summaryrefslogtreecommitdiffstats
path: root/media/libstagefright/codecs/aacenc/src/tns.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/libstagefright/codecs/aacenc/src/tns.c')
-rw-r--r--media/libstagefright/codecs/aacenc/src/tns.c932
1 files changed, 932 insertions, 0 deletions
diff --git a/media/libstagefright/codecs/aacenc/src/tns.c b/media/libstagefright/codecs/aacenc/src/tns.c
new file mode 100644
index 0000000..455a864
--- /dev/null
+++ b/media/libstagefright/codecs/aacenc/src/tns.c
@@ -0,0 +1,932 @@
+/*
+ ** Copyright 2003-2010, VisualOn, Inc.
+ **
+ ** Licensed under the Apache License, Version 2.0 (the "License");
+ ** you may not use this file except in compliance with the License.
+ ** You may obtain a copy of the License at
+ **
+ ** http://www.apache.org/licenses/LICENSE-2.0
+ **
+ ** Unless required by applicable law or agreed to in writing, software
+ ** distributed under the License is distributed on an "AS IS" BASIS,
+ ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ ** See the License for the specific language governing permissions and
+ ** limitations under the License.
+ */
+/*******************************************************************************
+ File: tns.c
+
+ Content: Definition TNS tools functions
+
+*******************************************************************************/
+
+#include "basic_op.h"
+#include "oper_32b.h"
+#include "assert.h"
+#include "aac_rom.h"
+#include "psy_const.h"
+#include "tns.h"
+#include "tns_param.h"
+#include "psy_configuration.h"
+#include "tns_func.h"
+
+#define TNS_MODIFY_BEGIN 2600 /* Hz */
+#define RATIO_PATCH_LOWER_BORDER 380 /* Hz */
+#define TNS_GAIN_THRESH 141 /* 1.41*100 */
+#define NORM_COEF 0x028f5c28
+
+static const Word32 TNS_PARCOR_THRESH = 0x0ccccccd; /* 0.1*(1 << 31) */
+/* Limit bands to > 2.0 kHz */
+static unsigned short tnsMinBandNumberLong[12] =
+{ 11, 12, 15, 16, 17, 20, 25, 26, 24, 28, 30, 31 };
+static unsigned short tnsMinBandNumberShort[12] =
+{ 2, 2, 2, 3, 3, 4, 6, 6, 8, 10, 10, 12 };
+
+/**************************************/
+/* Main/Low Profile TNS Parameters */
+/**************************************/
+static unsigned short tnsMaxBandsLongMainLow[12] =
+{ 31, 31, 34, 40, 42, 51, 46, 46, 42, 42, 42, 39 };
+
+static unsigned short tnsMaxBandsShortMainLow[12] =
+{ 9, 9, 10, 14, 14, 14, 14, 14, 14, 14, 14, 14 };
+
+
+static void CalcWeightedSpectrum(const Word32 spectrum[],
+ Word16 weightedSpectrum[],
+ Word32* sfbEnergy,
+ const Word16* sfbOffset, Word16 lpcStartLine,
+ Word16 lpcStopLine, Word16 lpcStartBand,Word16 lpcStopBand,
+ Word32 *pWork32);
+
+
+
+void AutoCorrelation(const Word16 input[], Word32 corr[],
+ Word16 samples, Word16 corrCoeff);
+static Word16 AutoToParcor(Word32 workBuffer[], Word32 reflCoeff[], Word16 numOfCoeff);
+
+static Word16 CalcTnsFilter(const Word16* signal, const Word32 window[], Word16 numOfLines,
+ Word16 tnsOrder, Word32 parcor[]);
+
+
+static void Parcor2Index(const Word32 parcor[], Word16 index[], Word16 order,
+ Word16 bitsPerCoeff);
+
+static void Index2Parcor(const Word16 index[], Word32 parcor[], Word16 order,
+ Word16 bitsPerCoeff);
+
+
+
+static void AnalysisFilterLattice(const Word32 signal[], Word16 numOfLines,
+ const Word32 parCoeff[], Word16 order,
+ Word32 output[]);
+
+
+/**
+*
+* function name: FreqToBandWithRounding
+* description: Retrieve index of nearest band border
+* returnt: index
+*
+*/
+static Word16 FreqToBandWithRounding(Word32 freq, /*!< frequency in Hertz */
+ Word32 fs, /*!< Sampling frequency in Hertz */
+ Word16 numOfBands, /*!< total number of bands */
+ const Word16 *bandStartOffset) /*!< table of band borders */
+{
+ Word32 lineNumber, band;
+ Word32 temp, shift;
+
+ /* assert(freq >= 0); */
+ shift = norm_l(fs);
+ lineNumber = (extract_l(fixmul((bandStartOffset[numOfBands] << 2),Div_32(freq << shift,fs << shift))) + 1) >> 1;
+
+ /* freq > fs/2 */
+ temp = lineNumber - bandStartOffset[numOfBands] ;
+ if (temp >= 0)
+ return numOfBands;
+
+ /* find band the line number lies in */
+ for (band=0; band<numOfBands; band++) {
+ temp = bandStartOffset[band + 1] - lineNumber;
+ if (temp > 0) break;
+ }
+
+ temp = (lineNumber - bandStartOffset[band]);
+ temp = (temp - (bandStartOffset[band + 1] - lineNumber));
+ if ( temp > 0 )
+ {
+ band = band + 1;
+ }
+
+ return extract_l(band);
+}
+
+
+/**
+*
+* function name: InitTnsConfigurationLong
+* description: Fill TNS_CONFIG structure with sensible content for long blocks
+* returns: 0 if success
+*
+*/
+Word16 InitTnsConfigurationLong(Word32 bitRate, /*!< bitrate */
+ Word32 sampleRate, /*!< Sampling frequency */
+ Word16 channels, /*!< number of channels */
+ TNS_CONFIG *tC, /*!< TNS Config struct (modified) */
+ PSY_CONFIGURATION_LONG *pC, /*!< psy config struct */
+ Word16 active) /*!< tns active flag */
+{
+
+ Word32 bitratePerChannel;
+ tC->maxOrder = TNS_MAX_ORDER;
+ tC->tnsStartFreq = 1275;
+ tC->coefRes = 4;
+
+ /* to avoid integer division */
+ if ( sub(channels,2) == 0 ) {
+ bitratePerChannel = bitRate >> 1;
+ }
+ else {
+ bitratePerChannel = bitRate;
+ }
+
+ tC->tnsMaxSfb = tnsMaxBandsLongMainLow[pC->sampRateIdx];
+
+ tC->tnsActive = active;
+
+ /* now calc band and line borders */
+ tC->tnsStopBand = min(pC->sfbCnt, tC->tnsMaxSfb);
+ tC->tnsStopLine = pC->sfbOffset[tC->tnsStopBand];
+
+ tC->tnsStartBand = FreqToBandWithRounding(tC->tnsStartFreq, sampleRate,
+ pC->sfbCnt, (const Word16*)pC->sfbOffset);
+
+ tC->tnsModifyBeginCb = FreqToBandWithRounding(TNS_MODIFY_BEGIN,
+ sampleRate,
+ pC->sfbCnt,
+ (const Word16*)pC->sfbOffset);
+
+ tC->tnsRatioPatchLowestCb = FreqToBandWithRounding(RATIO_PATCH_LOWER_BORDER,
+ sampleRate,
+ pC->sfbCnt,
+ (const Word16*)pC->sfbOffset);
+
+
+ tC->tnsStartLine = pC->sfbOffset[tC->tnsStartBand];
+
+ tC->lpcStopBand = tnsMaxBandsLongMainLow[pC->sampRateIdx];
+ tC->lpcStopBand = min(tC->lpcStopBand, pC->sfbActive);
+
+ tC->lpcStopLine = pC->sfbOffset[tC->lpcStopBand];
+
+ tC->lpcStartBand = tnsMinBandNumberLong[pC->sampRateIdx];
+
+ tC->lpcStartLine = pC->sfbOffset[tC->lpcStartBand];
+
+ tC->threshold = TNS_GAIN_THRESH;
+
+
+ return(0);
+}
+
+/**
+*
+* function name: InitTnsConfigurationShort
+* description: Fill TNS_CONFIG structure with sensible content for short blocks
+* returns: 0 if success
+*
+*/
+Word16 InitTnsConfigurationShort(Word32 bitRate, /*!< bitrate */
+ Word32 sampleRate, /*!< Sampling frequency */
+ Word16 channels, /*!< number of channels */
+ TNS_CONFIG *tC, /*!< TNS Config struct (modified) */
+ PSY_CONFIGURATION_SHORT *pC, /*!< psy config struct */
+ Word16 active) /*!< tns active flag */
+{
+ Word32 bitratePerChannel;
+ tC->maxOrder = TNS_MAX_ORDER_SHORT;
+ tC->tnsStartFreq = 2750;
+ tC->coefRes = 3;
+
+ /* to avoid integer division */
+ if ( sub(channels,2) == 0 ) {
+ bitratePerChannel = L_shr(bitRate,1);
+ }
+ else {
+ bitratePerChannel = bitRate;
+ }
+
+ tC->tnsMaxSfb = tnsMaxBandsShortMainLow[pC->sampRateIdx];
+
+ tC->tnsActive = active;
+
+ /* now calc band and line borders */
+ tC->tnsStopBand = min(pC->sfbCnt, tC->tnsMaxSfb);
+ tC->tnsStopLine = pC->sfbOffset[tC->tnsStopBand];
+
+ tC->tnsStartBand=FreqToBandWithRounding(tC->tnsStartFreq, sampleRate,
+ pC->sfbCnt, (const Word16*)pC->sfbOffset);
+
+ tC->tnsModifyBeginCb = FreqToBandWithRounding(TNS_MODIFY_BEGIN,
+ sampleRate,
+ pC->sfbCnt,
+ (const Word16*)pC->sfbOffset);
+
+ tC->tnsRatioPatchLowestCb = FreqToBandWithRounding(RATIO_PATCH_LOWER_BORDER,
+ sampleRate,
+ pC->sfbCnt,
+ (const Word16*)pC->sfbOffset);
+
+
+ tC->tnsStartLine = pC->sfbOffset[tC->tnsStartBand];
+
+ tC->lpcStopBand = tnsMaxBandsShortMainLow[pC->sampRateIdx];
+
+ tC->lpcStopBand = min(tC->lpcStopBand, pC->sfbActive);
+
+ tC->lpcStopLine = pC->sfbOffset[tC->lpcStopBand];
+
+ tC->lpcStartBand = tnsMinBandNumberShort[pC->sampRateIdx];
+
+ tC->lpcStartLine = pC->sfbOffset[tC->lpcStartBand];
+
+ tC->threshold = TNS_GAIN_THRESH;
+
+ return(0);
+}
+
+/**
+*
+* function name: TnsDetect
+* description: Calculate TNS filter and decide on TNS usage
+* returns: 0 if success
+*
+*/
+Word32 TnsDetect(TNS_DATA* tnsData, /*!< tns data structure (modified) */
+ TNS_CONFIG tC, /*!< tns config structure */
+ Word32* pScratchTns, /*!< pointer to scratch space */
+ const Word16 sfbOffset[], /*!< scalefactor size and table */
+ Word32* spectrum, /*!< spectral data */
+ Word16 subBlockNumber, /*!< subblock num */
+ Word16 blockType, /*!< blocktype (long or short) */
+ Word32 * sfbEnergy) /*!< sfb-wise energy */
+{
+
+ Word32 predictionGain;
+ Word32 temp;
+ Word32* pWork32 = &pScratchTns[subBlockNumber >> 8];
+ Word16* pWeightedSpectrum = (Word16 *)&pScratchTns[subBlockNumber >> 8];
+
+
+ if (tC.tnsActive) {
+ CalcWeightedSpectrum(spectrum,
+ pWeightedSpectrum,
+ sfbEnergy,
+ sfbOffset,
+ tC.lpcStartLine,
+ tC.lpcStopLine,
+ tC.lpcStartBand,
+ tC.lpcStopBand,
+ pWork32);
+
+ temp = blockType - SHORT_WINDOW;
+ if ( temp != 0 ) {
+ predictionGain = CalcTnsFilter( &pWeightedSpectrum[tC.lpcStartLine],
+ tC.acfWindow,
+ tC.lpcStopLine - tC.lpcStartLine,
+ tC.maxOrder,
+ tnsData->dataRaw.tnsLong.subBlockInfo.parcor);
+
+
+ temp = predictionGain - tC.threshold;
+ if ( temp > 0 ) {
+ tnsData->dataRaw.tnsLong.subBlockInfo.tnsActive = 1;
+ }
+ else {
+ tnsData->dataRaw.tnsLong.subBlockInfo.tnsActive = 0;
+ }
+
+ tnsData->dataRaw.tnsLong.subBlockInfo.predictionGain = predictionGain;
+ }
+ else{
+
+ predictionGain = CalcTnsFilter( &pWeightedSpectrum[tC.lpcStartLine],
+ tC.acfWindow,
+ tC.lpcStopLine - tC.lpcStartLine,
+ tC.maxOrder,
+ tnsData->dataRaw.tnsShort.subBlockInfo[subBlockNumber].parcor);
+
+ temp = predictionGain - tC.threshold;
+ if ( temp > 0 ) {
+ tnsData->dataRaw.tnsShort.subBlockInfo[subBlockNumber].tnsActive = 1;
+ }
+ else {
+ tnsData->dataRaw.tnsShort.subBlockInfo[subBlockNumber].tnsActive = 0;
+ }
+
+ tnsData->dataRaw.tnsShort.subBlockInfo[subBlockNumber].predictionGain = predictionGain;
+ }
+
+ }
+ else{
+
+ temp = blockType - SHORT_WINDOW;
+ if ( temp != 0 ) {
+ tnsData->dataRaw.tnsLong.subBlockInfo.tnsActive = 0;
+ tnsData->dataRaw.tnsLong.subBlockInfo.predictionGain = 0;
+ }
+ else {
+ tnsData->dataRaw.tnsShort.subBlockInfo[subBlockNumber].tnsActive = 0;
+ tnsData->dataRaw.tnsShort.subBlockInfo[subBlockNumber].predictionGain = 0;
+ }
+ }
+
+ return(0);
+}
+
+
+/*****************************************************************************
+*
+* function name: TnsSync
+* description: update tns parameter
+*
+*****************************************************************************/
+void TnsSync(TNS_DATA *tnsDataDest,
+ const TNS_DATA *tnsDataSrc,
+ const TNS_CONFIG tC,
+ const Word16 subBlockNumber,
+ const Word16 blockType)
+{
+ TNS_SUBBLOCK_INFO *sbInfoDest;
+ const TNS_SUBBLOCK_INFO *sbInfoSrc;
+ Word32 i, temp;
+
+ temp = blockType - SHORT_WINDOW;
+ if ( temp != 0 ) {
+ sbInfoDest = &tnsDataDest->dataRaw.tnsLong.subBlockInfo;
+ sbInfoSrc = &tnsDataSrc->dataRaw.tnsLong.subBlockInfo;
+ }
+ else {
+ sbInfoDest = &tnsDataDest->dataRaw.tnsShort.subBlockInfo[subBlockNumber];
+ sbInfoSrc = &tnsDataSrc->dataRaw.tnsShort.subBlockInfo[subBlockNumber];
+ }
+
+ if (100*abs_s(sbInfoDest->predictionGain - sbInfoSrc->predictionGain) <
+ (3 * sbInfoDest->predictionGain)) {
+ sbInfoDest->tnsActive = sbInfoSrc->tnsActive;
+ for ( i=0; i< tC.maxOrder; i++) {
+ sbInfoDest->parcor[i] = sbInfoSrc->parcor[i];
+ }
+ }
+}
+
+/*****************************************************************************
+*
+* function name: TnsEncode
+* description: do TNS filtering
+* returns: 0 if success
+*
+*****************************************************************************/
+Word16 TnsEncode(TNS_INFO* tnsInfo, /*!< tns info structure (modified) */
+ TNS_DATA* tnsData, /*!< tns data structure (modified) */
+ Word16 numOfSfb, /*!< number of scale factor bands */
+ TNS_CONFIG tC, /*!< tns config structure */
+ Word16 lowPassLine, /*!< lowpass line */
+ Word32* spectrum, /*!< spectral data (modified) */
+ Word16 subBlockNumber, /*!< subblock num */
+ Word16 blockType) /*!< blocktype (long or short) */
+{
+ Word32 i;
+ Word32 temp_s;
+ Word32 temp;
+ TNS_SUBBLOCK_INFO *psubBlockInfo;
+
+ temp_s = blockType - SHORT_WINDOW;
+ if ( temp_s != 0) {
+ psubBlockInfo = &tnsData->dataRaw.tnsLong.subBlockInfo;
+ if (psubBlockInfo->tnsActive == 0) {
+ tnsInfo->tnsActive[subBlockNumber] = 0;
+ return(0);
+ }
+ else {
+
+ Parcor2Index(psubBlockInfo->parcor,
+ tnsInfo->coef,
+ tC.maxOrder,
+ tC.coefRes);
+
+ Index2Parcor(tnsInfo->coef,
+ psubBlockInfo->parcor,
+ tC.maxOrder,
+ tC.coefRes);
+
+ for (i=tC.maxOrder - 1; i>=0; i--) {
+ temp = psubBlockInfo->parcor[i] - TNS_PARCOR_THRESH;
+ if ( temp > 0 )
+ break;
+ temp = psubBlockInfo->parcor[i] + TNS_PARCOR_THRESH;
+ if ( temp < 0 )
+ break;
+ }
+ tnsInfo->order[subBlockNumber] = i + 1;
+
+
+ tnsInfo->tnsActive[subBlockNumber] = 1;
+ for (i=subBlockNumber+1; i<TRANS_FAC; i++) {
+ tnsInfo->tnsActive[i] = 0;
+ }
+ tnsInfo->coefRes[subBlockNumber] = tC.coefRes;
+ tnsInfo->length[subBlockNumber] = numOfSfb - tC.tnsStartBand;
+
+
+ AnalysisFilterLattice(&(spectrum[tC.tnsStartLine]),
+ (min(tC.tnsStopLine,lowPassLine) - tC.tnsStartLine),
+ psubBlockInfo->parcor,
+ tnsInfo->order[subBlockNumber],
+ &(spectrum[tC.tnsStartLine]));
+
+ }
+ } /* if (blockType!=SHORT_WINDOW) */
+ else /*short block*/ {
+ psubBlockInfo = &tnsData->dataRaw.tnsShort.subBlockInfo[subBlockNumber];
+ if (psubBlockInfo->tnsActive == 0) {
+ tnsInfo->tnsActive[subBlockNumber] = 0;
+ return(0);
+ }
+ else {
+
+ Parcor2Index(psubBlockInfo->parcor,
+ &tnsInfo->coef[subBlockNumber*TNS_MAX_ORDER_SHORT],
+ tC.maxOrder,
+ tC.coefRes);
+
+ Index2Parcor(&tnsInfo->coef[subBlockNumber*TNS_MAX_ORDER_SHORT],
+ psubBlockInfo->parcor,
+ tC.maxOrder,
+ tC.coefRes);
+ for (i=(tC.maxOrder - 1); i>=0; i--) {
+ temp = psubBlockInfo->parcor[i] - TNS_PARCOR_THRESH;
+ if ( temp > 0 )
+ break;
+
+ temp = psubBlockInfo->parcor[i] + TNS_PARCOR_THRESH;
+ if ( temp < 0 )
+ break;
+ }
+ tnsInfo->order[subBlockNumber] = i + 1;
+
+ tnsInfo->tnsActive[subBlockNumber] = 1;
+ tnsInfo->coefRes[subBlockNumber] = tC.coefRes;
+ tnsInfo->length[subBlockNumber] = numOfSfb - tC.tnsStartBand;
+
+
+ AnalysisFilterLattice(&(spectrum[tC.tnsStartLine]), (tC.tnsStopLine - tC.tnsStartLine),
+ psubBlockInfo->parcor,
+ tnsInfo->order[subBlockNumber],
+ &(spectrum[tC.tnsStartLine]));
+
+ }
+ }
+
+ return(0);
+}
+
+
+/*****************************************************************************
+*
+* function name: m_pow2_cordic
+* description: Iterative power function
+*
+* Calculates pow(2.0,x-1.0*(scale+1)) with INT_BITS bit precision
+* using modified cordic algorithm
+* returns: the result of pow2
+*
+*****************************************************************************/
+static Word32 m_pow2_cordic(Word32 x, Word16 scale)
+{
+ Word32 k;
+
+ Word32 accu_y = 0x40000000;
+ accu_y = L_shr(accu_y,scale);
+
+ for(k=1; k<INT_BITS; k++) {
+ const Word32 z = m_log2_table[k];
+
+ while(L_sub(x,z) >= 0) {
+
+ x = L_sub(x, z);
+ accu_y = L_add(accu_y, (accu_y >> k));
+ }
+ }
+ return(accu_y);
+}
+
+
+/*****************************************************************************
+*
+* function name: CalcWeightedSpectrum
+* description: Calculate weighted spectrum for LPC calculation
+*
+*****************************************************************************/
+static void CalcWeightedSpectrum(const Word32 spectrum[], /*!< input spectrum */
+ Word16 weightedSpectrum[],
+ Word32 *sfbEnergy, /*!< sfb energies */
+ const Word16 *sfbOffset,
+ Word16 lpcStartLine,
+ Word16 lpcStopLine,
+ Word16 lpcStartBand,
+ Word16 lpcStopBand,
+ Word32 *pWork32)
+{
+ #define INT_BITS_SCAL 1<<(INT_BITS/2)
+
+ Word32 i, sfb, shift;
+ Word32 maxShift;
+ Word32 tmp_s, tmp2_s;
+ Word32 tmp, tmp2;
+ Word32 maxWS;
+ Word32 tnsSfbMean[MAX_SFB]; /* length [lpcStopBand-lpcStartBand] should be sufficient here */
+
+ maxWS = 0;
+
+ /* calc 1.0*2^-INT_BITS/2/sqrt(en) */
+ for( sfb = lpcStartBand; sfb < lpcStopBand; sfb++) {
+
+ tmp2 = sfbEnergy[sfb] - 2;
+ if( tmp2 > 0) {
+ tmp = rsqrt(sfbEnergy[sfb], INT_BITS);
+ if(tmp > INT_BITS_SCAL)
+ {
+ shift = norm_l(tmp);
+ tmp = Div_32( INT_BITS_SCAL << shift, tmp << shift );
+ }
+ else
+ {
+ tmp = 0x7fffffff;
+ }
+ }
+ else {
+ tmp = 0x7fffffff;
+ }
+ tnsSfbMean[sfb] = tmp;
+ }
+
+ /* spread normalized values from sfbs to lines */
+ sfb = lpcStartBand;
+ tmp = tnsSfbMean[sfb];
+ for ( i=lpcStartLine; i<lpcStopLine; i++){
+ tmp_s = sfbOffset[sfb + 1] - i;
+ if ( tmp_s == 0 ) {
+ sfb = sfb + 1;
+ tmp2_s = sfb + 1 - lpcStopBand;
+ if (tmp2_s <= 0) {
+ tmp = tnsSfbMean[sfb];
+ }
+ }
+ pWork32[i] = tmp;
+ }
+ /*filter down*/
+ for (i=(lpcStopLine - 2); i>=lpcStartLine; i--){
+ pWork32[i] = (pWork32[i] + pWork32[i + 1]) >> 1;
+ }
+ /* filter up */
+ for (i=(lpcStartLine + 1); i<lpcStopLine; i++){
+ pWork32[i] = (pWork32[i] + pWork32[i - 1]) >> 1;
+ }
+
+ /* weight and normalize */
+ for (i=lpcStartLine; i<lpcStopLine; i++){
+ pWork32[i] = MULHIGH(pWork32[i], spectrum[i]);
+ maxWS |= L_abs(pWork32[i]);
+ }
+ maxShift = norm_l(maxWS);
+
+ maxShift = 16 - maxShift;
+ if(maxShift >= 0)
+ {
+ for (i=lpcStartLine; i<lpcStopLine; i++){
+ weightedSpectrum[i] = pWork32[i] >> maxShift;
+ }
+ }
+ else
+ {
+ maxShift = -maxShift;
+ for (i=lpcStartLine; i<lpcStopLine; i++){
+ weightedSpectrum[i] = saturate(pWork32[i] << maxShift);
+ }
+ }
+}
+
+
+
+
+/*****************************************************************************
+*
+* function name: CalcTnsFilter
+* description: LPC calculation for one TNS filter
+* returns: prediction gain
+* input: signal spectrum, acf window, no. of spectral lines,
+* max. TNS order, ptr. to reflection ocefficients
+* output: reflection coefficients
+*(half) window size must be larger than tnsOrder !!*
+******************************************************************************/
+
+static Word16 CalcTnsFilter(const Word16 *signal,
+ const Word32 window[],
+ Word16 numOfLines,
+ Word16 tnsOrder,
+ Word32 parcor[])
+{
+ Word32 parcorWorkBuffer[2*TNS_MAX_ORDER+1];
+ Word32 predictionGain;
+ Word32 i;
+ Word32 tnsOrderPlus1 = tnsOrder + 1;
+
+ assert(tnsOrder <= TNS_MAX_ORDER); /* remove asserts later? (btg) */
+
+ for(i=0;i<tnsOrder;i++) {
+ parcor[i] = 0;
+ }
+
+ AutoCorrelation(signal, parcorWorkBuffer, numOfLines, tnsOrderPlus1);
+
+ /* early return if signal is very low: signal prediction off, with zero parcor coeffs */
+ if (parcorWorkBuffer[0] == 0)
+ return 0;
+
+ predictionGain = AutoToParcor(parcorWorkBuffer, parcor, tnsOrder);
+
+ return(predictionGain);
+}
+
+/*****************************************************************************
+*
+* function name: AutoCorrelation
+* description: calc. autocorrelation (acf)
+* returns: -
+* input: input values, no. of input values, no. of acf values
+* output: acf values
+*
+*****************************************************************************/
+#ifndef ARMV5E
+void AutoCorrelation(const Word16 input[],
+ Word32 corr[],
+ Word16 samples,
+ Word16 corrCoeff) {
+ Word32 i, j, isamples;
+ Word32 accu;
+ Word32 scf;
+
+ scf = 10 - 1;
+
+ isamples = samples;
+ /* calc first corrCoef: R[0] = sum { t[i] * t[i] } ; i = 0..N-1 */
+ accu = 0;
+ for(j=0; j<isamples; j++) {
+ accu = L_add(accu, ((input[j] * input[j]) >> scf));
+ }
+ corr[0] = accu;
+
+ /* early termination if all corr coeffs are likely going to be zero */
+ if(corr[0] == 0) return ;
+
+ /* calc all other corrCoef: R[j] = sum { t[i] * t[i+j] } ; i = 0..(N-j-1), j=1..p */
+ for(i=1; i<corrCoeff; i++) {
+ isamples = isamples - 1;
+ accu = 0;
+ for(j=0; j<isamples; j++) {
+ accu = L_add(accu, ((input[j] * input[j+i]) >> scf));
+ }
+ corr[i] = accu;
+ }
+}
+#endif
+
+/*****************************************************************************
+*
+* function name: AutoToParcor
+* description: conversion autocorrelation to reflection coefficients
+* returns: prediction gain
+* input: <order+1> input values, no. of output values (=order),
+* ptr. to workbuffer (required size: 2*order)
+* output: <order> reflection coefficients
+*
+*****************************************************************************/
+static Word16 AutoToParcor(Word32 workBuffer[], Word32 reflCoeff[], Word16 numOfCoeff) {
+
+ Word32 i, j, shift;
+ Word32 *pWorkBuffer; /* temp pointer */
+ Word32 predictionGain = 0;
+ Word32 num, denom;
+ Word32 temp, workBuffer0;
+
+
+ num = workBuffer[0];
+ temp = workBuffer[numOfCoeff];
+
+ for(i=0; i<numOfCoeff-1; i++) {
+ workBuffer[i + numOfCoeff] = workBuffer[i + 1];
+ }
+ workBuffer[i + numOfCoeff] = temp;
+
+ for(i=0; i<numOfCoeff; i++) {
+ Word32 refc;
+
+
+ if (workBuffer[0] < L_abs(workBuffer[i + numOfCoeff])) {
+ return 0 ;
+ }
+ shift = norm_l(workBuffer[0]);
+ workBuffer0 = Div_32(1 << shift, workBuffer[0] << shift);
+ /* calculate refc = -workBuffer[numOfCoeff+i] / workBuffer[0]; -1 <= refc < 1 */
+ refc = L_negate(fixmul(workBuffer[numOfCoeff + i], workBuffer0));
+
+ reflCoeff[i] = refc;
+
+ pWorkBuffer = &(workBuffer[numOfCoeff]);
+
+ for(j=i; j<numOfCoeff; j++) {
+ Word32 accu1, accu2;
+ accu1 = L_add(pWorkBuffer[j], fixmul(refc, workBuffer[j - i]));
+ accu2 = L_add(workBuffer[j - i], fixmul(refc, pWorkBuffer[j]));
+ pWorkBuffer[j] = accu1;
+ workBuffer[j - i] = accu2;
+ }
+ }
+
+ denom = MULHIGH(workBuffer[0], NORM_COEF);
+
+ if (denom != 0) {
+ Word32 temp;
+ shift = norm_l(denom);
+ temp = Div_32(1 << shift, denom << shift);
+ predictionGain = fixmul(num, temp);
+ }
+
+ return extract_l(predictionGain);
+}
+
+
+
+static Word16 Search3(Word32 parcor)
+{
+ Word32 index = 0;
+ Word32 i;
+ Word32 temp;
+
+ for (i=0;i<8;i++) {
+ temp = L_sub( parcor, tnsCoeff3Borders[i]);
+ if (temp > 0)
+ index=i;
+ }
+ return extract_l(index - 4);
+}
+
+static Word16 Search4(Word32 parcor)
+{
+ Word32 index = 0;
+ Word32 i;
+ Word32 temp;
+
+
+ for (i=0;i<16;i++) {
+ temp = L_sub(parcor, tnsCoeff4Borders[i]);
+ if (temp > 0)
+ index=i;
+ }
+ return extract_l(index - 8);
+}
+
+
+
+/*****************************************************************************
+*
+* functionname: Parcor2Index
+* description: quantization index for reflection coefficients
+*
+*****************************************************************************/
+static void Parcor2Index(const Word32 parcor[], /*!< parcor coefficients */
+ Word16 index[], /*!< quantized coeff indices */
+ Word16 order, /*!< filter order */
+ Word16 bitsPerCoeff) { /*!< quantizer resolution */
+ Word32 i;
+ Word32 temp;
+
+ for(i=0; i<order; i++) {
+ temp = bitsPerCoeff - 3;
+ if (temp == 0) {
+ index[i] = Search3(parcor[i]);
+ }
+ else {
+ index[i] = Search4(parcor[i]);
+ }
+ }
+}
+
+/*****************************************************************************
+*
+* functionname: Index2Parcor
+* description: Inverse quantization for reflection coefficients
+*
+*****************************************************************************/
+static void Index2Parcor(const Word16 index[], /*!< quantized values */
+ Word32 parcor[], /*!< ptr. to reflection coefficients (output) */
+ Word16 order, /*!< no. of coefficients */
+ Word16 bitsPerCoeff) /*!< quantizer resolution */
+{
+ Word32 i;
+ Word32 temp;
+
+ for (i=0; i<order; i++) {
+ temp = bitsPerCoeff - 4;
+ if ( temp == 0 ) {
+ parcor[i] = tnsCoeff4[index[i] + 8];
+ }
+ else {
+ parcor[i] = tnsCoeff3[index[i] + 4];
+ }
+ }
+}
+
+/*****************************************************************************
+*
+* functionname: FIRLattice
+* description: in place lattice filtering of spectral data
+* returns: pointer to modified data
+*
+*****************************************************************************/
+static Word32 FIRLattice(Word16 order, /*!< filter order */
+ Word32 x, /*!< spectral data */
+ Word32 *state_par, /*!< filter states */
+ const Word32 *coef_par) /*!< filter coefficients */
+{
+ Word32 i;
+ Word32 accu,tmp,tmpSave;
+
+ x = x >> 1;
+ tmpSave = x;
+
+ for (i=0; i<(order - 1); i++) {
+
+ tmp = L_add(fixmul(coef_par[i], x), state_par[i]);
+ x = L_add(fixmul(coef_par[i], state_par[i]), x);
+
+ state_par[i] = tmpSave;
+ tmpSave = tmp;
+ }
+
+ /* last stage: only need half operations */
+ accu = fixmul(state_par[order - 1], coef_par[(order - 1)]);
+ state_par[(order - 1)] = tmpSave;
+
+ x = L_add(accu, x);
+ x = L_add(x, x);
+
+ return x;
+}
+
+/*****************************************************************************
+*
+* functionname: AnalysisFilterLattice
+* description: filters spectral lines with TNS filter
+*
+*****************************************************************************/
+static void AnalysisFilterLattice(const Word32 signal[], /*!< input spectrum */
+ Word16 numOfLines, /*!< no. of lines */
+ const Word32 parCoeff[],/*!< PARC coefficients */
+ Word16 order, /*!< filter order */
+ Word32 output[]) /*!< filtered signal values */
+{
+
+ Word32 state_par[TNS_MAX_ORDER];
+ Word32 j;
+
+ for ( j=0; j<TNS_MAX_ORDER; j++ ) {
+ state_par[j] = 0;
+ }
+
+ for(j=0; j<numOfLines; j++) {
+ output[j] = FIRLattice(order,signal[j],state_par,parCoeff);
+ }
+}
+
+/*****************************************************************************
+*
+* functionname: ApplyTnsMultTableToRatios
+* description: Change thresholds according to tns
+*
+*****************************************************************************/
+void ApplyTnsMultTableToRatios(Word16 startCb,
+ Word16 stopCb,
+ TNS_SUBBLOCK_INFO subInfo, /*!< TNS subblock info */
+ Word32 *thresholds) /*!< thresholds (modified) */
+{
+ Word32 i;
+ if (subInfo.tnsActive) {
+ for(i=startCb; i<stopCb; i++) {
+ /* thresholds[i] * 0.25 */
+ thresholds[i] = (thresholds[i] >> 2);
+ }
+ }
+}