space->Size();
}
int old_gen_fragmentation =
static_cast<int>((old_gen_recoverable * 100.0) / old_gen_used);
if (old_gen_fragmentation > kFragmentationLimit) {
compacting_collection_ = true;
}
}
if (FLAG_never_compact) compacting_collection_ = false;
if (FLAG_collect_maps) CreateBackPointers();
#ifdef DEBUG
if (compacting_collection_) {
// We will write bookkeeping information to the remembered set area
// starting now.
Page::set_rset_state(Page::NOT_IN_USE);
}
#endif
PagedSpaces spaces;
while (PagedSpace* space = spaces.next()) {
space->PrepareForMarkCompact(compacting_collection_);
}
#ifdef DEBUG
live_bytes_ = 0;
live_young_objects_ = 0;
live_old_pointer_objects_ = 0;
live_old_data_objects_ = 0;
live_code_objects_ = 0;
live_map_objects_ = 0;
live_lo_objects_ = 0;
#endif
}
void MarkCompactCollector::Finish() {
#ifdef DEBUG
ASSERT(state_ == SWEEP_SPACES || state_ == REBUILD_RSETS);
state_ = IDLE;
#endif
// The stub cache is not traversed during GC; clear the cache to
// force lazy re-initialization of it. This must be done after the
// GC, because it relies on the new address of certain old space
// objects (empty string, illegal builtin).
StubCache::Clear();
}
// -------------------------------------------------------------------------
// Phase 1: tracing and marking live objects.
// before: all objects are in normal state.
// after: a live object's map pointer is marked as '00'.
// Marking all live objects in the heap as part of mark-sweep or mark-compact
// collection. Before marking, all objects are in their normal state. After
// marking, live objects' map pointers are marked indicating that the object
// has been found reachable.
//
// The marking algorithm is a (mostly) depth-first (because of possible stack
// overflow) traversal of the graph of objects reachable from the roots. It
// uses an explicit stack of pointers rather than recursion. The young
// generation's inactive ('from') space is used as a marking stack. The
// objects in the marking stack are the ones that have been reached and marked
// but their children have not yet been visited.
//
// The marking stack can overflow during traversal. In that case, we set an
// overflow flag. When the overflow flag is set, we continue marking objects
// reachable from the objects on the marking stack, but no longer push them on
// the marking stack. Instead, we mark them as both marked and overflowed.
// When the stack is in the overflowed state, objects marked as overflowed
// have been reached and marked but their children have not been visited yet.
// After emptying the marking stack, we clear the overflow flag and traverse
// the heap looking for objects marked as overflowed, push them on the stack,
// and continue with marking. This process repeats until all reachable
// objects have been marked.
static MarkingStack marking_stack;
static inline HeapObject* ShortCircuitConsString(Object** p) {
// Optimization: If the heap object pointed to by p is a non-symbol
// cons string whose right substring is Heap::empty_string, update
// it in place to its left substring. Return the updated value.
//
// Here we assume that if we change *p, we replace it with a heap object
// (ie, the left substring of a cons string is always a heap object).
//
// The check performed is:
// object->IsConsString() && !object->IsSymbol() &&
// (ConsString::cast(object)->second() == Heap::empty_string())
// except the maps for the object and its possible substrings might be
// marked.
HeapObject* object = HeapObject::cast(*p);
MapWord map_word = object->map_word();
map_word.ClearMark();
InstanceType type = map_word.ToMap()->instance_type();
if ((type & kShortcutTypeMask) != kShortcutTypeTag) return object;
Object* second = reinterpret_cast<ConsString*>(object)->unchecked_second();
if (reinterpret_cast<String*>(second) != Heap::empty_string()) return object;
// Since we don't have the object's start, it is impossible to update the
// remembered set. Therefore, we only replace the string with its left
// substring when the remembered set does not change.
Object* first = reinterpret_cast<ConsString*>(object)->unchecked_first();
if (!Heap::InNewSpace(object) && Heap::InNewSpace(first)) return object;
*p = first;
return HeapObject::cast(first);
}
// Helper class for marking pointers in HeapObjects.
class MarkingVisitor : public ObjectVisitor {
public:
void VisitPointer(Object** p) {
MarkObjectByPointer(p);
}
void VisitPointers(Object** start, Object** end) {
// Mark all objects pointed to in [start, end).
const int kMinRangeForMarkingRecursion = 64;
if (end - start >= kMinRangeForMarkingRecursion) {
if (VisitUnmarkedObjects(start, end)) return;
// We are close to a stack overflow, so just mark the objects.
}
for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
}
void BeginCodeIteration(Code* code) {
// When iterating over a code object during marking
// ic targets are derived pointers.
ASSERT(code->ic_flag() == Code::IC_TARGET_IS_ADDRESS);
}
void EndCodeIteration(Code* code) {
// If this is a compacting collection, set ic targets
// are pointing to object headers.
if (IsCompacting()) code->set_ic_flag(Code::IC_TARGET_IS_OBJECT);
}
void VisitCodeTarget(RelocInfo* rinfo) {
ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode()));
Code* code = CodeFromDerivedPointer(rinfo->target_address());
if (FLAG_cleanup_ics_at_gc && code->is_inline_cache_stub()) {
IC::Clear(rinfo->pc());
// Please note targets for cleared inline cached do not have to be
// marked since they are contained in Heap::non_monomorphic_cache().
} else {
MarkCompactCollector::MarkObject(code);
}
if (IsCompacting()) {
// When compacting we convert the target to a real object pointer.
code = CodeFromDerivedPointer(rinfo->target_address());
rinfo->set_target_object(code);
}
}
void VisitDebugTarget(RelocInfo* rinfo) {
ASSERT(RelocInfo::IsJSReturn(rinfo->rmode()) &&
rinfo->IsCallInstruction());
HeapObject* code = CodeFromDerivedPointer(rinfo->call_address());
MarkCompactCollector::MarkObject(code);
// When compacting we convert the call to a real object pointer.
if (IsCompacting()) rinfo->set_call_object(code);
}
private:
// Mark object pointed to by p.
void MarkObjectByPointer(Object** p) {
if (!(*p)->IsHeapObject()) return;
HeapObject* object = ShortCircuitConsString(p);
MarkCompactCollector::MarkObject(object);
}
// Tells whether the mark sweep collection will perform compaction.
bool IsCompacting() { return MarkCompactCollector::IsCompacting(); }
// Retrieves the Code pointer from derived code entry.
Code* CodeFromDerivedPointer(Address addr) {
ASSERT(addr != NULL);
return reinterpret_cast<Code*>(
HeapObject::FromAddress(addr - Code::kHeaderSize));
}
// Visit an unmarked object.
void VisitUnmarkedObject(HeapObject* obj) {
#ifdef DEBUG
ASSERT(Heap::Contains(obj));
ASSERT(!obj->IsMarked());
#endif
Map* map = obj->map();
MarkCompactCollector::SetMark(obj);
// Mark the map pointer and the body.
MarkCompactCollector::MarkObject(map);
obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), this);
}
// Visit all unmarked objects pointed to by [start, end).
// Returns false if the operation fails (lack of stack space).
inline bool VisitUnmarkedObjects(Object** start, Object** end) {
// Return false is we are close to the stack limit.
StackLimitCheck check;
if (check.HasOverflowed()) return false;
// Visit the unmarked objects.
for (Object** p = start; p < end; p++) {
if (!(*p)->IsHeapObject()) continue;
HeapObject* obj = HeapObject::cast(*p);
if (obj->IsMarked()) continue;
VisitUnmarkedObject(obj);
}
return true;
}
};
// Visitor class for marking heap roots.
class RootMarkingVisitor : public ObjectVisitor {
public:
void VisitPointer(Object** p) {
MarkObjectByPointer(p);
}
void VisitPointers(Object** start, Object** end) {
for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
}
MarkingVisitor* stack_visitor() { return &stack_visitor_; }
private:
MarkingVisitor stack_visitor_;
void MarkObjectByPointer(Object** p) {
if (!(*p)->IsHeapObject()) return;
// Replace flat cons strings in place.
HeapObject* object = ShortCircuitConsString(p);
if (object->IsMarked()) return;
Map* map = object->map();
// Mark the object.
MarkCompactCollector::SetMark(object);
// Mark the map pointer and body, and push them on the marking stack.
MarkCompactCollector::MarkObject(map);
object->IterateBody(map->instance_type(), object->SizeFromMap(map),
&stack_visitor_);
// Mark all the objects reachable from the map and body. May leave
// overflowed objects in the heap.
MarkCompactCollector::EmptyMarkingStack(&stack_visitor_);
}
};
// Helper class for pruning the symbol table.
class SymbolTableCleaner : public ObjectVisitor {
public:
SymbolTableCleaner() : pointers_removed_(0) { }
void VisitPointers(Object** start, Object** end) {
// Visit all HeapObject pointers in [start, end).
for (Object** p = start; p < end; p++) {
if ((*p)->IsHeapObject() && !HeapObject::cast(*p)->IsMarked()) {
// Check if the symbol being pruned is an external symbol. We need to
// delete the associated external data as this symbol is going away.
// Since the object is not marked we can access its map word safely
// without having to worry about marking bits in the object header.
Map* map = HeapObject::cast(*p)->map();
// Since no objects have yet been moved we can safely access the map of
// the object.
uint32_t type = map->instance_type();
bool is_external = (type & kStringRepresentationMask) ==
kExternalStringTag;
if (is_external) {
bool is_two_byte = (type & kStringEncodingMask) == kTwoByteStringTag;
byte* resource_addr = reinterpret_cast<byte*>(*p) +
ExternalString::kResourceOffset -
kHeapObjectTag;
if (is_two_byte) {
v8::String::ExternalStringResource** resource =
reinterpret_cast<v8::String::ExternalStringResource**>
(resource_addr);
delete *resource;
// Clear the resource pointer in the symbol.
*resource = NULL;
} else {
v8::String::ExternalAsciiStringResource** resource =
reinterpret_cast<v8::String::ExternalAsciiStringResource**>
(resource_addr);
delete *resource;
// Clear the resource pointer in the symbol.
*resource = NULL;
}
}
// Set the entry to null_value (as deleted).
*p = Heap::null_value();
pointers_removed_++;
}
}
}
int PointersRemoved() {
return pointers_removed_;
}
private:
int pointers_removed_;
};
void MarkCompactCollector::MarkUnmarkedObject(HeapObject* object) {
ASSERT(!object->IsMarked());
ASSERT(Heap::Contains(object));
if (object->IsMap()) {
Map* map = Map::cast(object);
if (FLAG_cleanup_caches_in_maps_at_gc) {
map->ClearCodeCache();
}
SetMark(map);
if (FLAG_collect_maps &&
map->instance_type() >= FIRST_JS_OBJECT_TYPE &&
map->instance_type() <= JS_FUNCTION_TYPE) {
MarkMapContents(map);
} else {
marking_stack.Push(map);
}
} else {
SetMark(object);
marking_stack.Push(object);
}
}
void MarkCompactCollector::MarkMapContents(Map* map) {
MarkDescriptorArray(reinterpret_cast<DescriptorArray*>(
*HeapObject::RawField(map, Map::kInstanceDescriptorsOffset)));
// Mark the Object* fields of the Map.
// Since the descriptor array has been marked already, it is fine
// that one of these fields contains a pointer to it.
MarkingVisitor visitor; // Has no state or contents.
visitor.VisitPointers(HeapObject::RawField(map, Map::kPrototypeOffset),
HeapObject::RawField(map, Map::kSize));
}
void MarkCompactCollector::MarkDescriptorArray(
DescriptorArray *descriptors) {
if (descriptors->IsMarked()) return;
// Empty descriptor array is marked as a root before any maps are marked.
ASSERT(descriptors != Heap::empty_descriptor_array());
SetMark(descriptors);
FixedArray* contents = reinterpret_cast<FixedArray*>(
descriptors->get(DescriptorArray::kContentArrayIndex));
ASSERT(contents->IsHeapObject());
ASSERT(!contents->IsMarked());
ASSERT(contents->IsFixedArray());
ASSERT(contents->length() >= 2);
SetMark(contents);
// Contents contains (value, details) pairs. If the details say
// that the type of descriptor is MAP_TRANSITION, CONSTANT_TRANSITION,
// or NULL_DESCRIPTOR, we don't mark the value as live. Only for
// type MAP_TRANSITION is the value a Object* (a Map*).
for (int i = 0; i < contents->length(); i += 2) {
// If the pair (value, details) at index i, i+1 is not
// a transition or null descriptor, mark the value.
PropertyDetails details(Smi::cast(contents->get(i + 1)));
if (details.type() < FIRST_PHANTOM_PROPERTY_TYPE) {
HeapObject* object = reinterpret_cast<HeapObject*>(contents->get(i));
if (object->IsHeapObject() && !object->IsMarked()) {
SetMark(object);
marking_stack.Push(object);
}
}
}
// The DescriptorArray descriptors contains a pointer to its contents array,
// but the contents array is already marked.
marking_stack.Push(descriptors);
}
void MarkCompactCollector::CreateBackPointers() {
HeapObjectIterator iterator(Heap::map_space());
while (iterator.has_next()) {
Object* next_object = iterator.next();
if (next_object->IsMap()) { // Could also be ByteArray on free list.
Map* map = Map::cast(next_object);
if (map->instance_type() >= FIRST_JS_OBJECT_TYPE &&
map->instance_type() <= JS_FUNCTION_TYPE) {
map->CreateBackPointers();
} else {
ASSERT(map->instance_descriptors() == Heap::empty_descriptor_array());
}
}
}
}
static int OverflowObjectSize(HeapObject* obj) {
// Recover the normal map pointer, it might be marked as live and
// overflowed.
MapWord map_word = obj->map_word();
map_word.ClearMark();
map_word.ClearOverflow();
return obj->SizeFromMap(map_word.ToMap());
}
// Fill the marking stack with overflowed objects returned by the given
// iterator. Stop when the marking stack is filled or the end of the space
// is reached, whichever comes first.
template<class T>
static void ScanOverflowedObjects(T* it) {
// The caller should ensure that the marking stack is initially not full,
// so that we don't waste effort pointlessly scanning for objects.
ASSERT(!marking_stack.is_full());
while (it->has_next()) {
HeapObject* object = it->next();
if (object->IsOverflowed()) {
object->ClearOverflow();
ASSERT(object->IsMarked());
ASSERT(Heap::Contains(object));
marking_stack.Push(object);
if (marking_stack.is_full()) return;
}
}
}
bool MarkCompactCollector::MustBeMarked(Object** p) {
// Check whether *p is a HeapObject pointer.
if (!(*p)->IsHeapObject()) return false;
return !HeapObject::cast(*p)->IsMarked();
}
void MarkCompactCollector::ProcessRoots(RootMarkingVisitor* visitor) {
// Mark the heap roots gray, including global variables, stack variables,
// etc.
Heap::IterateStrongRoots(visitor);
// Take care of the symbol table specially.
SymbolTable* symbol_table = SymbolTable::cast(Heap::symbol_table());
// 1. Mark the prefix of the symbol table gray.
symbol_table->IteratePrefix(visitor);
// 2. Mark the symbol table black (ie, do not push it on the marking stack
// or mark it overflowed).
SetMark(symbol_table);
// There may be overflowed objects in the heap. Visit them now.
while (marking_stack.overflowed()) {
RefillMarkingStack();
EmptyMarkingStack(visitor->stack_visitor());
}
}
void MarkCompactCollector::MarkObjectGroups() {
List<ObjectGroup*>* object_groups = GlobalHandles::ObjectGroups();
for (int i = 0; i < object_groups->length(); i++) {
ObjectGroup* entry = object_groups->at(i);
if (entry == NULL) continue;
List<Object**>& objects = entry->objects_;
bool group_marked = false;
for (int j = 0; j < objects.length(); j++) {
Object* object = *objects[j];
if (object->IsHeapObject() && HeapObject::cast(object)->IsMarked()) {
group_marked = true;
break;
}
}
if (!group_marked) continue;
// An object in the group is marked, so mark as gray all white heap
// objects in the group.
for (int j = 0; j < objects.length(); ++j) {
if ((*objects[j])->IsHeapObject()) {
MarkObject(HeapObject::cast(*objects[j]));
}
}
// Once the entire group has been colored gray, set the object group
// to NULL so it won't be processed again.
delete object_groups->at(i);
object_groups->at(i) = NULL;
}
}
// Mark all objects reachable from the objects on the marking stack.
// Before: the marking stack contains zero or more heap object pointers.
// After: the marking stack is empty, and all objects reachable from the
// marking stack have been marked, or are overflowed in the heap.
void MarkCompactCollector::EmptyMarkingStack(MarkingVisitor* visitor) {
while (!marking_stack.is_empty()) {
HeapObject* object = marking_stack.Pop();
ASSERT(object->IsHeapObject());
ASSERT(Heap::Contains(object));
ASSERT(object->IsMarked());
ASSERT(!object->IsOverflowed());
// Because the object is marked, we have to recover the original map
// pointer and use it to mark the object's body.
MapWord map_word = object->map_word();
map_word.ClearMark();
Map* map = map_word.ToMap();
MarkObject(map);
object->IterateBody(map->instance_type(), object->SizeFromMap(map),
visitor);
}
}
// Sweep the heap for overflowed objects, clear their overflow bits, and
// push them on the marking stack. Stop early if the marking stack fills
// before sweeping completes. If sweeping completes, there are no remaining
// overflowed objects in the heap so the overflow flag on the markings stack
// is cleared.
void MarkCompactCollector::RefillMarkingStack() {
ASSERT(marking_stack.overflowed());
SemiSpaceIterator new_it(Heap::new_space(), &OverflowObjectSize);
ScanOverflowedObjects(&new_it);
if (marking_stack.is_full()) return;
HeapObjectIterator old_pointer_it(Heap::old_pointer_space(),
&OverflowObjectSize);
ScanOverflowedObjects(&old_pointer_it);
if (marking_stack.is_full()) return;
HeapObjectIterator old_data_it(Heap::old_data_space(), &OverflowObjectSize);
ScanOverflowedObjects(&old_data_it);
if (marking_stack.is_full()) return;
HeapObjectIterator code_it(Heap::code_space(), &OverflowObjectSize);
ScanOverflowedObjects(&code_it);
if (marking_stack.is_full()) return;
HeapObjectIterator map_it(Heap::map_space(), &OverflowObjectSize);
ScanOverflowedObjects(&map_it);
if (marking_stack.is_full()) return;
LargeObjectIterator lo_it(Heap::lo_space(), &OverflowObjectSize);
ScanOverflowedObjects(&lo_it);
if (marking_stack.is_full()) return;
marking_stack.clear_overflowed();
}
// Mark all objects reachable (transitively) from objects on the marking
// stack. Before: the marking stack contains zero or more heap object
// pointers. After: the marking stack is empty and there are no overflowed
// objects in the heap.
void MarkCompactCollector::ProcessMarkingStack(MarkingVisitor* visitor) {
EmptyMarkingStack(visitor);
while (marking_stack.overflowed()) {
RefillMarkingStack();
EmptyMarkingStack(visitor);
}
}
void MarkCompactCollector::ProcessObjectGroups(MarkingVisitor* visitor) {
bool work_to_do = true;
ASSERT(marking_stack.is_empty());
while (work_to_do) {
MarkObjectGroups();
work_to_do = !marking_stack.is_empty();
ProcessMarkingStack(visitor);
}
}
void MarkCompactCollector::MarkLiveObjects() {
#ifdef DEBUG
ASSERT(state_ == PREPARE_GC);
state_ = MARK_LIVE_OBJECTS;
#endif
// The to space contains live objects, the from space is used as a marking
// stack.
marking_stack.Initialize(Heap::new_space()->FromSpaceLow(),
Heap::new_space()->FromSpaceHigh());
ASSERT(!marking_stack.overflowed());
RootMarkingVisitor root_visitor;
ProcessRoots(&root_visitor);
// The objects reachable from the roots are marked black, unreachable
// objects are white. Mark objects reachable from object groups with at
// least one marked object, and continue until no new objects are
// reachable from the object groups.
ProcessObjectGroups(root_visitor.stack_visitor());
// The objects reachable from the roots or object groups are marked black,
// unreachable objects are white. Process objects reachable only from
// weak global handles.
//
// First we mark weak pointers not yet reachable.
GlobalHandles::MarkWeakRoots(&MustBeMarked);
// Then we process weak pointers and process the transitive closure.
GlobalHandles::IterateWeakRoots(&root_visitor);
while (marking_stack.overflowed()) {
RefillMarkingStack();
EmptyMarkingStack(root_visitor.stack_visitor());
}
// Repeat the object groups to mark unmarked groups reachable from the
// weak roots.
ProcessObjectGroups(root_visitor.stack_visitor());
// Prune the symbol table removing all symbols only pointed to by the
// symbol table. Cannot use SymbolTable::cast here because the symbol
// table is marked.
SymbolTable* symbol_table =
reinterpret_cast<SymbolTable*>(Heap::symbol_table());
SymbolTableCleaner v;
symbol_table->IterateElements(&v);
symbol_table->ElementsRemoved(v.PointersRemoved());
// Remove object groups after marking phase.
GlobalHandles::RemoveObjectGroups();
}
static int CountMarkedCallback(HeapObject* obj) {
MapWord map_word = obj->map_word();
map_word.ClearMark();
return obj->SizeFromMap(map_word.ToMap());
}
#ifdef DEBUG
void MarkCompactCollector::UpdateLiveObjectCount(HeapObject* obj) {
live_bytes_ += obj->Size();
if (Heap::new_space()->Contains(obj)) {
live_young_objects_++;
} else if (Heap::map_space()->Contains(obj)) {
ASSERT(obj->IsMap());
live_map_objects_++;
} else if (Heap::old_pointer_space()->Contains(obj)) {
live_old_pointer_objects_++;
} else if (Heap::old_data_space()->Contains(obj)) {
live_old_data_objects_++;
} else if (Heap::code_space()->Contains(obj)) {
live_code_objects_++;
} else if (Heap::lo_space()->Contains(obj)) {
live_lo_objects_++;
} else {
UNREACHABLE();
}
}
#endif // DEBUG
void MarkCompactCollector::SweepLargeObjectSpace() {
#ifdef DEBUG
ASSERT(state_ == MARK_LIVE_OBJECTS);
state_ =
compacting_collection_ ? ENCODE_FORWARDING_ADDRESSES : SWEEP_SPACES;
#endif
// Deallocate unmarked objects and clear marked bits for marked objects.
Heap::lo_space()->FreeUnmarkedObjects();
}
// Safe to use during marking phase only.
bool MarkCompactCollector::SafeIsMap(HeapObject* object) {
MapWord metamap = object->map_word();
metamap.ClearMark();
return metamap.ToMap()->instance_type() == MAP_TYPE;
}
void MarkCompactCollector::ClearNonLiveTransitions() {
HeapObjectIterator map_iterator(Heap::map_space(), &CountMarkedCallback);
// Iterate over the map space, setting map transitions that go from
// a marked map to an unmarked map to null transitions. At the same time,
// set all the prototype fields of maps back to their original value,
// dropping the back pointers temporarily stored in the prototype field.
// Setting the prototype field requires following the linked list of
// back pointers, reversing them all at once. This allows us to find
// those maps with map transitions that need to be nulled, and only
// scan the descriptor arrays of those maps, not all maps.
// All of these actions are carried out only on maps of JSObects
// and related subtypes.
while (map_iterator.has_next()) {
Map* map = reinterpret_cast<Map*>(map_iterator.next());
if (!map->IsMarked() && map->IsByteArray()) continue;
ASSERT(SafeIsMap(map));
// Only JSObject and subtypes have map transitions and back pointers.
if (map->instance_type() < FIRST_JS_OBJECT_TYPE) continue;
if (map->instance_type() > JS_FUNCTION_TYPE) continue;
// Follow the chain of back pointers to find the prototype.
Map* current = map;
while (SafeIsMap(current)) {
current = reinterpret_cast<Map*>(current->prototype());
ASSERT(current->IsHeapObject());
}
Object* real_prototype = current;
// Follow back pointers, setting them to prototype,
// clearing map transitions when necessary.
current = map;
bool on_dead_path = !current->IsMarked();
Object *next;
while (SafeIsMap(current)) {
next = current->prototype();
// There should never be a dead map above a live map.
ASSERT(on_dead_path || current->IsMarked());
// A live map above a dead map indicates a dead transition.
// This test will always be false on the first iteration.
if (on_dead_path && current->IsMarked()) {
on_dead_path = false;
current->ClearNonLiveTransitions(real_prototype);
}
*HeapObject::RawField(current, Map::kPrototypeOffset) =
real_prototype;
current = reinterpret_cast<Map*>(next);
}
}
}
// -------------------------------------------------------------------------
// Phase 2: Encode forwarding addresses.
// When compacting, forwarding addresses for objects in old space and map
// space are encoded in their map pointer word (along with an encoding of
// their map pointers).
//
// 31 21 20 10 9 0
// +-----------------+------------------+-----------------+
// |forwarding offset|page offset of map|page index of map|
// +-----------------+------------------+-----------------+
// 11 bits 11 bits 10 bits
//
// An address range [start, end) can have both live and non-live objects.
// Maximal non-live regions are marked so they can be skipped on subsequent
// sweeps of the heap. A distinguished map-pointer encoding is used to mark
// free regions of one-word size (in which case the next word is the start
// of a live object). A second distinguished map-pointer encoding is used
// to mark free regions larger than one word, and the size of the free
// region (including the first word) is written to the second word of the
// region.
//
// Any valid map page offset must lie in the object area of the page, so map
// page offsets less than Page::kObjectStartOffset are invalid. We use a
// pair of distinguished invalid map encodings (for single word and multiple
// words) to indicate free regions in the page found during computation of
// forwarding addresses and skipped over in subsequent sweeps.
static const uint32_t kSingleFreeEncoding = 0;
static const uint32_t kMultiFreeEncoding = 1;
// Encode a free region, defined by the given start address and size, in the
// first word or two of the region.
void EncodeFreeRegion(Address free_start, int free_size) {
ASSERT(free_size >= kIntSize);
if (free_size == kIntSize) {
Memory::uint32_at(free_start) = kSingleFreeEncoding;
} else {
ASSERT(free_size >= 2 * kIntSize);
Memory::uint32_at(free_start) = kMultiFreeEncoding;
Memory::int_at(free_start + kIntSize) = free_size;
}
#ifdef DEBUG
// Zap the body of the free region.
if (FLAG_enable_slow_asserts) {
for (int offset = 2 * kIntSize;
offset < free_size;
offset += kPointerSize) {
Memory::Address_at(free_start + offset) = kZapValue;
}
}
#endif
}
// Try to promote all objects in new space. Heap numbers and sequential
// strings are promoted to the code space, all others to the old space.
inline Object* MCAllocateFromNewSpace(HeapObject* object, int object_size) {
OldSpace* target_space = Heap::TargetSpace(object);
ASSERT(target_space == Heap::old_pointer_space() ||
target_space == Heap::old_data_space());
Object* forwarded = target_space->MCAllocateRaw(object_size);
if (forwarded->IsFailure()) {
forwarded = Heap::new_space()->MCAllocateRaw(object_size);
}
return forwarded;
}
// Allocation functions for the paged spaces call the space's MCAllocateRaw.
inline Object* MCAllocateFromOldPointerSpace(HeapObject* object,
int object_size) {
return Heap::old_pointer_space()->MCAllocateRaw(object_size);
}
inline Object* MCAllocateFromOldDataSpace(HeapObject* object, int object_size) {
return Heap::old_data_space()->MCAllocateRaw(object_size);
}
inline Object* MCAllocateFromCodeSpace(HeapObject* object, int object_size) {
return Heap::code_space()->MCAllocateRaw(object_size);
}
inline Object* MCAllocateFromMapSpace(HeapObject* object, int object_size) {
return Heap::map_space()->MCAllocateRaw(object_size);
}
// The forwarding address is encoded at the same offset as the current
// to-space object, but in from space.
inline void EncodeForwardingAddressInNewSpace(HeapObject* old_object,
int object_size,
Object* new_object,
int* ignored) {
int offset =
Heap::new_space()->ToSpaceOffsetForAddress(old_object->address());
Memory::Address_at(Heap::new_space()->FromSpaceLow() + offset) =
HeapObject::cast(new_object)->address();
}
// The forwarding address is encoded in the map pointer of the object as an
// offset (in terms of live bytes) from the address of the first live object
// in the page.
inline void EncodeForwardingAddressInPagedSpace(HeapObject* old_object,
int object_size,
Object* new_object,
int* offset) {
// Record the forwarding address of the first live object if necessary.
if (*offset == 0) {
Page::FromAddress(old_object->address())->mc_first_forwarded =
HeapObject::cast(new_object)->address();
}
MapWord encoding =
MapWord::EncodeAddress(old_object->map()->address(), *offset);
old_object->set_map_word(encoding);
*offset += object_size;
ASSERT(*offset <= Page::kObjectAreaSize);
}
// Most non-live objects are ignored.
inline void IgnoreNonLiveObject(HeapObject* object) {}
// A code deletion event is logged for non-live code objects.
inline void LogNonLiveCodeObject(HeapObject* object) {
if (object->IsCode()) LOG(CodeDeleteEvent(object->address()));
}
// Function template that, given a range of addresses (eg, a semispace or a
// paged space page), iterates through the objects in the range to clear
// mark bits and compute and encode forwarding addresses. As a side effect,
// maximal free chunks are marked so that they can be skipped on subsequent
// sweeps.
//
// The template parameters are an allocation function, a forwarding address
// encoding function, and a function to process non-live objects.
template<MarkCompactCollector::AllocationFunction Alloc,
MarkCompactCollector::EncodingFunction Encode,
MarkCompactCollector::ProcessNonLiveFunction ProcessNonLive>
inline void EncodeForwardingAddressesInRange(Address start,
Address end,
int* offset) {
// The start address of the current free region while sweeping the space.
// This address is set when a transition from live to non-live objects is
// encountered. A value (an encoding of the 'next free region' pointer)
// is written to memory at this address when a transition from non-live to
// live objects is encountered.
Address free_start = NULL;
// A flag giving the state of the previously swept object. Initially true
// to ensure that free_start is initialized to a proper address before
// trying to write to it.
bool is_prev_alive = true;
int object_size; // Will be set on each iteration of the loop.
for (Address current = start; current < end; current += object_size) {
HeapObject* object = HeapObject::FromAddress(current);
if (object->IsMarked()) {
object->ClearMark();
MarkCompactCollector::tracer()->decrement_marked_count();
object_size = object->Size();
Object* forwarded = Alloc(object, object_size);
// Allocation cannot fail, because we are compacting the space.
ASSERT(!forwarded->IsFailure());
Encode(object, object_size, forwarded, offset);
#ifdef DEBUG
if (FLAG_gc_verbose) {
PrintF("forward %p -> %p.\n", object->address(),
HeapObject::cast(forwarded)->address());
}
#endif
if (!is_prev_alive) { // Transition from non-live to live.
EncodeFreeRegion(free_start, current - free_start);
is_prev_alive = true;
}
} else { // Non-live object.
object_size = object->Size();
ProcessNonLive(object);
if (is_prev_alive) { // Transition from live to non-live.
free_start = current;
is_prev_alive = false;
}
}
}
// If we ended on a free region, mark it.
if (!is_prev_alive) EncodeFreeRegion(free_start, end - free_start);
}
// Functions to encode the forwarding pointers in each compactable space.
void MarkCompactCollector::EncodeForwardingAddressesInNewSpace() {
int ignored;
EncodeForwardingAddressesInRange<MCAllocateFromNewSpace,
EncodeForwardingAddressInNewSpace,
IgnoreNonLiveObject>(
Heap::new_space()->bottom(),
Heap::new_space()->top(),
&ignored);
}
template<MarkCompactCollector::AllocationFunction Alloc,
MarkCompactCollector::ProcessNonLiveFunction ProcessNonLive>
void MarkCompactCollector::EncodeForwardingAddressesInPagedSpace(
PagedSpace* space) {
PageIterator it(space, PageIterator::PAGES_IN_USE);
while (it.has_next()) {
Page* p = it.next();
// The offset of each live object in the page from the first live object
// in the page.
int offset = 0;
EncodeForwardingAddressesInRange<Alloc,
EncodeForwardingAddressInPagedSpace,
ProcessNonLive>(
p->ObjectAreaStart(),
p->AllocationTop(),
&offset);
}
}
static void SweepSpace(NewSpace* space) {
HeapObject* object;
for (Address current = space->bottom();
current < space->top();
current += object->Size()) {
object = HeapObject::FromAddress(current);
if (object->IsMarked()) {
object->ClearMark();
MarkCompactCollector::tracer()->decrement_marked_count();
} else {
// We give non-live objects a map that will correctly give their size,
// since their existing map might not be live after the collection.
int size = object->Size();
if (size >= Array::kHeaderSize) {
object->set_map(Heap::byte_array_map());
ByteArray::cast(object)->set_length(ByteArray::LengthFor(size));
} else {
ASSERT(size == kPointerSize);
object->set_map(Heap::one_word_filler_map());
}
ASSERT(object->Size() == size);
}
// The object is now unmarked for the call to Size() at the top of the
// loop.
}
}
static void SweepSpace(PagedSpace* space, DeallocateFunction dealloc) {
PageIterator it(space, PageIterator::PAGES_IN_USE);
while (it.has_next()) {
Page* p = it.next();
bool is_previous_alive = true;
Address free_start = NULL;
HeapObject* object;
for (Address current = p->ObjectAreaStart();
current < p->AllocationTop();
current += object->Size()) {
object = HeapObject::FromAddress(current);
if (object->IsMarked()) {
object->ClearMark();
MarkCompactCollector::tracer()->decrement_marked_count();
if (MarkCompactCollector::IsCompacting() && object->IsCode()) {
// If this is compacting collection marked code objects have had
// their IC targets converted to objects.
// They need to be converted back to addresses.
Code::cast(object)->ConvertICTargetsFromObjectToAddress();
}
if (!is_previous_alive) { // Transition from free to live.
dealloc(free_start, current - free_start);
is_previous_alive = true;
}
} else {
if (object->IsCode()) {
// Notify the logger that compiled code has been collected.
LOG(CodeDeleteEvent(Code::cast(object)->address()));
}
if (is_previous_alive) { // Transition from live to free.
free_start = current;
is_previous_alive = false;
}
}
// The object is now unmarked for the call to Size() at the top of the
// loop.
}
// If the last region was not live we need to from free_start to the
// allocation top in the page.
if (!is_previous_alive) {
int free_size = p->AllocationTop() - free_start;
if (free_size > 0) {
dealloc(free_start, free_size);
}
}
}
}
void MarkCompactCollector::DeallocateOldPointerBlock(Address start,
int size_in_bytes) {
Heap::ClearRSetRange(start, size_in_bytes);
Heap::old_pointer_space()->Free(start, size_in_bytes);
}
void MarkCompactCollector::DeallocateOldDataBlock(Address start,
int size_in_bytes) {
Heap::old_data_space()->Free(start, size_in_bytes);
}
void MarkCompactCollector::DeallocateCodeBlock(Address start,
int size_in_bytes) {
Heap::code_space()->Free(start, size_in_bytes);
}
void MarkCompactCollector::DeallocateMapBlock(Address start,
int size_in_bytes) {
// Objects in map space are frequently assumed to have size Map::kSize and a
// valid map in their first word. Thus, we break the free block up into
// chunks and free them separately.
ASSERT(size_in_bytes % Map::kSize == 0);
Heap::ClearRSetRange(start, size_in_bytes);
Address end = start + size_in_bytes;
for (Address a = start; a < end; a += Map::kSize) {
Heap::map_space()->Free(a);
}
}
void MarkCompactCollector::EncodeForwardingAddresses() {
ASSERT(state_ == ENCODE_FORWARDING_ADDRESSES);
// Objects in the active semispace of the young generation may be
// relocated to the inactive semispace (if not promoted). Set the
// relocation info to the beginning of the inactive semispace.
Heap::new_space()->MCResetRelocationInfo();
// Compute the forwarding pointers in each space.
EncodeForwardingAddressesInPagedSpace<MCAllocateFromOldPointerSpace,
IgnoreNonLiveObject>(
Heap::old_pointer_space());
EncodeForwardingAddressesInPagedSpace<MCAllocateFromOldDataSpace,
IgnoreNonLiveObject>(
Heap::old_data_space());
EncodeForwardingAddressesInPagedSpace<MCAllocateFromCodeSpace,
LogNonLiveCodeObject>(
Heap::code_space());
// Compute new space next to last after the old and code spaces have been
// compacted. Objects in new space can be promoted to old or code space.
EncodeForwardingAddressesInNewSpace();
// Compute map space last because computing forwarding addresses
// overwrites non-live objects. Objects in the other spaces rely on
// non-live map pointers to get the sizes of non-live objects.
EncodeForwardingAddressesInPagedSpace<MCAllocateFromMapSpace,
IgnoreNonLiveObject>(
Heap::map_space());
// Write relocation info to the top page, so we can use it later. This is
// done after promoting objects from the new space so we get the correct
// allocation top.
Heap::old_pointer_space()->MCWriteRelocationInfoToPage();
Heap::old_data_space()->MCWriteRelocationInfoToPage();
Heap::code_space()->MCWriteRelocationInfoToPage();
Heap::map_space()->MCWriteRelocationInfoToPage();
}
void MarkCompactCollector::SweepSpaces() {
ASSERT(state_ == SWEEP_SPACES);
ASSERT(!IsCompacting());
// Noncompacting collections simply sweep the spaces to clear the mark
// bits and free the nonlive blocks (for old and map spaces). We sweep
// the map space last because freeing non-live maps overwrites them and
// the other spaces rely on possibly non-live maps to get the sizes for
// non-live objects.
SweepSpace(Heap::old_pointer_space(), &DeallocateOldPointerBlock);
SweepSpace(Heap::old_data_space(), &DeallocateOldDataBlock);
SweepSpace(Heap::code_space(), &DeallocateCodeBlock);
SweepSpace(Heap::new_space());
SweepSpace(Heap::map_space(), &DeallocateMapBlock);
}
// Iterate the live objects in a range of addresses (eg, a page or a
// semispace). The live regions of the range have been linked into a list.
// The first live region is [first_live_start, first_live_end), and the last
// address in the range is top. The callback function is used to get the
// size of each live object.
int MarkCompactCollector::IterateLiveObjectsInRange(
Address start,
Address end,
HeapObjectCallback size_func) {
int live_objects = 0;
Address current = start;
while (current < end) {
uint32_t encoded_map = Memory::uint32_at(current);
if (encoded_map == kSingleFreeEncoding) {
current += kPointerSize;
} else if (encoded_map == kMultiFreeEncoding) {
current += Memory::int_at(current + kIntSize);
} else {
live_objects++;
current += size_func(HeapObject::FromAddress(current));
}
}
return live_objects;
}
int MarkCompactCollector::IterateLiveObjects(NewSpace* space,
HeapObjectCallback size_f) {
ASSERT(MARK_LIVE_OBJECTS < state_ && state_ <= RELOCATE_OBJECTS);
return IterateLiveObjectsInRange(space->bottom(), space->top(), size_f);
}
int MarkCompactCollector::IterateLiveObjects(PagedSpace* space,
HeapObjectCallback size_f) {
ASSERT(MARK_LIVE_OBJECTS < state_ && state_ <= RELOCATE_OBJECTS);
int total = 0;
PageIterator it(space, PageIterator::PAGES_IN_USE);
while (it.has_next()) {
Page* p = it.next();
total += IterateLiveObjectsInRange(p->ObjectAreaStart(),
p->AllocationTop(),
size_f);
}
return total;
}
// -------------------------------------------------------------------------
// Phase 3: Update pointers
// Helper class for updating pointers in HeapObjects.
class UpdatingVisitor: public ObjectVisitor {
public:
void VisitPointer(Object** p) {
UpdatePointer(p);
}
void VisitPointers(Object** start, Object** end) {
// Mark all HeapObject pointers in [start, end)
for (Object** p = start; p < end; p++) UpdatePointer(p);
}
private:
void UpdatePointer(Object** p) {
if (!(*p)->IsHeapObject()) return;
HeapObject* obj = HeapObject::cast(*p);
Address old_addr = obj->address();
Address new_addr;
ASSERT(!Heap::InFromSpace(obj));
if (Heap::new_space()->Contains(obj)) {
Address f_addr = Heap::new_space()->FromSpaceLow() +
Heap::new_space()->ToSpaceOffsetForAddress(old_addr);
new_addr = Memory::Address_at(f_addr);
#ifdef DEBUG
ASSERT(Heap::old_pointer_space()->Contains(new_addr) ||
Heap::old_data_space()->Contains(new_addr) ||
Heap::code_space()->Contains(new_addr) ||
Heap::new_space()->FromSpaceContains(new_addr));
if (Heap::new_space()->FromSpaceContains(new_addr)) {
ASSERT(Heap::new_space()->FromSpaceOffsetForAddress(new_addr) <=
Heap::new_space()->ToSpaceOffsetForAddress(old_addr));
}
#endif
} else if (Heap::lo_space()->Contains(obj)) {
// Don't move objects in the large object space.
return;
} else {
ASSERT(Heap::old_pointer_space()->Contains(obj) ||
Heap::old_data_space()->Contains(obj) ||
Heap::code_space()->Contains(obj) ||
Heap::map_space()->Contains(obj));
new_addr = MarkCompactCollector::GetForwardingAddressInOldSpace(obj);
ASSERT(Heap::old_pointer_space()->Contains(new_addr) ||
Heap::old_data_space()->Contains(new_addr) ||
Heap::code_space()->Contains(new_addr) ||
Heap::map_space()->Contains(new_addr));
#ifdef DEBUG
if (Heap::old_pointer_space()->Contains(obj)) {
ASSERT(Heap::old_pointer_space()->MCSpaceOffsetForAddress(new_addr) <=
Heap::old_pointer_space()->MCSpaceOffsetForAddress(old_addr));
} else if (Heap::old_data_space()->Contains(obj)) {
ASSERT(Heap::old_data_space()->MCSpaceOffsetForAddress(new_addr) <=
Heap::old_data_space()->MCSpaceOffsetForAddress(old_addr));
} else if (Heap::code_space()->Contains(obj)) {
ASSERT(Heap::code_space()->MCSpaceOffsetForAddress(new_addr) <=
Heap::code_space()->MCSpaceOffsetForAddress(old_addr));
} else {
ASSERT(Heap::map_space()->MCSpaceOffsetForAddress(new_addr) <=
Heap::map_space()->MCSpaceOffsetForAddress(old_addr));
}
#endif
}
*p = HeapObject::FromAddress(new_addr);
#ifdef DEBUG
if (FLAG_gc_verbose) {
PrintF("update %p : %p -> %p\n",
reinterpret_cast<Address>(p), old_addr, new_addr);
}
#endif
}
};
void MarkCompactCollector::UpdatePointers() {
#ifdef DEBUG
ASSERT(state_ == ENCODE_FORWARDING_ADDRESSES);
state_ = UPDATE_POINTERS;
#endif
UpdatingVisitor updating_visitor;
Heap::IterateRoots(&updating_visitor);
GlobalHandles::IterateWeakRoots(&updating_visitor);
int live_maps = IterateLiveObjects(Heap::map_space(),
&UpdatePointersInOldObject);
int live_pointer_olds = IterateLiveObjects(Heap::old_pointer_space(),
&UpdatePointersInOldObject);
int live_data_olds = IterateLiveObjects(Heap::old_data_space(),
&UpdatePointersInOldObject);
int live_codes = IterateLiveObjects(Heap::code_space(),
&UpdatePointersInOldObject);
int live_news = IterateLiveObjects(Heap::new_space(),
&UpdatePointersInNewObject);
// Large objects do not move, the map word can be updated directly.
LargeObjectIterator it(Heap::lo_space());
while (it.has_next()) UpdatePointersInNewObject(it.next());
USE(live_maps);
USE(live_pointer_olds);
USE(live_data_olds);
USE(live_codes);
USE(live_news);
#ifdef DEBUG
ASSERT(live_maps == live_map_objects_);
ASSERT(live_data_olds == live_old_data_objects_);
ASSERT(live_pointer_olds == live_old_pointer_objects_);
ASSERT(live_codes == live_code_objects_);
ASSERT(live_news == live_young_objects_);
#endif
}
int MarkCompactCollector::UpdatePointersInNewObject(HeapObject* obj) {
// Keep old map pointers
Map* old_map = obj->map();
ASSERT(old_map->IsHeapObject());
Address forwarded = GetForwardingAddressInOldSpace(old_map);
ASSERT(Heap::map_space()->Contains(old_map));
ASSERT(Heap::map_space()->Contains(forwarded));
#ifdef DEBUG
if (FLAG_gc_verbose) {
PrintF("update %p : %p -> %p\n", obj->address(), old_map->address(),
forwarded);
}
#endif
// Update the map pointer.
obj->set_map(reinterpret_cast<Map*>(HeapObject::FromAddress(forwarded)));
// We have to compute the object size relying on the old map because
// map objects are not relocated yet.
int obj_size = obj->SizeFromMap(old_map);
// Update pointers in the object body.
UpdatingVisitor updating_visitor;
obj->IterateBody(old_map->instance_type(), obj_size, &updating_visitor);
return obj_size;
}
int MarkCompactCollector::UpdatePointersInOldObject(HeapObject* obj) {
// Decode the map pointer.
MapWord encoding = obj->map_word();
Address map_addr = encoding.DecodeMapAddress(Heap::map_space());
ASSERT(Heap::map_space()->Contains(HeapObject::FromAddress(map_addr)));
// At this point, the first word of map_addr is also encoded, cannot
// cast it to Map* using Map::cast.
Map* map = reinterpret_cast<Map*>(HeapObject::FromAddress(map_addr));
int obj_size = obj->SizeFromMap(map);
InstanceType type = map->instance_type();
// Update map pointer.
Address new_map_addr = GetForwardingAddressInOldSpace(map);
int offset = encoding.DecodeOffset();
obj->set_map_word(MapWord::EncodeAddress(new_map_addr, offset));
#ifdef DEBUG
if (FLAG_gc_verbose) {
PrintF("update %p : %p -> %p\n", obj->address(),
map_addr, new_map_addr);
}
#endif
// Update pointers in the object body.
UpdatingVisitor updating_visitor;
obj->IterateBody(type, obj_size, &updating_visitor);
return obj_size;
}
Address MarkCompactCollector::GetForwardingAddressInOldSpace(HeapObject* obj) {
// Object should either in old or map space.
MapWord encoding = obj->map_word();
// Offset to the first live object's forwarding address.
int offset = encoding.DecodeOffset();
Address obj_addr = obj->address();
// Find the first live object's forwarding address.
Page* p = Page::FromAddress(obj_addr);
Address first_forwarded = p->mc_first_forwarded;
// Page start address of forwarded address.
Page* forwarded_page = Page::FromAddress(first_forwarded);
int forwarded_offset = forwarded_page->Offset(first_forwarded);
// Find end of allocation of in the page of first_forwarded.
Address mc_top = forwarded_page->mc_relocation_top;
int mc_top_offset = forwarded_page->Offset(mc_top);
// Check if current object's forward pointer is in the same page
// as the first live object's forwarding pointer
if (forwarded_offset + offset < mc_top_offset) {
// In the same page.
return first_forwarded + offset;
}
// Must be in the next page, NOTE: this may cross chunks.
Page* next_page = forwarded_page->next_page();
ASSERT(next_page->is_valid());
offset -= (mc_top_offset - forwarded_offset);
offset += Page::kObjectStartOffset;
ASSERT_PAGE_OFFSET(offset);
ASSERT(next_page->OffsetToAddress(offset) < next_page->mc_relocation_top);
return next_page->OffsetToAddress(offset);
}
// -------------------------------------------------------------------------
// Phase 4: Relocate objects
void MarkCompactCollector::RelocateObjects() {
#ifdef DEBUG
ASSERT(state_ == UPDATE_POINTERS);
state_ = RELOCATE_OBJECTS;
#endif
// Relocates objects, always relocate map objects first. Relocating
// objects in other space relies on map objects to get object size.
int live_maps = IterateLiveObjects(Heap::map_space(), &RelocateMapObject);
int live_pointer_olds = IterateLiveObjects(Heap::old_pointer_space(),
&RelocateOldPointerObject);
int live_data_olds = IterateLiveObjects(Heap::old_data_space(),
&RelocateOldDataObject);
int live_codes = IterateLiveObjects(Heap::code_space(), &RelocateCodeObject);
int live_news = IterateLiveObjects(Heap::new_space(), &RelocateNewObject);
USE(live_maps);
USE(live_data_olds);
USE(live_pointer_olds);
USE(live_codes);
USE(live_news);
#ifdef DEBUG
ASSERT(live_maps == live_map_objects_);
ASSERT(live_data_olds == live_old_data_objects_);
ASSERT(live_pointer_olds == live_old_pointer_objects_);
ASSERT(live_codes == live_code_objects_);
ASSERT(live_news == live_young_objects_);
#endif
// Notify code object in LO to convert IC target to address
// This must happen after lo_space_->Compact
LargeObjectIterator it(Heap::lo_space());
while (it.has_next()) { ConvertCodeICTargetToAddress(it.next()); }
// Flips from and to spaces
Heap::new_space()->Flip();
// Sets age_mark to bottom in to space
Address mark = Heap::new_space()->bottom();
Heap::new_space()->set_age_mark(mark);
Heap::new_space()->MCCommitRelocationInfo();
#ifdef DEBUG
// It is safe to write to the remembered sets as remembered sets on a
// page-by-page basis after committing the m-c forwarding pointer.
Page::set_rset_state(Page::IN_USE);
#endif
PagedSpaces spaces;
while (PagedSpace* space = spaces.next()) space->MCCommitRelocationInfo();
}
int MarkCompactCollector::ConvertCodeICTargetToAddress(HeapObject* obj) {
if (obj->IsCode()) {
Code::cast(obj)->ConvertICTargetsFromObjectToAddress();
}
return obj->Size();
}
int MarkCompactCollector::RelocateMapObject(HeapObject* obj) {
// decode map pointer (forwarded address)
MapWord encoding = obj->map_word();
Address map_addr = encoding.DecodeMapAddress(Heap::map_space());
ASSERT(Heap::map_space()->Contains(HeapObject::FromAddress(map_addr)));
// Get forwarding address before resetting map pointer
Address new_addr = GetForwardingAddressInOldSpace(obj);
// recover map pointer
obj->set_map(reinterpret_cast<Map*>(HeapObject::FromAddress(map_addr)));
// The meta map object may not be copied yet.
Address old_addr = obj->address();
if (new_addr != old_addr) {
memmove(new_addr, old_addr, Map::kSize); // copy contents
}
#ifdef DEBUG
if (FLAG_gc_verbose) {
PrintF("relocate %p -> %p\n", old_addr, new_addr);
}
#endif
return Map::kSize;
}
static inline int RelocateOldObject(HeapObject* obj,
OldSpace* space,
Address new_addr,
Address map_addr) {
// recover map pointer
obj->set_map(reinterpret_cast<Map*>(HeapObject::FromAddress(map_addr)));
// This is a non-map object, it relies on the assumption that the Map space
// is compacted before the Old space (see RelocateObjects).
int obj_size = obj->Size();
ASSERT_OBJECT_SIZE(obj_size);
ASSERT(space->MCSpaceOffsetForAddress(new_addr) <=
space->MCSpaceOffsetForAddress(obj->address()));
space->MCAdjustRelocationEnd(new_addr, obj_size);
#ifdef DEBUG
if (FLAG_gc_verbose) {
PrintF("relocate %p -> %p\n", obj->address(), new_addr);
}
#endif
return obj_size;
}
int MarkCompactCollector::RelocateOldNonCodeObject(HeapObject* obj,
OldSpace* space) {
// decode map pointer (forwarded address)
MapWord encoding = obj->map_word();
Address map_addr = encoding.DecodeMapAddress(Heap::map_space());
ASSERT(Heap::map_space()->Contains(map_addr));
// Get forwarding address before resetting map pointer
Address new_addr = GetForwardingAddressInOldSpace(obj);
int obj_size = RelocateOldObject(obj, space, new_addr, map_addr);
Address old_addr = obj->address();
if (new_addr != old_addr) {
memmove(new_addr, old_addr, obj_size); // copy contents
}
ASSERT(!HeapObject::FromAddress(new_addr)->IsCode());
return obj_size;
}
int MarkCompactCollector::RelocateOldPointerObject(HeapObject* obj) {
return RelocateOldNonCodeObject(obj, Heap::old_pointer_space());
}
int MarkCompactCollector::RelocateOldDataObject(HeapObject* obj) {
return RelocateOldNonCodeObject(obj, Heap::old_data_space());
}
int MarkCompactCollector::RelocateCodeObject(HeapObject* obj) {
// decode map pointer (forwarded address)
MapWord encoding = obj->map_word();
Address map_addr = encoding.DecodeMapAddress(Heap::map_space());
ASSERT(Heap::map_space()->Contains(HeapObject::FromAddress(map_addr)));
// Get forwarding address before resetting map pointer
Address new_addr = GetForwardingAddressInOldSpace(obj);
int obj_size = RelocateOldObject(obj, Heap::code_space(), new_addr, map_addr);
// convert inline cache target to address using old address
if (obj->IsCode()) {
// convert target to address first related to old_address
Code::cast(obj)->ConvertICTargetsFromObjectToAddress();
}
Address old_addr = obj->address();
if (new_addr != old_addr) {
memmove(new_addr, old_addr, obj_size); // copy contents
}
HeapObject* copied_to = HeapObject::FromAddress(new_addr);
if (copied_to->IsCode()) {
// may also update inline cache target.
Code::cast(copied_to)->Relocate(new_addr - old_addr);
// Notify the logger that compiled code has moved.
LOG(CodeMoveEvent(old_addr, new_addr));
}
return obj_size;
}
int MarkCompactCollector::RelocateNewObject(HeapObject* obj) {
int obj_size = obj->Size();
// Get forwarding address
Address old_addr = obj->address();
int offset = Heap::new_space()->ToSpaceOffsetForAddress(old_addr);
Address new_addr =
Memory::Address_at(Heap::new_space()->FromSpaceLow() + offset);
if (Heap::new_space()->FromSpaceContains(new_addr)) {
ASSERT(Heap::new_space()->FromSpaceOffsetForAddress(new_addr) <=
Heap::new_space()->ToSpaceOffsetForAddress(old_addr));
} else {
OldSpace* target_space = Heap::TargetSpace(obj);
ASSERT(target_space == Heap::old_pointer_space() ||
target_space == Heap::old_data_space());
target_space->MCAdjustRelocationEnd(new_addr, obj_size);
}
// New and old addresses cannot overlap.
memcpy(reinterpret_cast<void*>(new_addr),
reinterpret_cast<void*>(old_addr),
obj_size);
#ifdef DEBUG
if (FLAG_gc_verbose) {
PrintF("relocate %p -> %p\n", old_addr, new_addr);
}
#endif
return obj_size;
}
// -------------------------------------------------------------------------
// Phase 5: rebuild remembered sets
void MarkCompactCollector::RebuildRSets() {
#ifdef DEBUG
ASSERT(state_ == RELOCATE_OBJECTS);
state_ = REBUILD_RSETS;
#endif
Heap::RebuildRSets();
}
} } // namespace v8::internal
|