1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "VideoFrameScheduler"
#include <utils/Log.h>
#define ATRACE_TAG ATRACE_TAG_VIDEO
#include <utils/Trace.h>
#include <sys/time.h>
#include <binder/IServiceManager.h>
#include <gui/ISurfaceComposer.h>
#include <ui/DisplayStatInfo.h>
#include <media/stagefright/foundation/ADebug.h>
#include "VideoFrameScheduler.h"
namespace android {
static const nsecs_t kNanosIn1s = 1000000000;
template<class T>
inline static const T divRound(const T &nom, const T &den) {
if ((nom >= 0) ^ (den >= 0)) {
return (nom - den / 2) / den;
} else {
return (nom + den / 2) / den;
}
}
template<class T>
inline static T abs(const T &a) {
return a < 0 ? -a : a;
}
template<class T>
inline static const T &min(const T &a, const T &b) {
return a < b ? a : b;
}
template<class T>
inline static const T &max(const T &a, const T &b) {
return a > b ? a : b;
}
template<class T>
inline static T periodicError(const T &val, const T &period) {
T err = abs(val) % period;
return (err < (period / 2)) ? err : (period - err);
}
template<class T>
static int compare(const T *lhs, const T *rhs) {
if (*lhs < *rhs) {
return -1;
} else if (*lhs > *rhs) {
return 1;
} else {
return 0;
}
}
/* ======================================================================= */
/* PLL */
/* ======================================================================= */
static const size_t kMinSamplesToStartPrime = 3;
static const size_t kMinSamplesToStopPrime = VideoFrameScheduler::kHistorySize;
static const size_t kMinSamplesToEstimatePeriod = 3;
static const size_t kMaxSamplesToEstimatePeriod = VideoFrameScheduler::kHistorySize;
static const size_t kPrecision = 12;
static const size_t kErrorThreshold = (1 << (kPrecision * 2)) / 10;
static const int64_t kMultiplesThresholdDiv = 4; // 25%
static const int64_t kReFitThresholdDiv = 100; // 1%
static const nsecs_t kMaxAllowedFrameSkip = kNanosIn1s; // 1 sec
static const nsecs_t kMinPeriod = kNanosIn1s / 120; // 120Hz
static const nsecs_t kRefitRefreshPeriod = 10 * kNanosIn1s; // 10 sec
VideoFrameScheduler::PLL::PLL()
: mPeriod(-1),
mPhase(0),
mPrimed(false),
mSamplesUsedForPriming(0),
mLastTime(-1),
mNumSamples(0) {
}
void VideoFrameScheduler::PLL::reset(float fps) {
//test();
mSamplesUsedForPriming = 0;
mLastTime = -1;
// set up or reset video PLL
if (fps <= 0.f) {
mPeriod = -1;
mPrimed = false;
} else {
ALOGV("reset at %.1f fps", fps);
mPeriod = (nsecs_t)(1e9 / fps + 0.5);
mPrimed = true;
}
restart();
}
// reset PLL but keep previous period estimate
void VideoFrameScheduler::PLL::restart() {
mNumSamples = 0;
mPhase = -1;
}
#if 0
void VideoFrameScheduler::PLL::test() {
nsecs_t period = kNanosIn1s / 60;
mTimes[0] = 0;
mTimes[1] = period;
mTimes[2] = period * 3;
mTimes[3] = period * 4;
mTimes[4] = period * 7;
mTimes[5] = period * 8;
mTimes[6] = period * 10;
mTimes[7] = period * 12;
mNumSamples = 8;
int64_t a, b, err;
fit(0, period * 12 / 7, 8, &a, &b, &err);
// a = 0.8(5)+
// b = -0.14097(2)+
// err = 0.2750578(703)+
ALOGD("a=%lld (%.6f), b=%lld (%.6f), err=%lld (%.6f)",
(long long)a, (a / (float)(1 << kPrecision)),
(long long)b, (b / (float)(1 << kPrecision)),
(long long)err, (err / (float)(1 << (kPrecision * 2))));
}
#endif
bool VideoFrameScheduler::PLL::fit(
nsecs_t phase, nsecs_t period, size_t numSamplesToUse,
int64_t *a, int64_t *b, int64_t *err) {
if (numSamplesToUse > mNumSamples) {
numSamplesToUse = mNumSamples;
}
int64_t sumX = 0;
int64_t sumXX = 0;
int64_t sumXY = 0;
int64_t sumYY = 0;
int64_t sumY = 0;
int64_t x = 0; // x usually is in [0..numSamplesToUse)
nsecs_t lastTime;
for (size_t i = 0; i < numSamplesToUse; i++) {
size_t ix = (mNumSamples - numSamplesToUse + i) % kHistorySize;
nsecs_t time = mTimes[ix];
if (i > 0) {
x += divRound(time - lastTime, period);
}
// y is usually in [-numSamplesToUse..numSamplesToUse+kRefitRefreshPeriod/kMinPeriod) << kPrecision
// ideally in [0..numSamplesToUse), but shifted by -numSamplesToUse during
// priming, and possibly shifted by up to kRefitRefreshPeriod/kMinPeriod
// while we are not refitting.
int64_t y = divRound(time - phase, period >> kPrecision);
sumX += x;
sumY += y;
sumXX += x * x;
sumXY += x * y;
sumYY += y * y;
lastTime = time;
}
int64_t div = numSamplesToUse * sumXX - sumX * sumX;
if (div == 0) {
return false;
}
int64_t a_nom = numSamplesToUse * sumXY - sumX * sumY;
int64_t b_nom = sumXX * sumY - sumX * sumXY;
*a = divRound(a_nom, div);
*b = divRound(b_nom, div);
// don't use a and b directly as the rounding error is significant
*err = sumYY - divRound(a_nom * sumXY + b_nom * sumY, div);
ALOGV("fitting[%zu] a=%lld (%.6f), b=%lld (%.6f), err=%lld (%.6f)",
numSamplesToUse,
(long long)*a, (*a / (float)(1 << kPrecision)),
(long long)*b, (*b / (float)(1 << kPrecision)),
(long long)*err, (*err / (float)(1 << (kPrecision * 2))));
return true;
}
void VideoFrameScheduler::PLL::prime(size_t numSamplesToUse) {
if (numSamplesToUse > mNumSamples) {
numSamplesToUse = mNumSamples;
}
CHECK(numSamplesToUse >= 3); // must have at least 3 samples
// estimate video framerate from deltas between timestamps, and
// 2nd order deltas
Vector<nsecs_t> deltas;
nsecs_t lastTime, firstTime;
for (size_t i = 0; i < numSamplesToUse; ++i) {
size_t index = (mNumSamples - numSamplesToUse + i) % kHistorySize;
nsecs_t time = mTimes[index];
if (i > 0) {
if (time - lastTime > kMinPeriod) {
//ALOGV("delta: %lld", (long long)(time - lastTime));
deltas.push(time - lastTime);
}
} else {
firstTime = time;
}
lastTime = time;
}
deltas.sort(compare<nsecs_t>);
size_t numDeltas = deltas.size();
if (numDeltas > 1) {
nsecs_t deltaMinLimit = max(deltas[0] / kMultiplesThresholdDiv, kMinPeriod);
nsecs_t deltaMaxLimit = deltas[numDeltas / 2] * kMultiplesThresholdDiv;
for (size_t i = numDeltas / 2 + 1; i < numDeltas; ++i) {
if (deltas[i] > deltaMaxLimit) {
deltas.resize(i);
numDeltas = i;
break;
}
}
for (size_t i = 1; i < numDeltas; ++i) {
nsecs_t delta2nd = deltas[i] - deltas[i - 1];
if (delta2nd >= deltaMinLimit) {
//ALOGV("delta2: %lld", (long long)(delta2nd));
deltas.push(delta2nd);
}
}
}
// use the one that yields the best match
int64_t bestScore;
for (size_t i = 0; i < deltas.size(); ++i) {
nsecs_t delta = deltas[i];
int64_t score = 0;
#if 1
// simplest score: number of deltas that are near multiples
size_t matches = 0;
for (size_t j = 0; j < deltas.size(); ++j) {
nsecs_t err = periodicError(deltas[j], delta);
if (err < delta / kMultiplesThresholdDiv) {
++matches;
}
}
score = matches;
#if 0
// could be weighed by the (1 - normalized error)
if (numSamplesToUse >= kMinSamplesToEstimatePeriod) {
int64_t a, b, err;
fit(firstTime, delta, numSamplesToUse, &a, &b, &err);
err = (1 << (2 * kPrecision)) - err;
score *= max(0, err);
}
#endif
#else
// or use the error as a negative score
if (numSamplesToUse >= kMinSamplesToEstimatePeriod) {
int64_t a, b, err;
fit(firstTime, delta, numSamplesToUse, &a, &b, &err);
score = -delta * err;
}
#endif
if (i == 0 || score > bestScore) {
bestScore = score;
mPeriod = delta;
mPhase = firstTime;
}
}
ALOGV("priming[%zu] phase:%lld period:%lld", numSamplesToUse, mPhase, mPeriod);
}
nsecs_t VideoFrameScheduler::PLL::addSample(nsecs_t time) {
if (mLastTime >= 0
// if time goes backward, or we skipped rendering
&& (time > mLastTime + kMaxAllowedFrameSkip || time < mLastTime)) {
restart();
}
mLastTime = time;
mTimes[mNumSamples % kHistorySize] = time;
++mNumSamples;
bool doFit = time > mRefitAt;
if ((mPeriod <= 0 || !mPrimed) && mNumSamples >= kMinSamplesToStartPrime) {
prime(kMinSamplesToStopPrime);
++mSamplesUsedForPriming;
doFit = true;
}
if (mPeriod > 0 && mNumSamples >= kMinSamplesToEstimatePeriod) {
if (mPhase < 0) {
// initialize phase to the current render time
mPhase = time;
doFit = true;
} else if (!doFit) {
int64_t err = periodicError(time - mPhase, mPeriod);
doFit = err > mPeriod / kReFitThresholdDiv;
}
if (doFit) {
int64_t a, b, err;
if (!fit(mPhase, mPeriod, kMaxSamplesToEstimatePeriod, &a, &b, &err)) {
// samples are not suitable for fitting. this means they are
// also not suitable for priming.
ALOGV("could not fit - keeping old period:%lld", (long long)mPeriod);
return mPeriod;
}
mRefitAt = time + kRefitRefreshPeriod;
mPhase += (mPeriod * b) >> kPrecision;
mPeriod = (mPeriod * a) >> kPrecision;
ALOGV("new phase:%lld period:%lld", (long long)mPhase, (long long)mPeriod);
if (err < kErrorThreshold) {
if (!mPrimed && mSamplesUsedForPriming >= kMinSamplesToStopPrime) {
mPrimed = true;
}
} else {
mPrimed = false;
mSamplesUsedForPriming = 0;
}
}
}
return mPeriod;
}
/* ======================================================================= */
/* Frame Scheduler */
/* ======================================================================= */
static const nsecs_t kDefaultVsyncPeriod = kNanosIn1s / 60; // 60Hz
static const nsecs_t kVsyncRefreshPeriod = kNanosIn1s; // 1 sec
VideoFrameScheduler::VideoFrameScheduler()
: mVsyncTime(0),
mVsyncPeriod(0),
mVsyncRefreshAt(0),
mLastVsyncTime(-1),
mTimeCorrection(0) {
}
void VideoFrameScheduler::updateVsync() {
mVsyncRefreshAt = systemTime(SYSTEM_TIME_MONOTONIC) + kVsyncRefreshPeriod;
mVsyncPeriod = 0;
mVsyncTime = 0;
// TODO: schedule frames for the destination surface
// For now, surface flinger only schedules frames on the primary display
if (mComposer == NULL) {
String16 name("SurfaceFlinger");
sp<IServiceManager> sm = defaultServiceManager();
mComposer = interface_cast<ISurfaceComposer>(sm->checkService(name));
}
if (mComposer != NULL) {
DisplayStatInfo stats;
status_t res = mComposer->getDisplayStats(NULL /* display */, &stats);
if (res == OK) {
ALOGV("vsync time:%lld period:%lld",
(long long)stats.vsyncTime, (long long)stats.vsyncPeriod);
mVsyncTime = stats.vsyncTime;
mVsyncPeriod = stats.vsyncPeriod;
} else {
ALOGW("getDisplayStats returned %d", res);
}
} else {
ALOGW("could not get surface mComposer service");
}
}
void VideoFrameScheduler::init(float videoFps) {
updateVsync();
mLastVsyncTime = -1;
mTimeCorrection = 0;
mPll.reset(videoFps);
}
void VideoFrameScheduler::restart() {
mLastVsyncTime = -1;
mTimeCorrection = 0;
mPll.restart();
}
nsecs_t VideoFrameScheduler::getVsyncPeriod() {
if (mVsyncPeriod > 0) {
return mVsyncPeriod;
}
return kDefaultVsyncPeriod;
}
nsecs_t VideoFrameScheduler::schedule(nsecs_t renderTime) {
nsecs_t origRenderTime = renderTime;
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
if (now >= mVsyncRefreshAt) {
updateVsync();
}
// without VSYNC info, there is nothing to do
if (mVsyncPeriod == 0) {
ALOGV("no vsync: render=%lld", (long long)renderTime);
return renderTime;
}
// ensure vsync time is well before (corrected) render time
if (mVsyncTime > renderTime - 4 * mVsyncPeriod) {
mVsyncTime -=
((mVsyncTime - renderTime) / mVsyncPeriod + 5) * mVsyncPeriod;
}
// Video presentation takes place at the VSYNC _after_ renderTime. Adjust renderTime
// so this effectively becomes a rounding operation (to the _closest_ VSYNC.)
renderTime -= mVsyncPeriod / 2;
const nsecs_t videoPeriod = mPll.addSample(origRenderTime);
if (videoPeriod > 0) {
// Smooth out rendering
size_t N = 12;
nsecs_t fiveSixthDev =
abs(((videoPeriod * 5 + mVsyncPeriod) % (mVsyncPeriod * 6)) - mVsyncPeriod)
/ (mVsyncPeriod / 100);
// use 20 samples if we are doing 5:6 ratio +- 1% (e.g. playing 50Hz on 60Hz)
if (fiveSixthDev < 12) { /* 12% / 6 = 2% */
N = 20;
}
nsecs_t offset = 0;
nsecs_t edgeRemainder = 0;
for (size_t i = 1; i <= N; i++) {
offset +=
(renderTime + mTimeCorrection + videoPeriod * i - mVsyncTime) % mVsyncPeriod;
edgeRemainder += (videoPeriod * i) % mVsyncPeriod;
}
mTimeCorrection += mVsyncPeriod / 2 - offset / N;
renderTime += mTimeCorrection;
nsecs_t correctionLimit = mVsyncPeriod * 3 / 5;
edgeRemainder = abs(edgeRemainder / N - mVsyncPeriod / 2);
if (edgeRemainder <= mVsyncPeriod / 3) {
correctionLimit /= 2;
}
// estimate how many VSYNCs a frame will spend on the display
nsecs_t nextVsyncTime =
renderTime + mVsyncPeriod - ((renderTime - mVsyncTime) % mVsyncPeriod);
if (mLastVsyncTime >= 0) {
size_t minVsyncsPerFrame = videoPeriod / mVsyncPeriod;
size_t vsyncsForLastFrame = divRound(nextVsyncTime - mLastVsyncTime, mVsyncPeriod);
bool vsyncsPerFrameAreNearlyConstant =
periodicError(videoPeriod, mVsyncPeriod) / (mVsyncPeriod / 20) == 0;
if (mTimeCorrection > correctionLimit &&
(vsyncsPerFrameAreNearlyConstant || vsyncsForLastFrame > minVsyncsPerFrame)) {
// remove a VSYNC
mTimeCorrection -= mVsyncPeriod / 2;
renderTime -= mVsyncPeriod / 2;
nextVsyncTime -= mVsyncPeriod;
--vsyncsForLastFrame;
} else if (mTimeCorrection < -correctionLimit &&
(vsyncsPerFrameAreNearlyConstant || vsyncsForLastFrame == minVsyncsPerFrame)) {
// add a VSYNC
mTimeCorrection += mVsyncPeriod / 2;
renderTime += mVsyncPeriod / 2;
nextVsyncTime += mVsyncPeriod;
++vsyncsForLastFrame;
}
ATRACE_INT("FRAME_VSYNCS", vsyncsForLastFrame);
}
mLastVsyncTime = nextVsyncTime;
}
// align rendertime to the center between VSYNC edges
renderTime -= (renderTime - mVsyncTime) % mVsyncPeriod;
renderTime += mVsyncPeriod / 2;
ALOGV("adjusting render: %lld => %lld", (long long)origRenderTime, (long long)renderTime);
ATRACE_INT("FRAME_FLIP_IN(ms)", (renderTime - now) / 1000000);
return renderTime;
}
void VideoFrameScheduler::release() {
mComposer.clear();
}
VideoFrameScheduler::~VideoFrameScheduler() {
release();
}
} // namespace android
|