summaryrefslogtreecommitdiffstats
path: root/media/libeffects/testlibs/EffectReverb.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/libeffects/testlibs/EffectReverb.c')
-rw-r--r--media/libeffects/testlibs/EffectReverb.c2135
1 files changed, 2135 insertions, 0 deletions
diff --git a/media/libeffects/testlibs/EffectReverb.c b/media/libeffects/testlibs/EffectReverb.c
new file mode 100644
index 0000000..2ce7558
--- /dev/null
+++ b/media/libeffects/testlibs/EffectReverb.c
@@ -0,0 +1,2135 @@
+/*
+ * Copyright (C) 2008 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "EffectReverb"
+//#define LOG_NDEBUG 0
+#include <cutils/log.h>
+#include <stdlib.h>
+#include <string.h>
+#include <stdbool.h>
+#include "EffectReverb.h"
+#include "EffectsMath.h"
+
+// effect_interface_t interface implementation for reverb effect
+const struct effect_interface_s gReverbInterface = {
+ Reverb_Process,
+ Reverb_Command
+};
+
+// Google auxiliary environmental reverb UUID: 1f0ae2e0-4ef7-11df-bc09-0002a5d5c51b
+static const effect_descriptor_t gAuxEnvReverbDescriptor = {
+ {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
+ {0x1f0ae2e0, 0x4ef7, 0x11df, 0xbc09, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
+ EFFECT_API_VERSION,
+ // flags other than EFFECT_FLAG_TYPE_AUXILIARY set for test purpose
+ EFFECT_FLAG_TYPE_AUXILIARY | EFFECT_FLAG_DEVICE_IND | EFFECT_FLAG_AUDIO_MODE_IND,
+ 0, // TODO
+ 33,
+ "Aux Environmental Reverb",
+ "Google Inc."
+};
+
+// Google insert environmental reverb UUID: aa476040-6342-11df-91a4-0002a5d5c51b
+static const effect_descriptor_t gInsertEnvReverbDescriptor = {
+ {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
+ {0xaa476040, 0x6342, 0x11df, 0x91a4, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
+ EFFECT_API_VERSION,
+ EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
+ 0, // TODO
+ 33,
+ "Insert Environmental reverb",
+ "Google Inc."
+};
+
+// Google auxiliary preset reverb UUID: 63909320-53a6-11df-bdbd-0002a5d5c51b
+static const effect_descriptor_t gAuxPresetReverbDescriptor = {
+ {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
+ {0x63909320, 0x53a6, 0x11df, 0xbdbd, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
+ EFFECT_API_VERSION,
+ EFFECT_FLAG_TYPE_AUXILIARY,
+ 0, // TODO
+ 33,
+ "Aux Preset Reverb",
+ "Google Inc."
+};
+
+// Google insert preset reverb UUID: d93dc6a0-6342-11df-b128-0002a5d5c51b
+static const effect_descriptor_t gInsertPresetReverbDescriptor = {
+ {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
+ {0xd93dc6a0, 0x6342, 0x11df, 0xb128, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
+ EFFECT_API_VERSION,
+ EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
+ 0, // TODO
+ 33,
+ "Insert Preset Reverb",
+ "Google Inc."
+};
+
+// gDescriptors contains pointers to all defined effect descriptor in this library
+static const effect_descriptor_t * const gDescriptors[] = {
+ &gAuxEnvReverbDescriptor,
+ &gInsertEnvReverbDescriptor,
+ &gAuxPresetReverbDescriptor,
+ &gInsertPresetReverbDescriptor
+};
+
+/*----------------------------------------------------------------------------
+ * Effect API implementation
+ *--------------------------------------------------------------------------*/
+
+/*--- Effect Library Interface Implementation ---*/
+
+int EffectQueryNumberEffects(uint32_t *pNumEffects) {
+ *pNumEffects = sizeof(gDescriptors) / sizeof(const effect_descriptor_t *);
+ return 0;
+}
+
+int EffectQueryEffect(uint32_t index, effect_descriptor_t *pDescriptor) {
+ if (pDescriptor == NULL) {
+ return -EINVAL;
+ }
+ if (index >= sizeof(gDescriptors) / sizeof(const effect_descriptor_t *)) {
+ return -EINVAL;
+ }
+ memcpy(pDescriptor, gDescriptors[index],
+ sizeof(effect_descriptor_t));
+ return 0;
+}
+
+int EffectCreate(effect_uuid_t *uuid,
+ int32_t sessionId,
+ int32_t ioId,
+ effect_interface_t *pInterface) {
+ int ret;
+ int i;
+ reverb_module_t *module;
+ const effect_descriptor_t *desc;
+ int aux = 0;
+ int preset = 0;
+
+ LOGV("EffectLibCreateEffect start");
+
+ if (pInterface == NULL || uuid == NULL) {
+ return -EINVAL;
+ }
+
+ for (i = 0; gDescriptors[i] != NULL; i++) {
+ desc = gDescriptors[i];
+ if (memcmp(uuid, &desc->uuid, sizeof(effect_uuid_t))
+ == 0) {
+ break;
+ }
+ }
+
+ if (gDescriptors[i] == NULL) {
+ return -ENOENT;
+ }
+
+ module = malloc(sizeof(reverb_module_t));
+
+ module->itfe = &gReverbInterface;
+
+ module->context.mState = REVERB_STATE_UNINITIALIZED;
+
+ if (memcmp(&desc->type, SL_IID_PRESETREVERB, sizeof(effect_uuid_t)) == 0) {
+ preset = 1;
+ }
+ if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
+ aux = 1;
+ }
+ ret = Reverb_Init(module, aux, preset);
+ if (ret < 0) {
+ LOGW("EffectLibCreateEffect() init failed");
+ free(module);
+ return ret;
+ }
+
+ *pInterface = (effect_interface_t) module;
+
+ module->context.mState = REVERB_STATE_INITIALIZED;
+
+ LOGV("EffectLibCreateEffect %p ,size %d", module, sizeof(reverb_module_t));
+
+ return 0;
+}
+
+int EffectRelease(effect_interface_t interface) {
+ reverb_module_t *pRvbModule = (reverb_module_t *)interface;
+
+ LOGV("EffectLibReleaseEffect %p", interface);
+ if (interface == NULL) {
+ return -EINVAL;
+ }
+
+ pRvbModule->context.mState = REVERB_STATE_UNINITIALIZED;
+
+ free(pRvbModule);
+ return 0;
+}
+
+
+/*--- Effect Control Interface Implementation ---*/
+
+static int Reverb_Process(effect_interface_t self, audio_buffer_t *inBuffer, audio_buffer_t *outBuffer) {
+ reverb_object_t *pReverb;
+ int16_t *pSrc, *pDst;
+ reverb_module_t *pRvbModule = (reverb_module_t *)self;
+
+ if (pRvbModule == NULL) {
+ return -EINVAL;
+ }
+
+ if (inBuffer == NULL || inBuffer->raw == NULL ||
+ outBuffer == NULL || outBuffer->raw == NULL ||
+ inBuffer->frameCount != outBuffer->frameCount) {
+ return -EINVAL;
+ }
+
+ pReverb = (reverb_object_t*) &pRvbModule->context;
+
+ if (pReverb->mState == REVERB_STATE_UNINITIALIZED) {
+ return -EINVAL;
+ }
+ if (pReverb->mState == REVERB_STATE_INITIALIZED) {
+ return -ENODATA;
+ }
+
+ //if bypassed or the preset forces the signal to be completely dry
+ if (pReverb->m_bBypass != 0) {
+ if (inBuffer->raw != outBuffer->raw) {
+ int16_t smp;
+ pSrc = inBuffer->s16;
+ pDst = outBuffer->s16;
+ size_t count = inBuffer->frameCount;
+ if (pRvbModule->config.inputCfg.channels == pRvbModule->config.outputCfg.channels) {
+ count *= 2;
+ while (count--) {
+ *pDst++ = *pSrc++;
+ }
+ } else {
+ while (count--) {
+ smp = *pSrc++;
+ *pDst++ = smp;
+ *pDst++ = smp;
+ }
+ }
+ }
+ return 0;
+ }
+
+ if (pReverb->m_nNextRoom != pReverb->m_nCurrentRoom) {
+ ReverbUpdateRoom(pReverb, true);
+ }
+
+ pSrc = inBuffer->s16;
+ pDst = outBuffer->s16;
+ size_t numSamples = outBuffer->frameCount;
+ while (numSamples) {
+ uint32_t processedSamples;
+ if (numSamples > (uint32_t) pReverb->m_nUpdatePeriodInSamples) {
+ processedSamples = (uint32_t) pReverb->m_nUpdatePeriodInSamples;
+ } else {
+ processedSamples = numSamples;
+ }
+
+ /* increment update counter */
+ pReverb->m_nUpdateCounter += (int16_t) processedSamples;
+ /* check if update counter needs to be reset */
+ if (pReverb->m_nUpdateCounter >= pReverb->m_nUpdatePeriodInSamples) {
+ /* update interval has elapsed, so reset counter */
+ pReverb->m_nUpdateCounter -= pReverb->m_nUpdatePeriodInSamples;
+ ReverbUpdateXfade(pReverb, pReverb->m_nUpdatePeriodInSamples);
+
+ } /* end if m_nUpdateCounter >= update interval */
+
+ Reverb(pReverb, processedSamples, pDst, pSrc);
+
+ numSamples -= processedSamples;
+ if (pReverb->m_Aux) {
+ pSrc += processedSamples;
+ } else {
+ pSrc += processedSamples * NUM_OUTPUT_CHANNELS;
+ }
+ pDst += processedSamples * NUM_OUTPUT_CHANNELS;
+ }
+
+ return 0;
+}
+
+
+static int Reverb_Command(effect_interface_t self, int cmdCode, int cmdSize,
+ void *pCmdData, int *replySize, void *pReplyData) {
+ reverb_module_t *pRvbModule = (reverb_module_t *) self;
+ reverb_object_t *pReverb;
+ int retsize;
+
+ if (pRvbModule == NULL ||
+ pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
+ return -EINVAL;
+ }
+
+ pReverb = (reverb_object_t*) &pRvbModule->context;
+
+ LOGV("Reverb_Command command %d cmdSize %d",cmdCode, cmdSize);
+
+ switch (cmdCode) {
+ case EFFECT_CMD_INIT:
+ if (pReplyData == NULL || *replySize != sizeof(int)) {
+ return -EINVAL;
+ }
+ *(int *) pReplyData = Reverb_Init(pRvbModule, pReverb->m_Aux, pReverb->m_Preset);
+ if (*(int *) pReplyData == 0) {
+ pRvbModule->context.mState = REVERB_STATE_INITIALIZED;
+ }
+ break;
+ case EFFECT_CMD_CONFIGURE:
+ if (pCmdData == NULL || cmdSize != sizeof(effect_config_t)
+ || pReplyData == NULL || *replySize != sizeof(int)) {
+ return -EINVAL;
+ }
+ *(int *) pReplyData = Reverb_Configure(pRvbModule,
+ (effect_config_t *)pCmdData, false);
+ break;
+ case EFFECT_CMD_RESET:
+ Reverb_Reset(pReverb, false);
+ break;
+ case EFFECT_CMD_GET_PARAM:
+ LOGV("Reverb_Command EFFECT_CMD_GET_PARAM pCmdData %p, *replySize %d, pReplyData: %p",pCmdData, *replySize, pReplyData);
+
+ if (pCmdData == NULL || cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)) ||
+ pReplyData == NULL || *replySize < (int) sizeof(effect_param_t)) {
+ return -EINVAL;
+ }
+ effect_param_t *rep = (effect_param_t *) pReplyData;
+ memcpy(pReplyData, pCmdData, sizeof(effect_param_t) + sizeof(int32_t));
+ LOGV("Reverb_Command EFFECT_CMD_GET_PARAM param %d, replySize %d",*(int32_t *)rep->data, rep->vsize);
+ rep->status = Reverb_getParameter(pReverb, *(int32_t *)rep->data, &rep->vsize,
+ rep->data + sizeof(int32_t));
+ *replySize = sizeof(effect_param_t) + sizeof(int32_t) + rep->vsize;
+ break;
+ case EFFECT_CMD_SET_PARAM:
+ LOGV("Reverb_Command EFFECT_CMD_SET_PARAM cmdSize %d pCmdData %p, *replySize %d, pReplyData %p",
+ cmdSize, pCmdData, *replySize, pReplyData);
+ if (pCmdData == NULL || (cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)))
+ || pReplyData == NULL || *replySize != (int)sizeof(int32_t)) {
+ return -EINVAL;
+ }
+ effect_param_t *cmd = (effect_param_t *) pCmdData;
+ *(int *)pReplyData = Reverb_setParameter(pReverb, *(int32_t *)cmd->data,
+ cmd->vsize, cmd->data + sizeof(int32_t));
+ break;
+ case EFFECT_CMD_ENABLE:
+ if (pReplyData == NULL || *replySize != sizeof(int)) {
+ return -EINVAL;
+ }
+ if (pReverb->mState != REVERB_STATE_INITIALIZED) {
+ return -ENOSYS;
+ }
+ pReverb->mState = REVERB_STATE_ACTIVE;
+ LOGV("EFFECT_CMD_ENABLE() OK");
+ *(int *)pReplyData = 0;
+ break;
+ case EFFECT_CMD_DISABLE:
+ if (pReplyData == NULL || *replySize != sizeof(int)) {
+ return -EINVAL;
+ }
+ if (pReverb->mState != REVERB_STATE_ACTIVE) {
+ return -ENOSYS;
+ }
+ pReverb->mState = REVERB_STATE_INITIALIZED;
+ LOGV("EFFECT_CMD_DISABLE() OK");
+ *(int *)pReplyData = 0;
+ break;
+ case EFFECT_CMD_SET_DEVICE:
+ if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
+ return -EINVAL;
+ }
+ LOGV("Reverb_Command EFFECT_CMD_SET_DEVICE: 0x%08x", *(uint32_t *)pCmdData);
+ break;
+ case EFFECT_CMD_SET_VOLUME: {
+ // audio output is always stereo => 2 channel volumes
+ if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t) * 2) {
+ return -EINVAL;
+ }
+ float left = (float)(*(uint32_t *)pCmdData) / (1 << 24);
+ float right = (float)(*((uint32_t *)pCmdData + 1)) / (1 << 24);
+ LOGV("Reverb_Command EFFECT_CMD_SET_VOLUME: left %f, right %f ", left, right);
+ break;
+ }
+ case EFFECT_CMD_SET_AUDIO_MODE:
+ if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
+ return -EINVAL;
+ }
+ LOGV("Reverb_Command EFFECT_CMD_SET_AUDIO_MODE: %d", *(uint32_t *)pCmdData);
+ break;
+ default:
+ LOGW("Reverb_Command invalid command %d",cmdCode);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+
+/*----------------------------------------------------------------------------
+ * Reverb internal functions
+ *--------------------------------------------------------------------------*/
+
+/*----------------------------------------------------------------------------
+ * Reverb_Init()
+ *----------------------------------------------------------------------------
+ * Purpose:
+ * Initialize reverb context and apply default parameters
+ *
+ * Inputs:
+ * pRvbModule - pointer to reverb effect module
+ * aux - indicates if the reverb is used as auxiliary (1) or insert (0)
+ * preset - indicates if the reverb is used in preset (1) or environmental (0) mode
+ *
+ * Outputs:
+ *
+ * Side Effects:
+ *
+ *----------------------------------------------------------------------------
+ */
+
+int Reverb_Init(reverb_module_t *pRvbModule, int aux, int preset) {
+ int ret;
+
+ LOGV("Reverb_Init module %p, aux: %d, preset: %d", pRvbModule,aux, preset);
+
+ memset(&pRvbModule->context, 0, sizeof(reverb_object_t));
+
+ pRvbModule->context.m_Aux = (uint16_t)aux;
+ pRvbModule->context.m_Preset = (uint16_t)preset;
+
+ pRvbModule->config.inputCfg.samplingRate = 44100;
+ if (aux) {
+ pRvbModule->config.inputCfg.channels = CHANNEL_MONO;
+ } else {
+ pRvbModule->config.inputCfg.channels = CHANNEL_STEREO;
+ }
+ pRvbModule->config.inputCfg.format = SAMPLE_FORMAT_PCM_S15;
+ pRvbModule->config.inputCfg.bufferProvider.getBuffer = NULL;
+ pRvbModule->config.inputCfg.bufferProvider.releaseBuffer = NULL;
+ pRvbModule->config.inputCfg.bufferProvider.cookie = NULL;
+ pRvbModule->config.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ;
+ pRvbModule->config.inputCfg.mask = EFFECT_CONFIG_ALL;
+ pRvbModule->config.outputCfg.samplingRate = 44100;
+ pRvbModule->config.outputCfg.channels = CHANNEL_STEREO;
+ pRvbModule->config.outputCfg.format = SAMPLE_FORMAT_PCM_S15;
+ pRvbModule->config.outputCfg.bufferProvider.getBuffer = NULL;
+ pRvbModule->config.outputCfg.bufferProvider.releaseBuffer = NULL;
+ pRvbModule->config.outputCfg.bufferProvider.cookie = NULL;
+ pRvbModule->config.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE;
+ pRvbModule->config.outputCfg.mask = EFFECT_CONFIG_ALL;
+
+ ret = Reverb_Configure(pRvbModule, &pRvbModule->config, true);
+ if (ret < 0) {
+ LOGV("Reverb_Init error %d on module %p", ret, pRvbModule);
+ }
+
+ return ret;
+}
+
+/*----------------------------------------------------------------------------
+ * Reverb_Init()
+ *----------------------------------------------------------------------------
+ * Purpose:
+ * Set input and output audio configuration.
+ *
+ * Inputs:
+ * pRvbModule - pointer to reverb effect module
+ * pConfig - pointer to effect_config_t structure containing input
+ * and output audio parameters configuration
+ * init - true if called from init function
+ * Outputs:
+ *
+ * Side Effects:
+ *
+ *----------------------------------------------------------------------------
+ */
+
+int Reverb_Configure(reverb_module_t *pRvbModule, effect_config_t *pConfig,
+ bool init) {
+ reverb_object_t *pReverb = &pRvbModule->context;
+ int bufferSizeInSamples;
+ int updatePeriodInSamples;
+ int xfadePeriodInSamples;
+
+ // Check configuration compatibility with build options
+ if (pConfig->inputCfg.samplingRate
+ != pConfig->outputCfg.samplingRate
+ || pConfig->outputCfg.channels != OUTPUT_CHANNELS
+ || pConfig->inputCfg.format != SAMPLE_FORMAT_PCM_S15
+ || pConfig->outputCfg.format != SAMPLE_FORMAT_PCM_S15) {
+ LOGV("Reverb_Configure invalid config");
+ return -EINVAL;
+ }
+ if ((pReverb->m_Aux && (pConfig->inputCfg.channels != CHANNEL_MONO)) ||
+ (!pReverb->m_Aux && (pConfig->inputCfg.channels != CHANNEL_STEREO))) {
+ LOGV("Reverb_Configure invalid config");
+ return -EINVAL;
+ }
+
+ memcpy(&pRvbModule->config, pConfig, sizeof(effect_config_t));
+
+ pReverb->m_nSamplingRate = pRvbModule->config.outputCfg.samplingRate;
+
+ switch (pReverb->m_nSamplingRate) {
+ case 8000:
+ pReverb->m_nUpdatePeriodInBits = 5;
+ bufferSizeInSamples = 4096;
+ pReverb->m_nCosWT_5KHz = -23170;
+ break;
+ case 16000:
+ pReverb->m_nUpdatePeriodInBits = 6;
+ bufferSizeInSamples = 8192;
+ pReverb->m_nCosWT_5KHz = -12540;
+ break;
+ case 22050:
+ pReverb->m_nUpdatePeriodInBits = 7;
+ bufferSizeInSamples = 8192;
+ pReverb->m_nCosWT_5KHz = 4768;
+ break;
+ case 32000:
+ pReverb->m_nUpdatePeriodInBits = 7;
+ bufferSizeInSamples = 16384;
+ pReverb->m_nCosWT_5KHz = 18205;
+ break;
+ case 44100:
+ pReverb->m_nUpdatePeriodInBits = 8;
+ bufferSizeInSamples = 16384;
+ pReverb->m_nCosWT_5KHz = 24799;
+ break;
+ case 48000:
+ pReverb->m_nUpdatePeriodInBits = 8;
+ bufferSizeInSamples = 16384;
+ pReverb->m_nCosWT_5KHz = 25997;
+ break;
+ default:
+ LOGV("Reverb_Configure invalid sampling rate %d", pReverb->m_nSamplingRate);
+ return -EINVAL;
+ }
+
+ // Define a mask for circular addressing, so that array index
+ // can wraparound and stay in array boundary of 0, 1, ..., (buffer size -1)
+ // The buffer size MUST be a power of two
+ pReverb->m_nBufferMask = (int32_t) (bufferSizeInSamples - 1);
+ /* reverb parameters are updated every 2^(pReverb->m_nUpdatePeriodInBits) samples */
+ updatePeriodInSamples = (int32_t) (0x1L << pReverb->m_nUpdatePeriodInBits);
+ /*
+ calculate the update counter by bitwise ANDING with this value to
+ generate a 2^n modulo value
+ */
+ pReverb->m_nUpdatePeriodInSamples = (int32_t) updatePeriodInSamples;
+
+ xfadePeriodInSamples = (int32_t) (REVERB_XFADE_PERIOD_IN_SECONDS
+ * (double) pReverb->m_nSamplingRate);
+
+ // set xfade parameters
+ pReverb->m_nPhaseIncrement
+ = (int16_t) (65536 / ((int16_t) xfadePeriodInSamples
+ / (int16_t) updatePeriodInSamples));
+
+ if (init) {
+ ReverbReadInPresets(pReverb);
+
+ // for debugging purposes, allow noise generator
+ pReverb->m_bUseNoise = true;
+
+ // for debugging purposes, allow bypass
+ pReverb->m_bBypass = 0;
+
+ pReverb->m_nNextRoom = 1;
+
+ pReverb->m_nNoise = (int16_t) 0xABCD;
+ }
+
+ Reverb_Reset(pReverb, init);
+
+ return 0;
+}
+
+/*----------------------------------------------------------------------------
+ * Reverb_Reset()
+ *----------------------------------------------------------------------------
+ * Purpose:
+ * Reset internal states and clear delay lines.
+ *
+ * Inputs:
+ * pReverb - pointer to reverb context
+ * init - true if called from init function
+ *
+ * Outputs:
+ *
+ * Side Effects:
+ *
+ *----------------------------------------------------------------------------
+ */
+
+void Reverb_Reset(reverb_object_t *pReverb, bool init) {
+ int bufferSizeInSamples = (int32_t) (pReverb->m_nBufferMask + 1);
+ int maxApSamples;
+ int maxDelaySamples;
+ int maxEarlySamples;
+ int ap1In;
+ int delay0In;
+ int delay1In;
+ int32_t i;
+ uint16_t nOffset;
+
+ maxApSamples = ((int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16);
+ maxDelaySamples = ((int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
+ >> 16);
+ maxEarlySamples = ((int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
+ >> 16);
+
+ ap1In = (AP0_IN + maxApSamples + GUARD);
+ delay0In = (ap1In + maxApSamples + GUARD);
+ delay1In = (delay0In + maxDelaySamples + GUARD);
+ // Define the max offsets for the end points of each section
+ // i.e., we don't expect a given section's taps to go beyond
+ // the following limits
+
+ pReverb->m_nEarly0in = (delay1In + maxDelaySamples + GUARD);
+ pReverb->m_nEarly1in = (pReverb->m_nEarly0in + maxEarlySamples + GUARD);
+
+ pReverb->m_sAp0.m_zApIn = AP0_IN;
+
+ pReverb->m_zD0In = delay0In;
+
+ pReverb->m_sAp1.m_zApIn = ap1In;
+
+ pReverb->m_zD1In = delay1In;
+
+ pReverb->m_zOutLpfL = 0;
+ pReverb->m_zOutLpfR = 0;
+
+ pReverb->m_nRevFbkR = 0;
+ pReverb->m_nRevFbkL = 0;
+
+ // set base index into circular buffer
+ pReverb->m_nBaseIndex = 0;
+
+ // clear the reverb delay line
+ for (i = 0; i < bufferSizeInSamples; i++) {
+ pReverb->m_nDelayLine[i] = 0;
+ }
+
+ ReverbUpdateRoom(pReverb, init);
+
+ pReverb->m_nUpdateCounter = 0;
+
+ pReverb->m_nPhase = -32768;
+
+ pReverb->m_nSin = 0;
+ pReverb->m_nCos = 0;
+ pReverb->m_nSinIncrement = 0;
+ pReverb->m_nCosIncrement = 0;
+
+ // set delay tap lengths
+ nOffset = ReverbCalculateNoise(pReverb);
+
+ pReverb->m_zD1Cross = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
+ + nOffset;
+
+ nOffset = ReverbCalculateNoise(pReverb);
+
+ pReverb->m_zD0Cross = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
+ - nOffset;
+
+ nOffset = ReverbCalculateNoise(pReverb);
+
+ pReverb->m_zD0Self = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
+ - nOffset;
+
+ nOffset = ReverbCalculateNoise(pReverb);
+
+ pReverb->m_zD1Self = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
+ + nOffset;
+}
+
+/*----------------------------------------------------------------------------
+ * Reverb_getParameter()
+ *----------------------------------------------------------------------------
+ * Purpose:
+ * Get a Reverb parameter
+ *
+ * Inputs:
+ * pReverb - handle to instance data
+ * param - parameter
+ * pValue - pointer to variable to hold retrieved value
+ * pSize - pointer to value size: maximum size as input
+ *
+ * Outputs:
+ * *pValue updated with parameter value
+ * *pSize updated with actual value size
+ *
+ *
+ * Side Effects:
+ *
+ *----------------------------------------------------------------------------
+ */
+int Reverb_getParameter(reverb_object_t *pReverb, int32_t param, size_t *pSize,
+ void *pValue) {
+ int32_t *pValue32;
+ int16_t *pValue16;
+ t_reverb_properties *pProperties;
+ int32_t i;
+ int32_t temp;
+ int32_t temp2;
+ size_t size;
+
+ if (pReverb->m_Preset) {
+ if (param != REVERB_PARAM_PRESET || *pSize < sizeof(int16_t)) {
+ return -EINVAL;
+ }
+ size = sizeof(int16_t);
+ pValue16 = (int16_t *)pValue;
+ // REVERB_PRESET_NONE is mapped to bypass
+ if (pReverb->m_bBypass != 0) {
+ *pValue16 = (int16_t)REVERB_PRESET_NONE;
+ } else {
+ *pValue16 = (int16_t)(pReverb->m_nNextRoom + 1);
+ }
+ LOGV("get REVERB_PARAM_PRESET, preset %d", *pValue16);
+ } else {
+ switch (param) {
+ case REVERB_PARAM_ROOM_LEVEL:
+ case REVERB_PARAM_ROOM_HF_LEVEL:
+ case REVERB_PARAM_DECAY_HF_RATIO:
+ case REVERB_PARAM_REFLECTIONS_LEVEL:
+ case REVERB_PARAM_REVERB_LEVEL:
+ case REVERB_PARAM_DIFFUSION:
+ case REVERB_PARAM_DENSITY:
+ size = sizeof(int16_t);
+ break;
+
+ case REVERB_PARAM_BYPASS:
+ case REVERB_PARAM_DECAY_TIME:
+ case REVERB_PARAM_REFLECTIONS_DELAY:
+ case REVERB_PARAM_REVERB_DELAY:
+ size = sizeof(int32_t);
+ break;
+
+ case REVERB_PARAM_PROPERTIES:
+ size = sizeof(t_reverb_properties);
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ if (*pSize < size) {
+ return -EINVAL;
+ }
+
+ pValue32 = (int32_t *) pValue;
+ pValue16 = (int16_t *) pValue;
+ pProperties = (t_reverb_properties *) pValue;
+
+ switch (param) {
+ case REVERB_PARAM_BYPASS:
+ *pValue32 = (int32_t) pReverb->m_bBypass;
+ break;
+
+ case REVERB_PARAM_PROPERTIES:
+ pValue16 = &pProperties->roomLevel;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_ROOM_LEVEL:
+ // Convert m_nRoomLpfFwd to millibels
+ temp = (pReverb->m_nRoomLpfFwd << 15)
+ / (32767 - pReverb->m_nRoomLpfFbk);
+ *pValue16 = Effects_Linear16ToMillibels(temp);
+
+ LOGV("get REVERB_PARAM_ROOM_LEVEL %d, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", *pValue16, temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
+
+ if (param == REVERB_PARAM_ROOM_LEVEL) {
+ break;
+ }
+ pValue16 = &pProperties->roomHFLevel;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_ROOM_HF_LEVEL:
+ // The ratio between linear gain at 0Hz and at 5000Hz for the room low pass is:
+ // (1 + a1) / sqrt(a1^2 + 2*C*a1 + 1) where:
+ // - a1 is minus the LP feedback gain: -pReverb->m_nRoomLpfFbk
+ // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
+
+ temp = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFbk);
+ LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 %d", temp);
+ temp2 = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nCosWT_5KHz)
+ << 1;
+ LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, 2 Cos a1 %d", temp2);
+ temp = 32767 + temp - temp2;
+ LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 + 2 Cos a1 + 1 %d", temp);
+ temp = Effects_Sqrt(temp) * 181;
+ LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, SQRT(a1^2 + 2 Cos a1 + 1) %d", temp);
+ temp = ((32767 - pReverb->m_nRoomLpfFbk) << 15) / temp;
+
+ LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
+
+ *pValue16 = Effects_Linear16ToMillibels(temp);
+
+ if (param == REVERB_PARAM_ROOM_HF_LEVEL) {
+ break;
+ }
+ pValue32 = &pProperties->decayTime;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_DECAY_TIME:
+ // Calculate reverb feedback path gain
+ temp = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
+ temp = Effects_Linear16ToMillibels(temp);
+
+ // Calculate decay time: g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
+ temp = (-6000 * pReverb->m_nLateDelay) / temp;
+
+ // Convert samples to ms
+ *pValue32 = (temp * 1000) / pReverb->m_nSamplingRate;
+
+ LOGV("get REVERB_PARAM_DECAY_TIME, samples %d, ms %d", temp, *pValue32);
+
+ if (param == REVERB_PARAM_DECAY_TIME) {
+ break;
+ }
+ pValue16 = &pProperties->decayHFRatio;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_DECAY_HF_RATIO:
+ // If r is the decay HF ratio (r = REVERB_PARAM_DECAY_HF_RATIO/1000) we have:
+ // DT_5000Hz = DT_0Hz * r
+ // and G_5000Hz = -6000 * d / DT_5000Hz and G_0Hz = -6000 * d / DT_0Hz in millibels so :
+ // r = G_0Hz/G_5000Hz in millibels
+ // The linear gain at 5000Hz is b0 / sqrt(a1^2 + 2*C*a1 + 1) where:
+ // - a1 is minus the LP feedback gain: -pReverb->m_nRvbLpfFbk
+ // - b0 is the LP forward gain: pReverb->m_nRvbLpfFwd
+ // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
+ if (pReverb->m_nRvbLpfFbk == 0) {
+ *pValue16 = 1000;
+ LOGV("get REVERB_PARAM_DECAY_HF_RATIO, pReverb->m_nRvbLpfFbk == 0, ratio %d", *pValue16);
+ } else {
+ temp = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFbk);
+ temp2 = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nCosWT_5KHz)
+ << 1;
+ temp = 32767 + temp - temp2;
+ temp = Effects_Sqrt(temp) * 181;
+ temp = (pReverb->m_nRvbLpfFwd << 15) / temp;
+ // The linear gain at 0Hz is b0 / (a1 + 1)
+ temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767
+ - pReverb->m_nRvbLpfFbk);
+
+ temp = Effects_Linear16ToMillibels(temp);
+ temp2 = Effects_Linear16ToMillibels(temp2);
+ LOGV("get REVERB_PARAM_DECAY_HF_RATIO, gain 5KHz %d mB, gain DC %d mB", temp, temp2);
+
+ if (temp == 0)
+ temp = 1;
+ temp = (int16_t) ((1000 * temp2) / temp);
+ if (temp > 1000)
+ temp = 1000;
+
+ *pValue16 = temp;
+ LOGV("get REVERB_PARAM_DECAY_HF_RATIO, ratio %d", *pValue16);
+ }
+
+ if (param == REVERB_PARAM_DECAY_HF_RATIO) {
+ break;
+ }
+ pValue16 = &pProperties->reflectionsLevel;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_REFLECTIONS_LEVEL:
+ *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nEarlyGain);
+
+ LOGV("get REVERB_PARAM_REFLECTIONS_LEVEL, %d", *pValue16);
+ if (param == REVERB_PARAM_REFLECTIONS_LEVEL) {
+ break;
+ }
+ pValue32 = &pProperties->reflectionsDelay;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_REFLECTIONS_DELAY:
+ // convert samples to ms
+ *pValue32 = (pReverb->m_nEarlyDelay * 1000) / pReverb->m_nSamplingRate;
+
+ LOGV("get REVERB_PARAM_REFLECTIONS_DELAY, samples %d, ms %d", pReverb->m_nEarlyDelay, *pValue32);
+
+ if (param == REVERB_PARAM_REFLECTIONS_DELAY) {
+ break;
+ }
+ pValue16 = &pProperties->reverbLevel;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_REVERB_LEVEL:
+ // Convert linear gain to millibels
+ *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nLateGain << 2);
+
+ LOGV("get REVERB_PARAM_REVERB_LEVEL %d", *pValue16);
+
+ if (param == REVERB_PARAM_REVERB_LEVEL) {
+ break;
+ }
+ pValue32 = &pProperties->reverbDelay;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_REVERB_DELAY:
+ // convert samples to ms
+ *pValue32 = (pReverb->m_nLateDelay * 1000) / pReverb->m_nSamplingRate;
+
+ LOGV("get REVERB_PARAM_REVERB_DELAY, samples %d, ms %d", pReverb->m_nLateDelay, *pValue32);
+
+ if (param == REVERB_PARAM_REVERB_DELAY) {
+ break;
+ }
+ pValue16 = &pProperties->diffusion;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_DIFFUSION:
+ temp = (int16_t) ((1000 * (pReverb->m_sAp0.m_nApGain - AP0_GAIN_BASE))
+ / AP0_GAIN_RANGE);
+
+ if (temp < 0)
+ temp = 0;
+ if (temp > 1000)
+ temp = 1000;
+
+ *pValue16 = temp;
+ LOGV("get REVERB_PARAM_DIFFUSION, %d, AP0 gain %d", *pValue16, pReverb->m_sAp0.m_nApGain);
+
+ if (param == REVERB_PARAM_DIFFUSION) {
+ break;
+ }
+ pValue16 = &pProperties->density;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_DENSITY:
+ // Calculate AP delay in time units
+ temp = ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn) << 16)
+ / pReverb->m_nSamplingRate;
+
+ temp = (int16_t) ((1000 * (temp - AP0_TIME_BASE)) / AP0_TIME_RANGE);
+
+ if (temp < 0)
+ temp = 0;
+ if (temp > 1000)
+ temp = 1000;
+
+ *pValue16 = temp;
+
+ LOGV("get REVERB_PARAM_DENSITY, %d, AP0 delay smps %d", *pValue16, pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn);
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ *pSize = size;
+
+ LOGV("Reverb_getParameter, context %p, param %d, value %d",
+ pReverb, param, *(int *)pValue);
+
+ return 0;
+} /* end Reverb_getParameter */
+
+/*----------------------------------------------------------------------------
+ * Reverb_setParameter()
+ *----------------------------------------------------------------------------
+ * Purpose:
+ * Set a Reverb parameter
+ *
+ * Inputs:
+ * pReverb - handle to instance data
+ * param - parameter
+ * pValue - pointer to parameter value
+ * size - value size
+ *
+ * Outputs:
+ *
+ *
+ * Side Effects:
+ *
+ *----------------------------------------------------------------------------
+ */
+int Reverb_setParameter(reverb_object_t *pReverb, int32_t param, size_t size,
+ void *pValue) {
+ int32_t value32;
+ int16_t value16;
+ t_reverb_properties *pProperties;
+ int32_t i;
+ int32_t temp;
+ int32_t temp2;
+ reverb_preset_t *pPreset;
+ int maxSamples;
+ int32_t averageDelay;
+ size_t paramSize;
+
+ LOGV("Reverb_setParameter, context %p, param %d, value16 %d, value32 %d",
+ pReverb, param, *(int16_t *)pValue, *(int32_t *)pValue);
+
+ if (pReverb->m_Preset) {
+ if (param != REVERB_PARAM_PRESET || size != sizeof(int16_t)) {
+ return -EINVAL;
+ }
+ value16 = *(int16_t *)pValue;
+ LOGV("set REVERB_PARAM_PRESET, preset %d", value16);
+ if (value16 < REVERB_PRESET_NONE || value16 > REVERB_PRESET_PLATE) {
+ return -EINVAL;
+ }
+ // REVERB_PRESET_NONE is mapped to bypass
+ if (value16 == REVERB_PRESET_NONE) {
+ pReverb->m_bBypass = 1;
+ } else {
+ pReverb->m_bBypass = 0;
+ pReverb->m_nNextRoom = value16 - 1;
+ }
+ } else {
+ switch (param) {
+ case REVERB_PARAM_ROOM_LEVEL:
+ case REVERB_PARAM_ROOM_HF_LEVEL:
+ case REVERB_PARAM_DECAY_HF_RATIO:
+ case REVERB_PARAM_REFLECTIONS_LEVEL:
+ case REVERB_PARAM_REVERB_LEVEL:
+ case REVERB_PARAM_DIFFUSION:
+ case REVERB_PARAM_DENSITY:
+ paramSize = sizeof(int16_t);
+ break;
+
+ case REVERB_PARAM_BYPASS:
+ case REVERB_PARAM_DECAY_TIME:
+ case REVERB_PARAM_REFLECTIONS_DELAY:
+ case REVERB_PARAM_REVERB_DELAY:
+ paramSize = sizeof(int32_t);
+ break;
+
+ case REVERB_PARAM_PROPERTIES:
+ paramSize = sizeof(t_reverb_properties);
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ if (size != paramSize) {
+ return -EINVAL;
+ }
+
+ if (paramSize == sizeof(int16_t)) {
+ value16 = *(int16_t *) pValue;
+ } else if (paramSize == sizeof(int32_t)) {
+ value32 = *(int32_t *) pValue;
+ } else {
+ pProperties = (t_reverb_properties *) pValue;
+ }
+
+ pPreset = &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
+
+ switch (param) {
+ case REVERB_PARAM_BYPASS:
+ pReverb->m_bBypass = (uint16_t)value32;
+ break;
+
+ case REVERB_PARAM_PROPERTIES:
+ value16 = pProperties->roomLevel;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_ROOM_LEVEL:
+ // Convert millibels to linear 16 bit signed => m_nRoomLpfFwd
+ if (value16 > 0)
+ return -EINVAL;
+
+ temp = Effects_MillibelsToLinear16(value16);
+
+ pReverb->m_nRoomLpfFwd
+ = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRoomLpfFbk));
+
+ LOGV("REVERB_PARAM_ROOM_LEVEL, gain %d, new m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
+ if (param == REVERB_PARAM_ROOM_LEVEL)
+ break;
+ value16 = pProperties->roomHFLevel;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_ROOM_HF_LEVEL:
+
+ // Limit to 0 , -40dB range because of low pass implementation
+ if (value16 > 0 || value16 < -4000)
+ return -EINVAL;
+ // Convert attenuation @ 5000H expressed in millibels to => m_nRoomLpfFbk
+ // m_nRoomLpfFbk is -a1 where a1 is the solution of:
+ // a1^2 + 2*(C-dG^2)/(1-dG^2)*a1 + 1 = 0 where:
+ // - C is cos(2*pi*5000/Fs) (pReverb->m_nCosWT_5KHz)
+ // - dG is G0/Gf (G0 is the linear gain at DC and Gf is the wanted gain at 5000Hz)
+
+ // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
+ // while changing HF level
+ temp2 = (pReverb->m_nRoomLpfFwd << 15) / (32767
+ - pReverb->m_nRoomLpfFbk);
+ if (value16 == 0) {
+ pReverb->m_nRoomLpfFbk = 0;
+ } else {
+ int32_t dG2, b, delta;
+
+ // dG^2
+ temp = Effects_MillibelsToLinear16(value16);
+ LOGV("REVERB_PARAM_ROOM_HF_LEVEL, HF gain %d", temp);
+ temp = (1 << 30) / temp;
+ LOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain %d", temp);
+ dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
+ LOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain ^ 2 %d", dG2);
+ // b = 2*(C-dG^2)/(1-dG^2)
+ b = (int32_t) ((((int64_t) 1 << (15 + 1))
+ * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
+ / ((int64_t) 32767 - (int64_t) dG2));
+
+ // delta = b^2 - 4
+ delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
+ + 2)));
+
+ LOGV_IF(delta > (1<<30), " delta overflow %d", delta);
+
+ LOGV("REVERB_PARAM_ROOM_HF_LEVEL, dG2 %d, b %d, delta %d, m_nCosWT_5KHz %d", dG2, b, delta, pReverb->m_nCosWT_5KHz);
+ // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
+ pReverb->m_nRoomLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
+ }
+ LOGV("REVERB_PARAM_ROOM_HF_LEVEL, olg DC gain %d new m_nRoomLpfFbk %d, old m_nRoomLpfFwd %d",
+ temp2, pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFwd);
+
+ pReverb->m_nRoomLpfFwd
+ = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRoomLpfFbk));
+ LOGV("REVERB_PARAM_ROOM_HF_LEVEL, new m_nRoomLpfFwd %d", pReverb->m_nRoomLpfFwd);
+
+ if (param == REVERB_PARAM_ROOM_HF_LEVEL)
+ break;
+ value32 = pProperties->decayTime;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_DECAY_TIME:
+
+ // Convert milliseconds to => m_nRvbLpfFwd (function of m_nRvbLpfFbk)
+ // convert ms to samples
+ value32 = (value32 * pReverb->m_nSamplingRate) / 1000;
+
+ // calculate valid decay time range as a function of current reverb delay and
+ // max feed back gain. Min value <=> -40dB in one pass, Max value <=> feedback gain = -1 dB
+ // Calculate attenuation for each round in late reverb given a total attenuation of -6000 millibels.
+ // g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
+ averageDelay = pReverb->m_nLateDelay - pReverb->m_nMaxExcursion;
+ averageDelay += ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn)
+ + (pReverb->m_sAp1.m_zApOut - pReverb->m_sAp1.m_zApIn)) >> 1;
+
+ temp = (-6000 * averageDelay) / value32;
+ LOGV("REVERB_PARAM_DECAY_TIME, delay smps %d, DT smps %d, gain mB %d",averageDelay, value32, temp);
+ if (temp < -4000 || temp > -100)
+ return -EINVAL;
+
+ // calculate low pass gain by adding reverb input attenuation (pReverb->m_nLateGain) and substrating output
+ // xfade and sum gain (max +9dB)
+ temp -= Effects_Linear16ToMillibels(pReverb->m_nLateGain) + 900;
+ temp = Effects_MillibelsToLinear16(temp);
+
+ // DC gain (temp) = b0 / (1 + a1) = pReverb->m_nRvbLpfFwd / (32767 - pReverb->m_nRvbLpfFbk)
+ pReverb->m_nRvbLpfFwd
+ = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRvbLpfFbk));
+
+ LOGV("REVERB_PARAM_DECAY_TIME, gain %d, new m_nRvbLpfFwd %d, old m_nRvbLpfFbk %d, reverb gain %d", temp, pReverb->m_nRvbLpfFwd, pReverb->m_nRvbLpfFbk, Effects_Linear16ToMillibels(pReverb->m_nLateGain));
+
+ if (param == REVERB_PARAM_DECAY_TIME)
+ break;
+ value16 = pProperties->decayHFRatio;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_DECAY_HF_RATIO:
+
+ // We limit max value to 1000 because reverb filter is lowpass only
+ if (value16 < 100 || value16 > 1000)
+ return -EINVAL;
+ // Convert per mille to => m_nLpfFwd, m_nLpfFbk
+
+ // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
+ // while changing HF level
+ temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
+
+ if (value16 == 1000) {
+ pReverb->m_nRvbLpfFbk = 0;
+ } else {
+ int32_t dG2, b, delta;
+
+ temp = Effects_Linear16ToMillibels(temp2);
+ // G_5000Hz = G_DC * (1000/REVERB_PARAM_DECAY_HF_RATIO) in millibels
+
+ value32 = ((int32_t) 1000 << 15) / (int32_t) value16;
+ LOGV("REVERB_PARAM_DECAY_HF_RATIO, DC gain %d, DC gain mB %d, 1000/R %d", temp2, temp, value32);
+
+ temp = (int32_t) (((int64_t) temp * (int64_t) value32) >> 15);
+
+ if (temp < -4000) {
+ LOGV("REVERB_PARAM_DECAY_HF_RATIO HF gain overflow %d mB", temp);
+ temp = -4000;
+ }
+
+ temp = Effects_MillibelsToLinear16(temp);
+ LOGV("REVERB_PARAM_DECAY_HF_RATIO, HF gain %d", temp);
+ // dG^2
+ temp = (temp2 << 15) / temp;
+ dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
+
+ // b = 2*(C-dG^2)/(1-dG^2)
+ b = (int32_t) ((((int64_t) 1 << (15 + 1))
+ * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
+ / ((int64_t) 32767 - (int64_t) dG2));
+
+ // delta = b^2 - 4
+ delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
+ + 2)));
+
+ // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
+ pReverb->m_nRvbLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
+
+ LOGV("REVERB_PARAM_DECAY_HF_RATIO, dG2 %d, b %d, delta %d", dG2, b, delta);
+
+ }
+
+ LOGV("REVERB_PARAM_DECAY_HF_RATIO, gain %d, m_nRvbLpfFbk %d, m_nRvbLpfFwd %d", temp2, pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFwd);
+
+ pReverb->m_nRvbLpfFwd
+ = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRvbLpfFbk));
+
+ if (param == REVERB_PARAM_DECAY_HF_RATIO)
+ break;
+ value16 = pProperties->reflectionsLevel;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_REFLECTIONS_LEVEL:
+ // We limit max value to 0 because gain is limited to 0dB
+ if (value16 > 0 || value16 < -6000)
+ return -EINVAL;
+
+ // Convert millibels to linear 16 bit signed and recompute m_sEarlyL.m_nGain[i] and m_sEarlyR.m_nGain[i].
+ value16 = Effects_MillibelsToLinear16(value16);
+ for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
+ pReverb->m_sEarlyL.m_nGain[i]
+ = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],value16);
+ pReverb->m_sEarlyR.m_nGain[i]
+ = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],value16);
+ }
+ pReverb->m_nEarlyGain = value16;
+ LOGV("REVERB_PARAM_REFLECTIONS_LEVEL, m_nEarlyGain %d", pReverb->m_nEarlyGain);
+
+ if (param == REVERB_PARAM_REFLECTIONS_LEVEL)
+ break;
+ value32 = pProperties->reflectionsDelay;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_REFLECTIONS_DELAY:
+ // We limit max value MAX_EARLY_TIME
+ // convert ms to time units
+ temp = (value32 * 65536) / 1000;
+ if (temp < 0 || temp > MAX_EARLY_TIME)
+ return -EINVAL;
+
+ maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
+ >> 16;
+ temp = (temp * pReverb->m_nSamplingRate) >> 16;
+ for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
+ temp2 = temp + (((int32_t) pPreset->m_sEarlyL.m_zDelay[i]
+ * pReverb->m_nSamplingRate) >> 16);
+ if (temp2 > maxSamples)
+ temp2 = maxSamples;
+ pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp2;
+ temp2 = temp + (((int32_t) pPreset->m_sEarlyR.m_zDelay[i]
+ * pReverb->m_nSamplingRate) >> 16);
+ if (temp2 > maxSamples)
+ temp2 = maxSamples;
+ pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp2;
+ }
+ pReverb->m_nEarlyDelay = temp;
+
+ LOGV("REVERB_PARAM_REFLECTIONS_DELAY, m_nEarlyDelay smps %d max smp delay %d", pReverb->m_nEarlyDelay, maxSamples);
+
+ // Convert milliseconds to sample count => m_nEarlyDelay
+ if (param == REVERB_PARAM_REFLECTIONS_DELAY)
+ break;
+ value16 = pProperties->reverbLevel;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_REVERB_LEVEL:
+ // We limit max value to 0 because gain is limited to 0dB
+ if (value16 > 0 || value16 < -6000)
+ return -EINVAL;
+ // Convert millibels to linear 16 bits (gange 0 - 8191) => m_nLateGain.
+ pReverb->m_nLateGain = Effects_MillibelsToLinear16(value16) >> 2;
+
+ LOGV("REVERB_PARAM_REVERB_LEVEL, m_nLateGain %d", pReverb->m_nLateGain);
+
+ if (param == REVERB_PARAM_REVERB_LEVEL)
+ break;
+ value32 = pProperties->reverbDelay;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_REVERB_DELAY:
+ // We limit max value to MAX_DELAY_TIME
+ // convert ms to time units
+ temp = (value32 * 65536) / 1000;
+ if (temp < 0 || temp > MAX_DELAY_TIME)
+ return -EINVAL;
+
+ maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
+ >> 16;
+ temp = (temp * pReverb->m_nSamplingRate) >> 16;
+ if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
+ temp = maxSamples - pReverb->m_nMaxExcursion;
+ }
+ if (temp < pReverb->m_nMaxExcursion) {
+ temp = pReverb->m_nMaxExcursion;
+ }
+
+ temp -= pReverb->m_nLateDelay;
+ pReverb->m_nDelay0Out += temp;
+ pReverb->m_nDelay1Out += temp;
+ pReverb->m_nLateDelay += temp;
+
+ LOGV("REVERB_PARAM_REVERB_DELAY, m_nLateDelay smps %d max smp delay %d", pReverb->m_nLateDelay, maxSamples);
+
+ // Convert milliseconds to sample count => m_nDelay1Out + m_nMaxExcursion
+ if (param == REVERB_PARAM_REVERB_DELAY)
+ break;
+
+ value16 = pProperties->diffusion;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_DIFFUSION:
+ if (value16 < 0 || value16 > 1000)
+ return -EINVAL;
+
+ // Convert per mille to m_sAp0.m_nApGain, m_sAp1.m_nApGain
+ pReverb->m_sAp0.m_nApGain = AP0_GAIN_BASE + ((int32_t) value16
+ * AP0_GAIN_RANGE) / 1000;
+ pReverb->m_sAp1.m_nApGain = AP1_GAIN_BASE + ((int32_t) value16
+ * AP1_GAIN_RANGE) / 1000;
+
+ LOGV("REVERB_PARAM_DIFFUSION, m_sAp0.m_nApGain %d m_sAp1.m_nApGain %d", pReverb->m_sAp0.m_nApGain, pReverb->m_sAp1.m_nApGain);
+
+ if (param == REVERB_PARAM_DIFFUSION)
+ break;
+
+ value16 = pProperties->density;
+ /* FALL THROUGH */
+
+ case REVERB_PARAM_DENSITY:
+ if (value16 < 0 || value16 > 1000)
+ return -EINVAL;
+
+ // Convert per mille to m_sAp0.m_zApOut, m_sAp1.m_zApOut
+ maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
+
+ temp = AP0_TIME_BASE + ((int32_t) value16 * AP0_TIME_RANGE) / 1000;
+ /*lint -e{702} shift for performance */
+ temp = (temp * pReverb->m_nSamplingRate) >> 16;
+ if (temp > maxSamples)
+ temp = maxSamples;
+ pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
+
+ LOGV("REVERB_PARAM_DENSITY, Ap0 delay smps %d", temp);
+
+ temp = AP1_TIME_BASE + ((int32_t) value16 * AP1_TIME_RANGE) / 1000;
+ /*lint -e{702} shift for performance */
+ temp = (temp * pReverb->m_nSamplingRate) >> 16;
+ if (temp > maxSamples)
+ temp = maxSamples;
+ pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
+
+ LOGV("Ap1 delay smps %d", temp);
+
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ return 0;
+} /* end Reverb_setParameter */
+
+/*----------------------------------------------------------------------------
+ * ReverbUpdateXfade
+ *----------------------------------------------------------------------------
+ * Purpose:
+ * Update the xfade parameters as required
+ *
+ * Inputs:
+ * nNumSamplesToAdd - number of samples to write to buffer
+ *
+ * Outputs:
+ *
+ *
+ * Side Effects:
+ * - xfade parameters will be changed
+ *
+ *----------------------------------------------------------------------------
+ */
+static int ReverbUpdateXfade(reverb_object_t *pReverb, int nNumSamplesToAdd) {
+ uint16_t nOffset;
+ int16_t tempCos;
+ int16_t tempSin;
+
+ if (pReverb->m_nXfadeCounter >= pReverb->m_nXfadeInterval) {
+ /* update interval has elapsed, so reset counter */
+ pReverb->m_nXfadeCounter = 0;
+
+ // Pin the sin,cos values to min / max values to ensure that the
+ // modulated taps' coefs are zero (thus no clicks)
+ if (pReverb->m_nPhaseIncrement > 0) {
+ // if phase increment > 0, then sin -> 1, cos -> 0
+ pReverb->m_nSin = 32767;
+ pReverb->m_nCos = 0;
+
+ // reset the phase to match the sin, cos values
+ pReverb->m_nPhase = 32767;
+
+ // modulate the cross taps because their tap coefs are zero
+ nOffset = ReverbCalculateNoise(pReverb);
+
+ pReverb->m_zD1Cross = pReverb->m_nDelay1Out
+ - pReverb->m_nMaxExcursion + nOffset;
+
+ nOffset = ReverbCalculateNoise(pReverb);
+
+ pReverb->m_zD0Cross = pReverb->m_nDelay0Out
+ - pReverb->m_nMaxExcursion - nOffset;
+ } else {
+ // if phase increment < 0, then sin -> 0, cos -> 1
+ pReverb->m_nSin = 0;
+ pReverb->m_nCos = 32767;
+
+ // reset the phase to match the sin, cos values
+ pReverb->m_nPhase = -32768;
+
+ // modulate the self taps because their tap coefs are zero
+ nOffset = ReverbCalculateNoise(pReverb);
+
+ pReverb->m_zD0Self = pReverb->m_nDelay0Out
+ - pReverb->m_nMaxExcursion - nOffset;
+
+ nOffset = ReverbCalculateNoise(pReverb);
+
+ pReverb->m_zD1Self = pReverb->m_nDelay1Out
+ - pReverb->m_nMaxExcursion + nOffset;
+
+ } // end if-else (pReverb->m_nPhaseIncrement > 0)
+
+ // Reverse the direction of the sin,cos so that the
+ // tap whose coef was previously increasing now decreases
+ // and vice versa
+ pReverb->m_nPhaseIncrement = -pReverb->m_nPhaseIncrement;
+
+ } // end if counter >= update interval
+
+ //compute what phase will be next time
+ pReverb->m_nPhase += pReverb->m_nPhaseIncrement;
+
+ //calculate what the new sin and cos need to reach by the next update
+ ReverbCalculateSinCos(pReverb->m_nPhase, &tempSin, &tempCos);
+
+ //calculate the per-sample increment required to get there by the next update
+ /*lint -e{702} shift for performance */
+ pReverb->m_nSinIncrement = (tempSin - pReverb->m_nSin)
+ >> pReverb->m_nUpdatePeriodInBits;
+
+ /*lint -e{702} shift for performance */
+ pReverb->m_nCosIncrement = (tempCos - pReverb->m_nCos)
+ >> pReverb->m_nUpdatePeriodInBits;
+
+ /* increment update counter */
+ pReverb->m_nXfadeCounter += (uint16_t) nNumSamplesToAdd;
+
+ return 0;
+
+} /* end ReverbUpdateXfade */
+
+/*----------------------------------------------------------------------------
+ * ReverbCalculateNoise
+ *----------------------------------------------------------------------------
+ * Purpose:
+ * Calculate a noise sample and limit its value
+ *
+ * Inputs:
+ * nMaxExcursion - noise value is limited to this value
+ * pnNoise - return new noise sample in this (not limited)
+ *
+ * Outputs:
+ * new limited noise value
+ *
+ * Side Effects:
+ * - *pnNoise noise value is updated
+ *
+ *----------------------------------------------------------------------------
+ */
+static uint16_t ReverbCalculateNoise(reverb_object_t *pReverb) {
+ int16_t nNoise = pReverb->m_nNoise;
+
+ // calculate new noise value
+ if (pReverb->m_bUseNoise) {
+ nNoise = (int16_t) (nNoise * 5 + 1);
+ } else {
+ nNoise = 0;
+ }
+
+ pReverb->m_nNoise = nNoise;
+ // return the limited noise value
+ return (pReverb->m_nMaxExcursion & nNoise);
+
+} /* end ReverbCalculateNoise */
+
+/*----------------------------------------------------------------------------
+ * ReverbCalculateSinCos
+ *----------------------------------------------------------------------------
+ * Purpose:
+ * Calculate a new sin and cosine value based on the given phase
+ *
+ * Inputs:
+ * nPhase - phase angle
+ * pnSin - input old value, output new value
+ * pnCos - input old value, output new value
+ *
+ * Outputs:
+ *
+ * Side Effects:
+ * - *pnSin, *pnCos are updated
+ *
+ *----------------------------------------------------------------------------
+ */
+static int ReverbCalculateSinCos(int16_t nPhase, int16_t *pnSin, int16_t *pnCos) {
+ int32_t nTemp;
+ int32_t nNetAngle;
+
+ // -1 <= nPhase < 1
+ // However, for the calculation, we need a value
+ // that ranges from -1/2 to +1/2, so divide the phase by 2
+ /*lint -e{702} shift for performance */
+ nNetAngle = nPhase >> 1;
+
+ /*
+ Implement the following
+ sin(x) = (2-4*c)*x^2 + c + x
+ cos(x) = (2-4*c)*x^2 + c - x
+
+ where c = 1/sqrt(2)
+ using the a0 + x*(a1 + x*a2) approach
+ */
+
+ /* limit the input "angle" to be between -0.5 and +0.5 */
+ if (nNetAngle > EG1_HALF) {
+ nNetAngle = EG1_HALF;
+ } else if (nNetAngle < EG1_MINUS_HALF) {
+ nNetAngle = EG1_MINUS_HALF;
+ }
+
+ /* calculate sin */
+ nTemp = EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
+ nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
+ *pnSin = (int16_t) SATURATE_EG1(nTemp);
+
+ /* calculate cos */
+ nTemp = -EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
+ nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
+ *pnCos = (int16_t) SATURATE_EG1(nTemp);
+
+ return 0;
+} /* end ReverbCalculateSinCos */
+
+/*----------------------------------------------------------------------------
+ * Reverb
+ *----------------------------------------------------------------------------
+ * Purpose:
+ * apply reverb to the given signal
+ *
+ * Inputs:
+ * nNu
+ * pnSin - input old value, output new value
+ * pnCos - input old value, output new value
+ *
+ * Outputs:
+ * number of samples actually reverberated
+ *
+ * Side Effects:
+ *
+ *----------------------------------------------------------------------------
+ */
+static int Reverb(reverb_object_t *pReverb, int nNumSamplesToAdd,
+ short *pOutputBuffer, short *pInputBuffer) {
+ int32_t i;
+ int32_t nDelayOut0;
+ int32_t nDelayOut1;
+ uint16_t nBase;
+
+ uint32_t nAddr;
+ int32_t nTemp1;
+ int32_t nTemp2;
+ int32_t nApIn;
+ int32_t nApOut;
+
+ int32_t j;
+ int32_t nEarlyOut;
+
+ int32_t tempValue;
+
+ // get the base address
+ nBase = pReverb->m_nBaseIndex;
+
+ for (i = 0; i < nNumSamplesToAdd; i++) {
+ // ********** Left Allpass - start
+ nApIn = *pInputBuffer;
+ if (!pReverb->m_Aux) {
+ pInputBuffer++;
+ }
+ // store to early delay line
+ nAddr = CIRCULAR(nBase, pReverb->m_nEarly0in, pReverb->m_nBufferMask);
+ pReverb->m_nDelayLine[nAddr] = (short) nApIn;
+
+ // left input = (left dry * m_nLateGain) + right feedback from previous period
+
+ nApIn = SATURATE(nApIn + pReverb->m_nRevFbkR);
+ nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
+
+ // fetch allpass delay line out
+ //nAddr = CIRCULAR(nBase, psAp0->m_zApOut, pReverb->m_nBufferMask);
+ nAddr
+ = CIRCULAR(nBase, pReverb->m_sAp0.m_zApOut, pReverb->m_nBufferMask);
+ nDelayOut0 = pReverb->m_nDelayLine[nAddr];
+
+ // calculate allpass feedforward; subtract the feedforward result
+ nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp0.m_nApGain);
+ nApOut = SATURATE(nDelayOut0 - nTemp1); // allpass output
+
+ // calculate allpass feedback; add the feedback result
+ nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp0.m_nApGain);
+ nTemp1 = SATURATE(nApIn + nTemp1);
+
+ // inject into allpass delay
+ nAddr
+ = CIRCULAR(nBase, pReverb->m_sAp0.m_zApIn, pReverb->m_nBufferMask);
+ pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
+
+ // inject allpass output into delay line
+ nAddr = CIRCULAR(nBase, pReverb->m_zD0In, pReverb->m_nBufferMask);
+ pReverb->m_nDelayLine[nAddr] = (short) nApOut;
+
+ // ********** Left Allpass - end
+
+ // ********** Right Allpass - start
+ nApIn = (*pInputBuffer++);
+ // store to early delay line
+ nAddr = CIRCULAR(nBase, pReverb->m_nEarly1in, pReverb->m_nBufferMask);
+ pReverb->m_nDelayLine[nAddr] = (short) nApIn;
+
+ // right input = (right dry * m_nLateGain) + left feedback from previous period
+ /*lint -e{702} use shift for performance */
+ nApIn = SATURATE(nApIn + pReverb->m_nRevFbkL);
+ nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
+
+ // fetch allpass delay line out
+ nAddr
+ = CIRCULAR(nBase, pReverb->m_sAp1.m_zApOut, pReverb->m_nBufferMask);
+ nDelayOut1 = pReverb->m_nDelayLine[nAddr];
+
+ // calculate allpass feedforward; subtract the feedforward result
+ nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp1.m_nApGain);
+ nApOut = SATURATE(nDelayOut1 - nTemp1); // allpass output
+
+ // calculate allpass feedback; add the feedback result
+ nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp1.m_nApGain);
+ nTemp1 = SATURATE(nApIn + nTemp1);
+
+ // inject into allpass delay
+ nAddr
+ = CIRCULAR(nBase, pReverb->m_sAp1.m_zApIn, pReverb->m_nBufferMask);
+ pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
+
+ // inject allpass output into delay line
+ nAddr = CIRCULAR(nBase, pReverb->m_zD1In, pReverb->m_nBufferMask);
+ pReverb->m_nDelayLine[nAddr] = (short) nApOut;
+
+ // ********** Right Allpass - end
+
+ // ********** D0 output - start
+ // fetch delay line self out
+ nAddr = CIRCULAR(nBase, pReverb->m_zD0Self, pReverb->m_nBufferMask);
+ nDelayOut0 = pReverb->m_nDelayLine[nAddr];
+
+ // calculate delay line self out
+ nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nSin);
+
+ // fetch delay line cross out
+ nAddr = CIRCULAR(nBase, pReverb->m_zD1Cross, pReverb->m_nBufferMask);
+ nDelayOut0 = pReverb->m_nDelayLine[nAddr];
+
+ // calculate delay line self out
+ nTemp2 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nCos);
+
+ // calculate unfiltered delay out
+ nDelayOut0 = SATURATE(nTemp1 + nTemp2);
+
+ // ********** D0 output - end
+
+ // ********** D1 output - start
+ // fetch delay line self out
+ nAddr = CIRCULAR(nBase, pReverb->m_zD1Self, pReverb->m_nBufferMask);
+ nDelayOut1 = pReverb->m_nDelayLine[nAddr];
+
+ // calculate delay line self out
+ nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nSin);
+
+ // fetch delay line cross out
+ nAddr = CIRCULAR(nBase, pReverb->m_zD0Cross, pReverb->m_nBufferMask);
+ nDelayOut1 = pReverb->m_nDelayLine[nAddr];
+
+ // calculate delay line self out
+ nTemp2 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nCos);
+
+ // calculate unfiltered delay out
+ nDelayOut1 = SATURATE(nTemp1 + nTemp2);
+
+ // ********** D1 output - end
+
+ // ********** mixer and feedback - start
+ // sum is fedback to right input (R + L)
+ nDelayOut0 = (short) SATURATE(nDelayOut0 + nDelayOut1);
+
+ // difference is feedback to left input (R - L)
+ /*lint -e{685} lint complains that it can't saturate negative */
+ nDelayOut1 = (short) SATURATE(nDelayOut1 - nDelayOut0);
+
+ // ********** mixer and feedback - end
+
+ // calculate lowpass filter (mixer scale factor included in LPF feedforward)
+ nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRvbLpfFwd);
+
+ nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkL, pReverb->m_nRvbLpfFbk);
+
+ // calculate filtered delay out and simultaneously update LPF state variable
+ // filtered delay output is stored in m_nRevFbkL
+ pReverb->m_nRevFbkL = (short) SATURATE(nTemp1 + nTemp2);
+
+ // calculate lowpass filter (mixer scale factor included in LPF feedforward)
+ nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRvbLpfFwd);
+
+ nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkR, pReverb->m_nRvbLpfFbk);
+
+ // calculate filtered delay out and simultaneously update LPF state variable
+ // filtered delay output is stored in m_nRevFbkR
+ pReverb->m_nRevFbkR = (short) SATURATE(nTemp1 + nTemp2);
+
+ // ********** start early reflection generator, left
+ //psEarly = &(pReverb->m_sEarlyL);
+
+
+ for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
+ // fetch delay line out
+ //nAddr = CIRCULAR(nBase, psEarly->m_zDelay[j], pReverb->m_nBufferMask);
+ nAddr
+ = CIRCULAR(nBase, pReverb->m_sEarlyL.m_zDelay[j], pReverb->m_nBufferMask);
+
+ nTemp1 = pReverb->m_nDelayLine[nAddr];
+
+ // calculate reflection
+ //nTemp1 = MULT_EG1_EG1(nDelayOut0, psEarly->m_nGain[j]);
+ nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyL.m_nGain[j]);
+
+ nDelayOut0 = SATURATE(nDelayOut0 + nTemp1);
+
+ } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
+
+ // apply lowpass to early reflections and reverb output
+ //nTemp1 = MULT_EG1_EG1(nEarlyOut, psEarly->m_nRvbLpfFwd);
+ nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRoomLpfFwd);
+
+ //nTemp2 = MULT_EG1_EG1(psEarly->m_zLpf, psEarly->m_nLpfFbk);
+ nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfL, pReverb->m_nRoomLpfFbk);
+
+ // calculate filtered out and simultaneously update LPF state variable
+ // filtered output is stored in m_zOutLpfL
+ pReverb->m_zOutLpfL = (short) SATURATE(nTemp1 + nTemp2);
+
+ //sum with output buffer
+ tempValue = *pOutputBuffer;
+ *pOutputBuffer++ = (short) SATURATE(tempValue+pReverb->m_zOutLpfL);
+
+ // ********** end early reflection generator, left
+
+ // ********** start early reflection generator, right
+ //psEarly = &(pReverb->m_sEarlyR);
+
+ for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
+ // fetch delay line out
+ nAddr
+ = CIRCULAR(nBase, pReverb->m_sEarlyR.m_zDelay[j], pReverb->m_nBufferMask);
+ nTemp1 = pReverb->m_nDelayLine[nAddr];
+
+ // calculate reflection
+ nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyR.m_nGain[j]);
+
+ nDelayOut1 = SATURATE(nDelayOut1 + nTemp1);
+
+ } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
+
+ // apply lowpass to early reflections
+ nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRoomLpfFwd);
+
+ nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfR, pReverb->m_nRoomLpfFbk);
+
+ // calculate filtered out and simultaneously update LPF state variable
+ // filtered output is stored in m_zOutLpfR
+ pReverb->m_zOutLpfR = (short) SATURATE(nTemp1 + nTemp2);
+
+ //sum with output buffer
+ tempValue = *pOutputBuffer;
+ *pOutputBuffer++ = (short) SATURATE(tempValue + pReverb->m_zOutLpfR);
+
+ // ********** end early reflection generator, right
+
+ // decrement base addr for next sample period
+ nBase--;
+
+ pReverb->m_nSin += pReverb->m_nSinIncrement;
+ pReverb->m_nCos += pReverb->m_nCosIncrement;
+
+ } // end for (i=0; i < nNumSamplesToAdd; i++)
+
+ // store the most up to date version
+ pReverb->m_nBaseIndex = nBase;
+
+ return 0;
+} /* end Reverb */
+
+/*----------------------------------------------------------------------------
+ * ReverbUpdateRoom
+ *----------------------------------------------------------------------------
+ * Purpose:
+ * Update the room's preset parameters as required
+ *
+ * Inputs:
+ *
+ * Outputs:
+ *
+ *
+ * Side Effects:
+ * - reverb paramters (fbk, fwd, etc) will be changed
+ * - m_nCurrentRoom := m_nNextRoom
+ *----------------------------------------------------------------------------
+ */
+static int ReverbUpdateRoom(reverb_object_t *pReverb, bool fullUpdate) {
+ int temp;
+ int i;
+ int maxSamples;
+ int earlyDelay;
+ int earlyGain;
+
+ reverb_preset_t *pPreset =
+ &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
+
+ if (fullUpdate) {
+ pReverb->m_nRvbLpfFwd = pPreset->m_nRvbLpfFwd;
+ pReverb->m_nRvbLpfFbk = pPreset->m_nRvbLpfFbk;
+
+ pReverb->m_nEarlyGain = pPreset->m_nEarlyGain;
+ //stored as time based, convert to sample based
+ pReverb->m_nLateGain = pPreset->m_nLateGain;
+ pReverb->m_nRoomLpfFbk = pPreset->m_nRoomLpfFbk;
+ pReverb->m_nRoomLpfFwd = pPreset->m_nRoomLpfFwd;
+
+ // set the early reflections gains
+ earlyGain = pPreset->m_nEarlyGain;
+ for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
+ pReverb->m_sEarlyL.m_nGain[i]
+ = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],earlyGain);
+ pReverb->m_sEarlyR.m_nGain[i]
+ = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],earlyGain);
+ }
+
+ pReverb->m_nMaxExcursion = pPreset->m_nMaxExcursion;
+
+ pReverb->m_sAp0.m_nApGain = pPreset->m_nAp0_ApGain;
+ pReverb->m_sAp1.m_nApGain = pPreset->m_nAp1_ApGain;
+
+ // set the early reflections delay
+ earlyDelay = ((int) pPreset->m_nEarlyDelay * pReverb->m_nSamplingRate)
+ >> 16;
+ pReverb->m_nEarlyDelay = earlyDelay;
+ maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
+ >> 16;
+ for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
+ //stored as time based, convert to sample based
+ temp = earlyDelay + (((int) pPreset->m_sEarlyL.m_zDelay[i]
+ * pReverb->m_nSamplingRate) >> 16);
+ if (temp > maxSamples)
+ temp = maxSamples;
+ pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp;
+ //stored as time based, convert to sample based
+ temp = earlyDelay + (((int) pPreset->m_sEarlyR.m_zDelay[i]
+ * pReverb->m_nSamplingRate) >> 16);
+ if (temp > maxSamples)
+ temp = maxSamples;
+ pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp;
+ }
+
+ maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
+ >> 16;
+ //stored as time based, convert to sample based
+ /*lint -e{702} shift for performance */
+ temp = (pPreset->m_nLateDelay * pReverb->m_nSamplingRate) >> 16;
+ if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
+ temp = maxSamples - pReverb->m_nMaxExcursion;
+ }
+ temp -= pReverb->m_nLateDelay;
+ pReverb->m_nDelay0Out += temp;
+ pReverb->m_nDelay1Out += temp;
+ pReverb->m_nLateDelay += temp;
+
+ maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
+ //stored as time based, convert to absolute sample value
+ temp = pPreset->m_nAp0_ApOut;
+ /*lint -e{702} shift for performance */
+ temp = (temp * pReverb->m_nSamplingRate) >> 16;
+ if (temp > maxSamples)
+ temp = maxSamples;
+ pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
+
+ //stored as time based, convert to absolute sample value
+ temp = pPreset->m_nAp1_ApOut;
+ /*lint -e{702} shift for performance */
+ temp = (temp * pReverb->m_nSamplingRate) >> 16;
+ if (temp > maxSamples)
+ temp = maxSamples;
+ pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
+ //gpsReverbObject->m_sAp1.m_zApOut = pPreset->m_nAp1_ApOut;
+ }
+
+ //stored as time based, convert to sample based
+ temp = pPreset->m_nXfadeInterval;
+ /*lint -e{702} shift for performance */
+ temp = (temp * pReverb->m_nSamplingRate) >> 16;
+ pReverb->m_nXfadeInterval = (uint16_t) temp;
+ //gsReverbObject.m_nXfadeInterval = pPreset->m_nXfadeInterval;
+ pReverb->m_nXfadeCounter = pReverb->m_nXfadeInterval + 1; // force update on first iteration
+
+ pReverb->m_nCurrentRoom = pReverb->m_nNextRoom;
+
+ return 0;
+
+} /* end ReverbUpdateRoom */
+
+/*----------------------------------------------------------------------------
+ * ReverbReadInPresets()
+ *----------------------------------------------------------------------------
+ * Purpose: sets global reverb preset bank to defaults
+ *
+ * Inputs:
+ *
+ * Outputs:
+ *
+ *----------------------------------------------------------------------------
+ */
+static int ReverbReadInPresets(reverb_object_t *pReverb) {
+
+ int preset;
+
+ // this is for test only. OpenSL ES presets are mapped to 4 presets.
+ // REVERB_PRESET_NONE is mapped to bypass
+ for (preset = 0; preset < REVERB_NUM_PRESETS; preset++) {
+ reverb_preset_t *pPreset = &pReverb->m_sPreset.m_sPreset[preset];
+ switch (preset + 1) {
+ case REVERB_PRESET_PLATE:
+ case REVERB_PRESET_SMALLROOM:
+ pPreset->m_nRvbLpfFbk = 5077;
+ pPreset->m_nRvbLpfFwd = 11076;
+ pPreset->m_nEarlyGain = 27690;
+ pPreset->m_nEarlyDelay = 1311;
+ pPreset->m_nLateGain = 8191;
+ pPreset->m_nLateDelay = 3932;
+ pPreset->m_nRoomLpfFbk = 3692;
+ pPreset->m_nRoomLpfFwd = 20474;
+ pPreset->m_sEarlyL.m_zDelay[0] = 1376;
+ pPreset->m_sEarlyL.m_nGain[0] = 22152;
+ pPreset->m_sEarlyL.m_zDelay[1] = 1462;
+ pPreset->m_sEarlyL.m_nGain[1] = 17537;
+ pPreset->m_sEarlyL.m_zDelay[2] = 0;
+ pPreset->m_sEarlyL.m_nGain[2] = 14768;
+ pPreset->m_sEarlyL.m_zDelay[3] = 1835;
+ pPreset->m_sEarlyL.m_nGain[3] = 14307;
+ pPreset->m_sEarlyL.m_zDelay[4] = 0;
+ pPreset->m_sEarlyL.m_nGain[4] = 13384;
+ pPreset->m_sEarlyR.m_zDelay[0] = 721;
+ pPreset->m_sEarlyR.m_nGain[0] = 20306;
+ pPreset->m_sEarlyR.m_zDelay[1] = 2621;
+ pPreset->m_sEarlyR.m_nGain[1] = 17537;
+ pPreset->m_sEarlyR.m_zDelay[2] = 0;
+ pPreset->m_sEarlyR.m_nGain[2] = 14768;
+ pPreset->m_sEarlyR.m_zDelay[3] = 0;
+ pPreset->m_sEarlyR.m_nGain[3] = 16153;
+ pPreset->m_sEarlyR.m_zDelay[4] = 0;
+ pPreset->m_sEarlyR.m_nGain[4] = 13384;
+ pPreset->m_nMaxExcursion = 127;
+ pPreset->m_nXfadeInterval = 6470; //6483;
+ pPreset->m_nAp0_ApGain = 14768;
+ pPreset->m_nAp0_ApOut = 792;
+ pPreset->m_nAp1_ApGain = 14777;
+ pPreset->m_nAp1_ApOut = 1191;
+ pPreset->m_rfu4 = 0;
+ pPreset->m_rfu5 = 0;
+ pPreset->m_rfu6 = 0;
+ pPreset->m_rfu7 = 0;
+ pPreset->m_rfu8 = 0;
+ pPreset->m_rfu9 = 0;
+ pPreset->m_rfu10 = 0;
+ break;
+ case REVERB_PRESET_MEDIUMROOM:
+ case REVERB_PRESET_LARGEROOM:
+ pPreset->m_nRvbLpfFbk = 5077;
+ pPreset->m_nRvbLpfFwd = 12922;
+ pPreset->m_nEarlyGain = 27690;
+ pPreset->m_nEarlyDelay = 1311;
+ pPreset->m_nLateGain = 8191;
+ pPreset->m_nLateDelay = 3932;
+ pPreset->m_nRoomLpfFbk = 3692;
+ pPreset->m_nRoomLpfFwd = 21703;
+ pPreset->m_sEarlyL.m_zDelay[0] = 1376;
+ pPreset->m_sEarlyL.m_nGain[0] = 22152;
+ pPreset->m_sEarlyL.m_zDelay[1] = 1462;
+ pPreset->m_sEarlyL.m_nGain[1] = 17537;
+ pPreset->m_sEarlyL.m_zDelay[2] = 0;
+ pPreset->m_sEarlyL.m_nGain[2] = 14768;
+ pPreset->m_sEarlyL.m_zDelay[3] = 1835;
+ pPreset->m_sEarlyL.m_nGain[3] = 14307;
+ pPreset->m_sEarlyL.m_zDelay[4] = 0;
+ pPreset->m_sEarlyL.m_nGain[4] = 13384;
+ pPreset->m_sEarlyR.m_zDelay[0] = 721;
+ pPreset->m_sEarlyR.m_nGain[0] = 20306;
+ pPreset->m_sEarlyR.m_zDelay[1] = 2621;
+ pPreset->m_sEarlyR.m_nGain[1] = 17537;
+ pPreset->m_sEarlyR.m_zDelay[2] = 0;
+ pPreset->m_sEarlyR.m_nGain[2] = 14768;
+ pPreset->m_sEarlyR.m_zDelay[3] = 0;
+ pPreset->m_sEarlyR.m_nGain[3] = 16153;
+ pPreset->m_sEarlyR.m_zDelay[4] = 0;
+ pPreset->m_sEarlyR.m_nGain[4] = 13384;
+ pPreset->m_nMaxExcursion = 127;
+ pPreset->m_nXfadeInterval = 6449;
+ pPreset->m_nAp0_ApGain = 15691;
+ pPreset->m_nAp0_ApOut = 774;
+ pPreset->m_nAp1_ApGain = 16317;
+ pPreset->m_nAp1_ApOut = 1155;
+ pPreset->m_rfu4 = 0;
+ pPreset->m_rfu5 = 0;
+ pPreset->m_rfu6 = 0;
+ pPreset->m_rfu7 = 0;
+ pPreset->m_rfu8 = 0;
+ pPreset->m_rfu9 = 0;
+ pPreset->m_rfu10 = 0;
+ break;
+ case REVERB_PRESET_MEDIUMHALL:
+ pPreset->m_nRvbLpfFbk = 6461;
+ pPreset->m_nRvbLpfFwd = 14307;
+ pPreset->m_nEarlyGain = 27690;
+ pPreset->m_nEarlyDelay = 1311;
+ pPreset->m_nLateGain = 8191;
+ pPreset->m_nLateDelay = 3932;
+ pPreset->m_nRoomLpfFbk = 3692;
+ pPreset->m_nRoomLpfFwd = 24569;
+ pPreset->m_sEarlyL.m_zDelay[0] = 1376;
+ pPreset->m_sEarlyL.m_nGain[0] = 22152;
+ pPreset->m_sEarlyL.m_zDelay[1] = 1462;
+ pPreset->m_sEarlyL.m_nGain[1] = 17537;
+ pPreset->m_sEarlyL.m_zDelay[2] = 0;
+ pPreset->m_sEarlyL.m_nGain[2] = 14768;
+ pPreset->m_sEarlyL.m_zDelay[3] = 1835;
+ pPreset->m_sEarlyL.m_nGain[3] = 14307;
+ pPreset->m_sEarlyL.m_zDelay[4] = 0;
+ pPreset->m_sEarlyL.m_nGain[4] = 13384;
+ pPreset->m_sEarlyR.m_zDelay[0] = 721;
+ pPreset->m_sEarlyR.m_nGain[0] = 20306;
+ pPreset->m_sEarlyR.m_zDelay[1] = 2621;
+ pPreset->m_sEarlyR.m_nGain[1] = 17537;
+ pPreset->m_sEarlyR.m_zDelay[2] = 0;
+ pPreset->m_sEarlyR.m_nGain[2] = 14768;
+ pPreset->m_sEarlyR.m_zDelay[3] = 0;
+ pPreset->m_sEarlyR.m_nGain[3] = 16153;
+ pPreset->m_sEarlyR.m_zDelay[4] = 0;
+ pPreset->m_sEarlyR.m_nGain[4] = 13384;
+ pPreset->m_nMaxExcursion = 127;
+ pPreset->m_nXfadeInterval = 6391;
+ pPreset->m_nAp0_ApGain = 15230;
+ pPreset->m_nAp0_ApOut = 708;
+ pPreset->m_nAp1_ApGain = 15547;
+ pPreset->m_nAp1_ApOut = 1023;
+ pPreset->m_rfu4 = 0;
+ pPreset->m_rfu5 = 0;
+ pPreset->m_rfu6 = 0;
+ pPreset->m_rfu7 = 0;
+ pPreset->m_rfu8 = 0;
+ pPreset->m_rfu9 = 0;
+ pPreset->m_rfu10 = 0;
+ break;
+ case REVERB_PRESET_LARGEHALL:
+ pPreset->m_nRvbLpfFbk = 8307;
+ pPreset->m_nRvbLpfFwd = 14768;
+ pPreset->m_nEarlyGain = 27690;
+ pPreset->m_nEarlyDelay = 1311;
+ pPreset->m_nLateGain = 8191;
+ pPreset->m_nLateDelay = 3932;
+ pPreset->m_nRoomLpfFbk = 3692;
+ pPreset->m_nRoomLpfFwd = 24569;
+ pPreset->m_sEarlyL.m_zDelay[0] = 1376;
+ pPreset->m_sEarlyL.m_nGain[0] = 22152;
+ pPreset->m_sEarlyL.m_zDelay[1] = 2163;
+ pPreset->m_sEarlyL.m_nGain[1] = 17537;
+ pPreset->m_sEarlyL.m_zDelay[2] = 0;
+ pPreset->m_sEarlyL.m_nGain[2] = 14768;
+ pPreset->m_sEarlyL.m_zDelay[3] = 1835;
+ pPreset->m_sEarlyL.m_nGain[3] = 14307;
+ pPreset->m_sEarlyL.m_zDelay[4] = 0;
+ pPreset->m_sEarlyL.m_nGain[4] = 13384;
+ pPreset->m_sEarlyR.m_zDelay[0] = 721;
+ pPreset->m_sEarlyR.m_nGain[0] = 20306;
+ pPreset->m_sEarlyR.m_zDelay[1] = 2621;
+ pPreset->m_sEarlyR.m_nGain[1] = 17537;
+ pPreset->m_sEarlyR.m_zDelay[2] = 0;
+ pPreset->m_sEarlyR.m_nGain[2] = 14768;
+ pPreset->m_sEarlyR.m_zDelay[3] = 0;
+ pPreset->m_sEarlyR.m_nGain[3] = 16153;
+ pPreset->m_sEarlyR.m_zDelay[4] = 0;
+ pPreset->m_sEarlyR.m_nGain[4] = 13384;
+ pPreset->m_nMaxExcursion = 127;
+ pPreset->m_nXfadeInterval = 6388;
+ pPreset->m_nAp0_ApGain = 15691;
+ pPreset->m_nAp0_ApOut = 711;
+ pPreset->m_nAp1_ApGain = 16317;
+ pPreset->m_nAp1_ApOut = 1029;
+ pPreset->m_rfu4 = 0;
+ pPreset->m_rfu5 = 0;
+ pPreset->m_rfu6 = 0;
+ pPreset->m_rfu7 = 0;
+ pPreset->m_rfu8 = 0;
+ pPreset->m_rfu9 = 0;
+ pPreset->m_rfu10 = 0;
+ break;
+ }
+ }
+
+ return 0;
+}