summaryrefslogtreecommitdiffstats
path: root/services/audioflinger/AudioResamplerDyn.cpp
diff options
context:
space:
mode:
authorAndy Hung <hunga@google.com>2013-12-09 12:12:46 -0800
committerAndy Hung <hunga@google.com>2013-12-27 14:34:36 -0800
commit86eae0e5931103e040ac2cdd023ef5db252e09f6 (patch)
tree2764bafecfc0157792f880daa4fb535e74286bfe /services/audioflinger/AudioResamplerDyn.cpp
parente6144d7a558c74e508a5c103cdc462c3cd7cf508 (diff)
downloadframeworks_av-86eae0e5931103e040ac2cdd023ef5db252e09f6.zip
frameworks_av-86eae0e5931103e040ac2cdd023ef5db252e09f6.tar.gz
frameworks_av-86eae0e5931103e040ac2cdd023ef5db252e09f6.tar.bz2
Audio resampler update to add S16 filters
This does not affect the existing resamplers. New resampler accessed through additional quality settings: DYN_LOW_QUALITY = 5 DYN_MED_QUALITY = 6 DYN_HIGH_QUALITY = 7 Change-Id: Iebbd31871e808a4a6dee3f3abfd7e9dcf77c48e1 Signed-off-by: Andy Hung <hunga@google.com>
Diffstat (limited to 'services/audioflinger/AudioResamplerDyn.cpp')
-rw-r--r--services/audioflinger/AudioResamplerDyn.cpp530
1 files changed, 530 insertions, 0 deletions
diff --git a/services/audioflinger/AudioResamplerDyn.cpp b/services/audioflinger/AudioResamplerDyn.cpp
new file mode 100644
index 0000000..1e38d3e
--- /dev/null
+++ b/services/audioflinger/AudioResamplerDyn.cpp
@@ -0,0 +1,530 @@
+/*
+ * Copyright (C) 2013 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "AudioResamplerDyn"
+//#define LOG_NDEBUG 0
+
+#include <malloc.h>
+#include <string.h>
+#include <stdlib.h>
+#include <dlfcn.h>
+#include <math.h>
+
+#include <cutils/compiler.h>
+#include <cutils/properties.h>
+#include <utils/Log.h>
+
+#include "AudioResamplerFirOps.h" // USE_NEON and USE_INLINE_ASSEMBLY defined here
+#include "AudioResamplerFirProcess.h"
+#include "AudioResamplerFirProcessNeon.h"
+#include "AudioResamplerFirGen.h" // requires math.h
+#include "AudioResamplerDyn.h"
+
+//#define DEBUG_RESAMPLER
+
+namespace android {
+
+// generate a unique resample type compile-time constant (constexpr)
+#define RESAMPLETYPE(CHANNELS, LOCKED, STRIDE, COEFTYPE) \
+ ((((CHANNELS)-1)&1) | !!(LOCKED)<<1 | (COEFTYPE)<<2 \
+ | ((STRIDE)==8 ? 1 : (STRIDE)==16 ? 2 : 0)<<3)
+
+/*
+ * InBuffer is a type agnostic input buffer.
+ *
+ * Layout of the state buffer for halfNumCoefs=8.
+ *
+ * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
+ * S I R
+ *
+ * S = mState
+ * I = mImpulse
+ * R = mRingFull
+ * p = past samples, convoluted with the (p)ositive side of sinc()
+ * n = future samples, convoluted with the (n)egative side of sinc()
+ * r = extra space for implementing the ring buffer
+ */
+
+template<typename TI>
+AudioResamplerDyn::InBuffer<TI>::InBuffer()
+ : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateSize(0) {
+}
+
+template<typename TI>
+AudioResamplerDyn::InBuffer<TI>::~InBuffer() {
+ init();
+}
+
+template<typename TI>
+void AudioResamplerDyn::InBuffer<TI>::init() {
+ free(mState);
+ mState = NULL;
+ mImpulse = NULL;
+ mRingFull = NULL;
+ mStateSize = 0;
+}
+
+// resizes the state buffer to accommodate the appropriate filter length
+template<typename TI>
+void AudioResamplerDyn::InBuffer<TI>::resize(int CHANNELS, int halfNumCoefs) {
+ // calculate desired state size
+ int stateSize = halfNumCoefs * CHANNELS * 2
+ * kStateSizeMultipleOfFilterLength;
+
+ // check if buffer needs resizing
+ if (mState
+ && stateSize == mStateSize
+ && mRingFull-mState == mStateSize-halfNumCoefs*CHANNELS) {
+ return;
+ }
+
+ // create new buffer
+ TI* state = (int16_t*)memalign(32, stateSize*sizeof(*state));
+ memset(state, 0, stateSize*sizeof(*state));
+
+ // attempt to preserve state
+ if (mState) {
+ TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
+ TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
+ TI* dst = state;
+
+ if (srcLo < mState) {
+ dst += mState-srcLo;
+ srcLo = mState;
+ }
+ if (srcHi > mState + mStateSize) {
+ srcHi = mState + mStateSize;
+ }
+ memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
+ free(mState);
+ }
+
+ // set class member vars
+ mState = state;
+ mStateSize = stateSize;
+ mImpulse = mState + halfNumCoefs*CHANNELS; // actually one sample greater than needed
+ mRingFull = mState + mStateSize - halfNumCoefs*CHANNELS;
+}
+
+// copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
+template<typename TI>
+template<int CHANNELS>
+void AudioResamplerDyn::InBuffer<TI>::readAgain(TI*& impulse, const int halfNumCoefs,
+ const TI* const in, const size_t inputIndex) {
+ int16_t* head = impulse + halfNumCoefs*CHANNELS;
+ for (size_t i=0 ; i<CHANNELS ; i++) {
+ head[i] = in[inputIndex*CHANNELS + i];
+ }
+}
+
+// advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
+template<typename TI>
+template<int CHANNELS>
+void AudioResamplerDyn::InBuffer<TI>::readAdvance(TI*& impulse, const int halfNumCoefs,
+ const TI* const in, const size_t inputIndex) {
+ impulse += CHANNELS;
+
+ if (CC_UNLIKELY(impulse >= mRingFull)) {
+ const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
+ memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
+ impulse -= shiftDown;
+ }
+ readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
+}
+
+void AudioResamplerDyn::Constants::set(
+ int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
+{
+ int bits = 0;
+ int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
+ static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
+ for (int i=lscale; i; ++bits, i>>=1)
+ ;
+ mL = L;
+ mShift = kNumPhaseBits - bits;
+ mHalfNumCoefs = halfNumCoefs;
+}
+
+AudioResamplerDyn::AudioResamplerDyn(int bitDepth,
+ int inChannelCount, int32_t sampleRate, src_quality quality)
+ : AudioResampler(bitDepth, inChannelCount, sampleRate, quality),
+ mResampleType(0), mFilterSampleRate(0), mCoefBuffer(NULL)
+{
+ mVolumeSimd[0] = mVolumeSimd[1] = 0;
+ mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
+}
+
+AudioResamplerDyn::~AudioResamplerDyn() {
+ free(mCoefBuffer);
+}
+
+void AudioResamplerDyn::init() {
+ mFilterSampleRate = 0; // always trigger new filter generation
+ mInBuffer.init();
+}
+
+void AudioResamplerDyn::setVolume(int16_t left, int16_t right) {
+ AudioResampler::setVolume(left, right);
+ mVolumeSimd[0] = static_cast<int32_t>(left)<<16;
+ mVolumeSimd[1] = static_cast<int32_t>(right)<<16;
+}
+
+template <typename T> T max(T a, T b) {return a > b ? a : b;}
+
+template <typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
+
+template<typename T>
+void AudioResamplerDyn::createKaiserFir(Constants &c, double stopBandAtten,
+ int inSampleRate, int outSampleRate, double tbwCheat) {
+ T* buf = reinterpret_cast<T*>(memalign(32, (c.mL+1)*c.mHalfNumCoefs*sizeof(T)));
+ static const double atten = 0.9998; // to avoid ripple overflow
+ double fcr;
+ double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
+
+ if (inSampleRate < outSampleRate) { // upsample
+ fcr = max(0.5*tbwCheat - tbw/2, tbw/2);
+ } else { // downsample
+ fcr = max(0.5*tbwCheat*outSampleRate/inSampleRate - tbw/2, tbw/2);
+ }
+ // create and set filter
+ firKaiserGen(buf, c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten);
+ c.setBuf(buf);
+ if (mCoefBuffer) {
+ free(mCoefBuffer);
+ }
+ mCoefBuffer = buf;
+#ifdef DEBUG_RESAMPLER
+ // print basic filter stats
+ printf("L:%d hnc:%d stopBandAtten:%lf fcr:%lf atten:%lf tbw:%lf\n",
+ c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten, tbw);
+ // test the filter and report results
+ double fp = (fcr - tbw/2)/c.mL;
+ double fs = (fcr + tbw/2)/c.mL;
+ double fmin, fmax;
+ testFir(buf, c.mL, c.mHalfNumCoefs, 0., fp, 100, fmin, fmax);
+ double d1 = (fmax - fmin)/2.;
+ double ap = -20.*log10(1. - d1); // passband ripple
+ printf("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, (fmax + fmin)/2., d1, ap);
+ testFir(buf, c.mL, c.mHalfNumCoefs, fs, 0.5, 100, fmin, fmax);
+ double d2 = fmax;
+ double as = -20.*log10(d2); // stopband attenuation
+ printf("stopband(%lf, %lf): %.8lf %.8lf %.3lf\n", fs, 0.5, (fmax + fmin)/2., d2, as);
+#endif
+}
+
+// recursive gcd (TODO: verify tail recursion elimination should make this iterate)
+static int gcd(int n, int m) {
+ if (m == 0) {
+ return n;
+ }
+ return gcd(m, n % m);
+}
+
+static bool isClose(int32_t newSampleRate, int32_t prevSampleRate, int32_t filterSampleRate) {
+ int pdiff = absdiff(newSampleRate, prevSampleRate);
+ int adiff = absdiff(newSampleRate, filterSampleRate);
+
+ // allow up to 6% relative change increments.
+ // allow up to 12% absolute change increments (from filter design)
+ return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
+}
+
+void AudioResamplerDyn::setSampleRate(int32_t inSampleRate) {
+ if (mInSampleRate == inSampleRate) {
+ return;
+ }
+ int32_t oldSampleRate = mInSampleRate;
+ int32_t oldHalfNumCoefs = mConstants.mHalfNumCoefs;
+ uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
+ bool useS32 = false;
+
+ mInSampleRate = inSampleRate;
+
+ // TODO: Add precalculated Equiripple filters
+
+ if (!isClose(inSampleRate, oldSampleRate, mFilterSampleRate)) {
+ mFilterSampleRate = inSampleRate;
+
+ // Begin Kaiser Filter computation
+ //
+ // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
+ // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
+ //
+ // For s32 we keep the stop band attenuation at the same as 16b resolution, about
+ // 96-98dB
+ //
+
+ double stopBandAtten;
+ double tbwCheat = 1.; // how much we "cheat" into aliasing
+ int halfLength;
+ if (getQuality() == DYN_HIGH_QUALITY) {
+ // 32b coefficients, 64 length
+ useS32 = true;
+ stopBandAtten = 98.;
+ halfLength = 32;
+ } else if (getQuality() == DYN_LOW_QUALITY) {
+ // 16b coefficients, 16-32 length
+ useS32 = false;
+ stopBandAtten = 80.;
+ if (mSampleRate >= inSampleRate * 2) {
+ halfLength = 16;
+ } else {
+ halfLength = 8;
+ }
+ if (mSampleRate >= inSampleRate) {
+ tbwCheat = 1.05;
+ } else {
+ tbwCheat = 1.03;
+ }
+ } else { // medium quality
+ // 16b coefficients, 32-64 length
+ useS32 = false;
+ stopBandAtten = 84.;
+ if (mSampleRate >= inSampleRate * 4) {
+ halfLength = 32;
+ } else if (mSampleRate >= inSampleRate * 2) {
+ halfLength = 24;
+ } else {
+ halfLength = 16;
+ }
+ if (mSampleRate >= inSampleRate) {
+ tbwCheat = 1.03;
+ } else {
+ tbwCheat = 1.01;
+ }
+ }
+
+ // determine the number of polyphases in the filterbank.
+ // for 16b, it is desirable to have 2^(16/2) = 256 phases.
+ // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
+ //
+ // We are a bit more lax on this.
+
+ int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
+
+ while (phases<63) { // too few phases, allow room for interpolation
+ phases *= 2; // this code only needed to support dynamic rate changes
+ }
+ if (phases>=256) { // too many phases, always interpolate
+ phases = 127;
+ }
+
+ // create the filter
+ mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
+ if (useS32) {
+ createKaiserFir<int32_t>(mConstants, stopBandAtten,
+ inSampleRate, mSampleRate, tbwCheat);
+ } else {
+ createKaiserFir<int16_t>(mConstants, stopBandAtten,
+ inSampleRate, mSampleRate, tbwCheat);
+ }
+ } // End Kaiser filter
+
+ // update phase and state based on the new filter.
+ const Constants& c(mConstants);
+ mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
+ const uint32_t phaseWrapLimit = c.mL << c.mShift;
+ // try to preserve as much of the phase fraction as possible for on-the-fly changes
+ mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
+ * phaseWrapLimit / oldPhaseWrapLimit;
+ mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
+ mPhaseIncrement = static_cast<uint32_t>(static_cast<double>(phaseWrapLimit)
+ * inSampleRate / mSampleRate);
+
+ // determine which resampler to use
+ // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
+ int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
+ int stride = (c.mHalfNumCoefs&7)==0 ? 16 : (c.mHalfNumCoefs&3)==0 ? 8 : 2;
+ if (locked) {
+ mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
+ }
+ if (!USE_NEON) {
+ stride = 2; // C version only
+ }
+ // TODO: Remove this for testing
+ //stride = 2;
+ mResampleType = RESAMPLETYPE(mChannelCount, locked, stride, !!useS32);
+#ifdef DEBUG_RESAMPLER
+ printf("channels:%d %s stride:%d %s coef:%d shift:%d\n",
+ mChannelCount, locked ? "locked" : "interpolated",
+ stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
+#endif
+}
+
+void AudioResamplerDyn::resample(int32_t* out, size_t outFrameCount,
+ AudioBufferProvider* provider)
+{
+ // TODO:
+ // 24 cases - this perhaps can be reduced later, as testing might take too long
+ switch (mResampleType) {
+
+ // stride 16 (stride 2 for machines that do not support NEON)
+ case RESAMPLETYPE(1, true, 16, 0):
+ return resample<1, true, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
+ case RESAMPLETYPE(2, true, 16, 0):
+ return resample<2, true, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
+ case RESAMPLETYPE(1, false, 16, 0):
+ return resample<1, false, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
+ case RESAMPLETYPE(2, false, 16, 0):
+ return resample<2, false, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
+ case RESAMPLETYPE(1, true, 16, 1):
+ return resample<1, true, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
+ case RESAMPLETYPE(2, true, 16, 1):
+ return resample<2, true, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
+ case RESAMPLETYPE(1, false, 16, 1):
+ return resample<1, false, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
+ case RESAMPLETYPE(2, false, 16, 1):
+ return resample<2, false, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
+#if 0
+ // TODO: Remove these?
+ // stride 8
+ case RESAMPLETYPE(1, true, 8, 0):
+ return resample<1, true, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
+ case RESAMPLETYPE(2, true, 8, 0):
+ return resample<2, true, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
+ case RESAMPLETYPE(1, false, 8, 0):
+ return resample<1, false, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
+ case RESAMPLETYPE(2, false, 8, 0):
+ return resample<2, false, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
+ case RESAMPLETYPE(1, true, 8, 1):
+ return resample<1, true, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
+ case RESAMPLETYPE(2, true, 8, 1):
+ return resample<2, true, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
+ case RESAMPLETYPE(1, false, 8, 1):
+ return resample<1, false, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
+ case RESAMPLETYPE(2, false, 8, 1):
+ return resample<2, false, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
+ // stride 2 (can handle any filter length)
+ case RESAMPLETYPE(1, true, 2, 0):
+ return resample<1, true, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
+ case RESAMPLETYPE(2, true, 2, 0):
+ return resample<2, true, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
+ case RESAMPLETYPE(1, false, 2, 0):
+ return resample<1, false, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
+ case RESAMPLETYPE(2, false, 2, 0):
+ return resample<2, false, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
+ case RESAMPLETYPE(1, true, 2, 1):
+ return resample<1, true, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
+ case RESAMPLETYPE(2, true, 2, 1):
+ return resample<2, true, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
+ case RESAMPLETYPE(1, false, 2, 1):
+ return resample<1, false, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
+ case RESAMPLETYPE(2, false, 2, 1):
+ return resample<2, false, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
+#endif
+ default:
+ ; // error
+ }
+}
+
+template<int CHANNELS, bool LOCKED, int STRIDE, typename TC>
+void AudioResamplerDyn::resample(int32_t* out, size_t outFrameCount,
+ const TC* const coefs, AudioBufferProvider* provider)
+{
+ const Constants& c(mConstants);
+ int16_t* impulse = mInBuffer.getImpulse();
+ size_t inputIndex = mInputIndex;
+ uint32_t phaseFraction = mPhaseFraction;
+ const uint32_t phaseIncrement = mPhaseIncrement;
+ size_t outputIndex = 0;
+ size_t outputSampleCount = outFrameCount * 2; // stereo output
+ size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate;
+ const uint32_t phaseWrapLimit = c.mL << c.mShift;
+
+ // NOTE: be very careful when modifying the code here. register
+ // pressure is very high and a small change might cause the compiler
+ // to generate far less efficient code.
+ // Always sanity check the result with objdump or test-resample.
+
+ // the following logic is a bit convoluted to keep the main processing loop
+ // as tight as possible with register allocation.
+ while (outputIndex < outputSampleCount) {
+ // buffer is empty, fetch a new one
+ while (mBuffer.frameCount == 0) {
+ mBuffer.frameCount = inFrameCount;
+ provider->getNextBuffer(&mBuffer,
+ calculateOutputPTS(outputIndex / 2));
+ if (mBuffer.raw == NULL) {
+ goto resample_exit;
+ }
+ if (phaseFraction >= phaseWrapLimit) { // read in data
+ mInBuffer.readAdvance<CHANNELS>(
+ impulse, c.mHalfNumCoefs, mBuffer.i16, inputIndex);
+ phaseFraction -= phaseWrapLimit;
+ while (phaseFraction >= phaseWrapLimit) {
+ inputIndex++;
+ if (inputIndex >= mBuffer.frameCount) {
+ inputIndex -= mBuffer.frameCount;
+ provider->releaseBuffer(&mBuffer);
+ break;
+ }
+ mInBuffer.readAdvance<CHANNELS>(
+ impulse, c.mHalfNumCoefs, mBuffer.i16, inputIndex);
+ phaseFraction -= phaseWrapLimit;
+ }
+ }
+ }
+ const int16_t* const in = mBuffer.i16;
+ const size_t frameCount = mBuffer.frameCount;
+ const int coefShift = c.mShift;
+ const int halfNumCoefs = c.mHalfNumCoefs;
+ const int32_t* const volumeSimd = mVolumeSimd;
+
+ // reread the last input in.
+ mInBuffer.readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
+
+ // main processing loop
+ while (CC_LIKELY(outputIndex < outputSampleCount)) {
+ // caution: fir() is inlined and may be large.
+ // output will be loaded with the appropriate values
+ //
+ // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
+ // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
+ //
+ fir<CHANNELS, LOCKED, STRIDE>(
+ &out[outputIndex],
+ phaseFraction, phaseWrapLimit,
+ coefShift, halfNumCoefs, coefs,
+ impulse, volumeSimd);
+ outputIndex += 2;
+
+ phaseFraction += phaseIncrement;
+ while (phaseFraction >= phaseWrapLimit) {
+ inputIndex++;
+ if (inputIndex >= frameCount) {
+ goto done; // need a new buffer
+ }
+ mInBuffer.readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
+ phaseFraction -= phaseWrapLimit;
+ }
+ }
+done:
+ // often arrives here when input buffer runs out
+ if (inputIndex >= frameCount) {
+ inputIndex -= frameCount;
+ provider->releaseBuffer(&mBuffer);
+ // mBuffer.frameCount MUST be zero here.
+ }
+ }
+
+resample_exit:
+ mInBuffer.setImpulse(impulse);
+ mInputIndex = inputIndex;
+ mPhaseFraction = phaseFraction;
+}
+
+// ----------------------------------------------------------------------------
+}; // namespace android