summaryrefslogtreecommitdiffstats
path: root/media/libstagefright/codecs/aacdec/mdct_fxp.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'media/libstagefright/codecs/aacdec/mdct_fxp.cpp')
-rw-r--r--media/libstagefright/codecs/aacdec/mdct_fxp.cpp450
1 files changed, 450 insertions, 0 deletions
diff --git a/media/libstagefright/codecs/aacdec/mdct_fxp.cpp b/media/libstagefright/codecs/aacdec/mdct_fxp.cpp
new file mode 100644
index 0000000..df371e8
--- /dev/null
+++ b/media/libstagefright/codecs/aacdec/mdct_fxp.cpp
@@ -0,0 +1,450 @@
+/* ------------------------------------------------------------------
+ * Copyright (C) 1998-2009 PacketVideo
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
+ * express or implied.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ * -------------------------------------------------------------------
+ */
+/*
+
+ Pathname: mdct_fxp.c
+ Funtions: fft_rx2
+
+------------------------------------------------------------------------------
+ INPUT AND OUTPUT DEFINITIONS
+
+ Inputs:
+ data_quant = Input vector, with quantized Q15 spectral lines:
+ type Int32
+
+ Q_FFTarray = Scratch memory used for in-place IFFT calculation,
+ min size required 1024, type Int32
+
+ n = Length of input vector "data_quant". Currently 256 or 2048.
+ type const Int
+
+ Local Stores/Buffers/Pointers Needed:
+ None
+
+ Global Stores/Buffers/Pointers Needed:
+ None
+
+ Outputs:
+ shift = shift factor to reflect scaling introduced by FFT and mdct_fxp,
+
+ Pointers and Buffers Modified:
+ calculation are done in-place and returned in "data_quant"
+
+ Local Stores Modified:
+ None
+
+ Global Stores Modified:
+ None
+
+------------------------------------------------------------------------------
+ FUNCTION DESCRIPTION
+
+ The MDCT is a linear orthogonal lapped transform, based on the idea of
+ time domain aliasing cancellation (TDAC).
+ MDCT is critically sampled, which means that though it is 50% overlapped,
+ a sequence data after MDCT has the same number of coefficients as samples
+ before the transform (after overlap-and-add). This means, that a single
+ block of MDCT data does not correspond to the original block on which the
+ MDCT was performed. When subsequent blocks of data are added (still using
+ 50% overlap), the errors introduced by the transform cancels out.
+ Thanks to the overlapping feature, the MDCT is very useful for
+ quantization. It effectively removes the otherwise easily detectable
+ blocking artifact between transform blocks.
+ N = length of input vector X
+ X = vector of length N/2, will hold fixed point DCT
+ k = 0:1:N-1
+
+ N-1
+ X(m) = 2 SUM x(k)*cos(pi/(2*N)*(2*k+1+N/2)*(2*m+1))
+ k=0
+
+
+ The window that completes the TDAC is applied before calling this function.
+ The MDCT can be calculated using an FFT, for this, the MDCT needs to be
+ rewritten as an odd-time odd-frequency discrete Fourier transform. Thus,
+ the MDCT can be calculated using only one n/4 point FFT and some pre and
+ post-rotation of the sample points.
+
+ Computation of the MDCT implies computing
+
+ x = ( y - y ) + j( y + y )
+ n 2n N/2-1-2n N-1-2n N/2+2n
+
+ using the Fast discrete cosine transform as described in [2]
+
+ where x(n) is an input with N points
+
+ x(n) ----------------------------
+ |
+ |
+ Pre-rotation by exp(j(2pi/N)(n+1/8))
+ |
+ |
+ N/4- point FFT
+ |
+ |
+ Post-rotation by exp(j(2pi/N)(k+1/8))
+ |
+ |
+ ------------- DCT
+
+ By considering the N/2 overlap, a relation between successive input blocks
+ is found:
+
+ x (2n) = x (N/2 + 2n)
+ m+1 m
+------------------------------------------------------------------------------
+ REQUIREMENTS
+
+ This function should provide a fixed point MDCT with an average
+ quantization error less than 1 %.
+
+------------------------------------------------------------------------------
+ REFERENCES
+
+ [1] Analysis/Synthesis Filter Bank design based on time domain
+ aliasing cancellation
+ Jhon Princen, et. al.
+ IEEE Transactions on ASSP, vol ASSP-34, No. 5 October 1986
+ Pg 1153 - 1161
+
+ [2] Regular FFT-related transform kernels for DCT/DST based
+ polyphase filterbanks
+ Rolf Gluth
+ Proc. ICASSP 1991, pg. 2205 - 2208
+
+------------------------------------------------------------------------------
+ PSEUDO-CODE
+
+ Cx, Cy are complex number
+
+
+ exp = log2(n)-1
+
+ FOR ( k=0; k< n/4; k +=2)
+
+ Cx = (data_quant[3n/4 + k] + data_quant[3n/4 - 1 - k]) +
+ j (data_quant[ n/4 + k] - data_quant[ n/4 - 1 - k])
+
+ Q_FFTarray = Cx * exp(-j(2pi/n)(k+1/8))
+
+ ENDFOR
+
+ FOR ( k=n/4; k< n/2; k +=2)
+
+ Cx = (data_quant[3n/4 - 1 - k] + data_quant[ - n/4 + k]) +
+ j (data_quant[5n/4 - 1 - k] - data_quant[ n/4 + k])
+
+ Q_FFTarray = Cx * exp(-j(2pi/n)(k+1/8))
+
+ ENDFOR
+
+ CALL FFT( Q_FFTarray, n/4)
+
+ MODIFYING( Q_FFTarray )
+
+ RETURNING( shift )
+
+ FOR ( k=0; k< n/2; k +=2)
+
+ Cx = Q_FFTarray[ k] + j Q_FFTarray[ k+1]
+
+ Cy = 2 * Cx * exp(-j(2pi/n)(k+1/8))
+
+ data_quant[ k ] = - Real(Cy)
+ data_quant[ n/2 - 1 - k ] = Imag(Cy)
+ data_quant[ n/2 + k ] = - Imag(Cy)
+ data_quant[ n - k ] = Real(Cy)
+
+ ENDFOR
+
+ MODIFIED data_quant[]
+
+ RETURN (-shift-1)
+
+------------------------------------------------------------------------------
+ RESOURCES USED
+ When the code is written for a specific target processor the
+ the resources used should be documented below.
+
+ STACK USAGE: [stack count for this module] + [variable to represent
+ stack usage for each subroutine called]
+
+ where: [stack usage variable] = stack usage for [subroutine
+ name] (see [filename].ext)
+
+ DATA MEMORY USED: x words
+
+ PROGRAM MEMORY USED: x words
+
+ CLOCK CYCLES: [cycle count equation for this module] + [variable
+ used to represent cycle count for each subroutine
+ called]
+
+ where: [cycle count variable] = cycle count for [subroutine
+ name] (see [filename].ext)
+
+------------------------------------------------------------------------------
+*/
+
+
+/*----------------------------------------------------------------------------
+; INCLUDES
+----------------------------------------------------------------------------*/
+
+#include "pv_audio_type_defs.h"
+#include "mdct_fxp.h"
+#include "fft_rx4.h"
+#include "mix_radix_fft.h"
+#include "fwd_long_complex_rot.h"
+#include "fwd_short_complex_rot.h"
+
+
+/*----------------------------------------------------------------------------
+; MACROS
+; Define module specific macros here
+----------------------------------------------------------------------------*/
+
+/*----------------------------------------------------------------------------
+; DEFINES
+; Include all pre-processor statements here. Include conditional
+; compile variables also.
+----------------------------------------------------------------------------*/
+#define ERROR_IN_FRAME_SIZE 10
+
+
+/*----------------------------------------------------------------------------
+; LOCAL FUNCTION DEFINITIONS
+; Function Prototype declaration
+----------------------------------------------------------------------------*/
+
+/*----------------------------------------------------------------------------
+; LOCAL VARIABLE DEFINITIONS
+; Variable declaration - defined here and used outside this module
+----------------------------------------------------------------------------*/
+
+
+/*----------------------------------------------------------------------------
+; EXTERNAL FUNCTION REFERENCES
+; Declare functions defined elsewhere and referenced in this module
+----------------------------------------------------------------------------*/
+
+/*----------------------------------------------------------------------------
+; EXTERNAL VARIABLES REFERENCES
+; Declare variables used in this module but defined elsewhere
+----------------------------------------------------------------------------*/
+
+/*----------------------------------------------------------------------------
+; EXTERNAL GLOBAL STORE/BUFFER/POINTER REFERENCES
+; Declare variables used in this module but defined elsewhere
+----------------------------------------------------------------------------*/
+
+
+/*----------------------------------------------------------------------------
+; FUNCTION CODE
+----------------------------------------------------------------------------*/
+
+
+Int mdct_fxp(
+ Int32 data_quant[],
+ Int32 Q_FFTarray[],
+ Int n)
+{
+
+ Int32 temp_re;
+ Int32 temp_im;
+
+ Int32 temp_re_32;
+ Int32 temp_im_32;
+
+ Int16 cos_n;
+ Int16 sin_n;
+ Int32 exp_jw;
+ Int shift;
+
+
+ const Int32 *p_rotate;
+
+
+ Int32 *p_data_1;
+ Int32 *p_data_2;
+ Int32 *p_data_3;
+ Int32 *p_data_4;
+
+ Int32 *p_Q_FFTarray;
+
+ Int32 max1;
+
+ Int k;
+ Int n_2 = n >> 1;
+ Int n_4 = n >> 2;
+ Int n_8 = n >> 3;
+ Int n_3_4 = 3 * n_4;
+
+ switch (n)
+ {
+ case SHORT_WINDOW_TYPE:
+ p_rotate = (Int32 *)exp_rotation_N_256;
+ break;
+
+ case LONG_WINDOW_TYPE:
+ p_rotate = (Int32 *)exp_rotation_N_2048;
+ break;
+
+ default:
+ /*
+ * There is no defined behavior for a non supported frame
+ * size. By returning a fixed scaling factor, the input will
+ * scaled down and this will be heard as a low level noise
+ */
+ return(ERROR_IN_FRAME_SIZE);
+
+ }
+
+ /*--- Reordering and Pre-rotation by exp(-j(2pi/N)(r+1/8)) */
+ p_data_1 = &data_quant[n_3_4];
+ p_data_2 = &data_quant[n_3_4 - 1];
+ p_data_3 = &data_quant[n_4];
+ p_data_4 = &data_quant[n_4 - 1];
+
+ p_Q_FFTarray = Q_FFTarray;
+
+ max1 = 0;
+
+ for (k = n_8; k > 0; k--)
+ {
+ /*
+ * scale down to ensure numbers are Q15
+ * temp_re and temp_im are 32-bit but
+ * only the lower 16 bits are used
+ */
+
+ temp_re = (*(p_data_1++) + *(p_data_2--)) >> 1;
+ temp_im = (*(p_data_3++) - *(p_data_4--)) >> 1;
+
+
+ /*
+ * cos_n + j*sin_n == exp(j(2pi/N)(k+1/8))
+ */
+
+ exp_jw = *p_rotate++;
+
+ cos_n = (Int16)(exp_jw >> 16);
+ sin_n = (Int16)(exp_jw & 0xFFFF);
+
+ temp_re_32 = temp_re * cos_n + temp_im * sin_n;
+ temp_im_32 = temp_im * cos_n - temp_re * sin_n;
+ *(p_Q_FFTarray++) = temp_re_32;
+ *(p_Q_FFTarray++) = temp_im_32;
+ max1 |= (temp_re_32 >> 31) ^ temp_re_32;
+ max1 |= (temp_im_32 >> 31) ^ temp_im_32;
+
+
+ p_data_1++;
+ p_data_2--;
+ p_data_4--;
+ p_data_3++;
+ }
+
+
+ p_data_1 = &data_quant[n - 1];
+ p_data_2 = &data_quant[n_2 - 1];
+ p_data_3 = &data_quant[n_2];
+ p_data_4 = data_quant;
+
+ for (k = n_8; k > 0; k--)
+ {
+ /*
+ * scale down to ensure numbers are Q15
+ */
+ temp_re = (*(p_data_2--) - *(p_data_4++)) >> 1;
+ temp_im = (*(p_data_1--) + *(p_data_3++)) >> 1;
+
+ p_data_2--;
+ p_data_1--;
+ p_data_4++;
+ p_data_3++;
+
+ /*
+ * cos_n + j*sin_n == exp(j(2pi/N)(k+1/8))
+ */
+
+ exp_jw = *p_rotate++;
+
+ cos_n = (Int16)(exp_jw >> 16);
+ sin_n = (Int16)(exp_jw & 0xFFFF);
+
+ temp_re_32 = temp_re * cos_n + temp_im * sin_n;
+ temp_im_32 = temp_im * cos_n - temp_re * sin_n;
+
+ *(p_Q_FFTarray++) = temp_re_32;
+ *(p_Q_FFTarray++) = temp_im_32;
+ max1 |= (temp_re_32 >> 31) ^ temp_re_32;
+ max1 |= (temp_im_32 >> 31) ^ temp_im_32;
+
+
+ } /* for(k) */
+
+
+
+ p_Q_FFTarray = Q_FFTarray;
+
+ if (max1)
+ {
+
+ if (n != SHORT_WINDOW_TYPE)
+ {
+
+ shift = mix_radix_fft(
+ Q_FFTarray,
+ &max1);
+
+ shift += fwd_long_complex_rot(
+ Q_FFTarray,
+ data_quant,
+ max1);
+
+ }
+ else /* n_4 is 64 */
+ {
+
+ shift = fft_rx4_short(
+ Q_FFTarray,
+ &max1);
+
+ shift += fwd_short_complex_rot(
+ Q_FFTarray,
+ data_quant,
+ max1);
+ }
+
+ }
+ else
+ {
+ shift = -31;
+ }
+
+ /*
+ * returns shift introduced by FFT and mdct_fxp, 12 accounts for
+ * regular downshift (14) and MDCT scale factor (-2)
+ * number are returned as 16 bits
+ */
+ return (12 - shift);
+
+} /* mdct_fxp */
+