summaryrefslogtreecommitdiffstats
path: root/media/libstagefright/codecs/aacdec/gen_rand_vector.cpp
blob: 08ccc4ace8d01bd9edaa86f0671ba9e6dbc398ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
/* ------------------------------------------------------------------
 * Copyright (C) 1998-2009 PacketVideo
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 * -------------------------------------------------------------------
 */
/*


------------------------------------------------------------------------------
 REVISION HISTORY

 Description:  Modified from original shareware code

 Description:  Modified to remove instances of pow() and sqrt(), and
 optimized for inclusion in fixed-point version of decoder.

 Description:  Modified to include comments/optimizations from code review.
 Also, declared appropriate variables as type "const"

 Description:  Adopted strategy of "one q-format per sfb" strategy, which
 eliminated the array q-format from this function.  The q-format the
 random vector is stored in is now returned from the function.

 Description:  Completely redesigned the routine to allow a simplified
        calculation of the adjusted noise, by eliminating the dependency
        on the band_length. Added polynomial approximation for the
        function 1/sqrt(power). Updated comments and pseudo-code

 Description:  Modified function description, pseudocode, etc.

 Description:
    Modified casting to ensure proper operations for different platforms

 Description:
    Eliminiated access to memory for noise seed. Now a local variable is
    used. Also unrolled loops to speed up code.

 Description:
    Modified pointer decrement to a pointer increment, to ensure proper
    compiler behavior

 Description:
------------------------------------------------------------------------------
 INPUT AND OUTPUT DEFINITIONS

 Inputs:    random_array[] = Array for storage of the power-scaled
                             random values of length "band_length"
            Int32

            band_length    = Length of random_array[]
            const Int

            pSeed          = seed for random number generator
            Int32*

            power_scale    = scale factor for this particular band
            const Int


 Local Stores/Buffers/Pointers Needed:
    None

 Global Stores/Buffers/Pointers Needed:
    None

 Outputs:   Function returns the q-format the random vector is stored in.

 Pointers and Buffers Modified:
            random_array[] = filled with random numbers scaled
            to the correct power as defined by the input value power_scale.

 Local Stores Modified:
    None

 Global Stores Modified:
    None

------------------------------------------------------------------------------
 FUNCTION DESCRIPTION

 This function generates a vector of uniformly distributed random numbers for
 the PNS block.  The random numbers are each scaled by a scale_factor,
 defined in Ref(2) as

 2^(scale_factor/4)
 ------------------
  sqrt(N*MEAN_NRG)

 where N == band_length, and MEAN_NRG is defined as...

         N-1
         ___
     1   \
    ---   >    x(i)^2
     N   /__
         i=0

 And x is the unscaled vector from the random number generator.

 This function takes advantage of the fact that the portion of the
 scale_factor that is divisible by 4 can be simply accounted for by varying
 the q-format.

 The scaling of the random numbers is thus broken into the
 equivalent equation below.

 2^(scale_factor%4)   2^(floor(scale_factor/4))
 ------------------ *
  sqrt(N*MEAN_NRG)


 2^(scale_factor%4) is stored in a simple 4-element table.
 2^(floor(scale_factor/4) is accounted for by adjusting the q-format.
 sqrt(N*MEAN_NRG) is calculated and implemented via a polynomial approximation.
------------------------------------------------------------------------------
 REQUIREMENTS

 This function shall produce uniformly distributed random 32-bit integers,
 with signed random values of average energy equal to the results of the ISO
 code's multiplying factor discussed in the FUNCTION DESCRIPTION section.

 Please see Ref (2) for a detailed description of the requirements.
------------------------------------------------------------------------------
 REFERENCES

 (1) Numerical Recipes in C     Second Edition
        William H. Press        Saul A. Teukolsky
        William T. Vetterling   Brian P. Flannery
        Page 284

 (2) ISO/IEC 14496-3:1999(E)
     Part 3
        Subpart 4.6.12 (Perceptual Noise Substitution)

 (3) MPEG-2 NBC Audio Decoder
   "This software module was originally developed by AT&T, Dolby
   Laboratories, Fraunhofer Gesellschaft IIS in the course of development
   of the MPEG-2 NBC/MPEG-4 Audio standard ISO/IEC 13818-7, 14496-1,2 and
   3. This software module is an implementation of a part of one or more
   MPEG-2 NBC/MPEG-4 Audio tools as specified by the MPEG-2 NBC/MPEG-4
   Audio standard. ISO/IEC  gives users of the MPEG-2 NBC/MPEG-4 Audio
   standards free license to this software module or modifications thereof
   for use in hardware or software products claiming conformance to the
   MPEG-2 NBC/MPEG-4 Audio  standards. Those intending to use this software
   module in hardware or software products are advised that this use may
   infringe existing patents. The original developer of this software
   module and his/her company, the subsequent editors and their companies,
   and ISO/IEC have no liability for use of this software module or
   modifications thereof in an implementation. Copyright is not released
   for non MPEG-2 NBC/MPEG-4 Audio conforming products.The original
   developer retains full right to use the code for his/her  own purpose,
   assign or donate the code to a third party and to inhibit third party
   from using the code for non MPEG-2 NBC/MPEG-4 Audio conforming products.
   This copyright notice must be included in all copies or derivative
   works."
   Copyright(c)1996.

------------------------------------------------------------------------------
 PSEUDO-CODE

    power_adj = scale_mod_4[power_scale & 3];

    power = 0;

    FOR (k=band_length; k > 0; k--)

        *(pSeed) = *(pSeed) * 1664525L;
        *(pSeed) = *(pSeed) + 1013904223L;

        temp = (Int)(*(pSeed) >> 16);

        power = power + ((temp*temp) >> 6);

        *(pArray) = (Int32)temp;

        pArray = pArray + 1;

    ENDFOR

    k = 0;
    q_adjust = 30;

    IF (power)
    THEN

        WHILE ( power > 32767)

            power = power >> 1;
            k = k + 1;

        ENDWHILE

        k = k - 13;

        IF (k < 0)
        THEN
            k = -k;
            IF ( k & 1 )
            THEN
                power_adj = (power_adj*SQRT_OF_2)>>14;
            ENDIF
            q_adjust = q_adjust - ( k >> 1);

        ELSE IF (k > 0)
        THEN
            IF ( k & 1  )
            THEN
                power_adj = (power_adj*INV_SQRT_OF_2)>>14;
            ENDIF
            q_adjust = q_adjust + ( k >> 1);
        ENDIF

        pInvSqrtCoeff = inv_sqrt_coeff;

        inv_sqrt_power  = (*(pInvSqrtCoeff)* power) >>15;

        pInvSqrtCoeff = pInvSqrtCoeff + 1;

        inv_sqrt_power = inv_sqrt_power + *(pInvSqrtCoeff);

        pInvSqrtCoeff = pInvSqrtCoeff + 1;

        FOR ( k=INV_SQRT_POLY_ORDER - 1; k>0; k--)

            inv_sqrt_power  =  ( inv_sqrt_power * power)>>15;

            inv_sqrt_power = inv_sqrt_power + *(pInvSqrtCoeff);

            pInvSqrtCoeff = pInvSqrtCoeff + 1;

        ENDFOR

        inv_sqrt_power = (inv_sqrt_power*power_adj)>>13;

        FOR (k=band_length; k > 0; k--)

            pArray = pArray - 1;

            *(pArray) = *(pArray)*inv_sqrt_power;

        ENDFOR

    ENDIF

    q_adjust = q_adjust - (power_scale >> 2);

    return q_adjust;

------------------------------------------------------------------------------
 RESOURCES USED
   When the code is written for a specific target processor
     the resources used should be documented below.

 STACK USAGE: [stack count for this module] + [variable to represent
          stack usage for each subroutine called]

     where: [stack usage variable] = stack usage for [subroutine
         name] (see [filename].ext)

 DATA MEMORY USED: x words

 PROGRAM MEMORY USED: x words

 CLOCK CYCLES: [cycle count equation for this module] + [variable
           used to represent cycle count for each subroutine
           called]

     where: [cycle count variable] = cycle count for [subroutine
        name] (see [filename].ext)

------------------------------------------------------------------------------
*/


/*----------------------------------------------------------------------------
; INCLUDES
----------------------------------------------------------------------------*/
#include    "pv_audio_type_defs.h"
#include    "gen_rand_vector.h"
#include    "window_block_fxp.h"

/*----------------------------------------------------------------------------
; MACROS
; Define module specific macros here
----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------
; DEFINES
; Include all pre-processor statements here. Include conditional
; compile variables also.
----------------------------------------------------------------------------*/
#define     SQRT_OF_2       23170       /*    sqrt(2) in Q14  */
#define     INV_SQRT_OF_2   11585       /*  1/sqrt(2) in Q14  */
#define     INV_SQRT_POLY_ORDER     4

/*----------------------------------------------------------------------------
; LOCAL FUNCTION DEFINITIONS
; Function Prototype declaration
----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------
; LOCAL STORE/BUFFER/POINTER DEFINITIONS
; Variable declaration - defined here and used outside this module
----------------------------------------------------------------------------*/



/*
 *  2^([0:3]/4) = 1.0000    1.1892    1.4142    1.6818
 */
const UInt scale_mod_4[4] = { 16384, 19484, 23170, 27554};

/*
 *  polynomial approx. in Q12 (type Int)
 */

const Int  inv_sqrt_coeff[INV_SQRT_POLY_ORDER+1] =
    { 4680, -17935, 27697, -22326, 11980};


/*----------------------------------------------------------------------------
; EXTERNAL FUNCTION REFERENCES
; Declare functions defined elsewhere and referenced in this module
----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------
; EXTERNAL GLOBAL STORE/BUFFER/POINTER REFERENCES
; Declare variables used in this module but defined elsewhere
----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------
; FUNCTION CODE
----------------------------------------------------------------------------*/

Int gen_rand_vector(
    Int32     random_array[],
    const Int band_length,
    Int32*   pSeed,
    const Int power_scale)
{

    Int      k;
    UInt     power_adj;
    Int      q_adjust = 30;

    Int32    temp;
    Int32    seed;
    Int32    power;

    Int32*   pArray = &random_array[0];

    Int32    inv_sqrt_power;
    const Int  *pInvSqrtCoeff;

    /*
     *  The out of the random number generator is scaled is such a way
     *  that is independent of the band length.
     *  The output is computed as:
     *
     *                  x(i)
     *  output = ------------------ * 2^(power_scale%4) 2^(floor(power_scale/4))
     *                   bl
     *           sqrt(  SUM x(i)^2 )
     *                   0
     *
     *  bl == band length
     */


    /*
     *  get 2^(power_scale%4)
     */


    power = 0;

    seed = *pSeed;

    /*
     *  band_length is always an even number (check tables in pg.66 IS0 14496-3)
     */
    if (band_length < 0 || band_length > LONG_WINDOW)
    {
        return  q_adjust;     /*  avoid any processing on error condition */
    }

    for (k = (band_length >> 1); k != 0; k--)
    {
        /*------------------------------------------------
           Numerical Recipes in C
                    Page 284
        ------------------------------------------------*/
        seed *= 1664525L;
        seed += 1013904223L;

        temp =  seed >> 16;

        seed *= 1664525L;
        seed += 1013904223L;

        /* shift by 6 make room for band length accumulation  */
        power  += ((temp * temp) >> 6);
        *pArray++ = temp;

        temp    = seed >> 16;
        power  += ((temp * temp) >> 6);
        *pArray++ = temp;

    } /* END for (k=half_band_length; k > 0; k--) */


    *pSeed = seed;

    /*
     *  If the distribution is uniform, the power is expected to use between
     *  28 and 27 bits, by shifting down by 13 bits the power will be a
     *  Q15 number.
     *  For different band lengths, the power uses between 20 and 29 bits
     */


    k = 0;

    if (power)
    {
        /*
         *    approximation requires power  between 0.5 < power < 1 in Q15.
         */

        while (power > 32767)
        {
            power >>= 1;
            k++;
        }

        /*
         *  expected power bit usage == 27 bits
         */

        k -= 13;

        power_adj = scale_mod_4[power_scale & 3];

        if (k < 0)
        {
            k = -k;
            if (k & 1)
            {                               /* multiply by sqrt(2)  */
                power_adj = (UInt)(((UInt32) power_adj * SQRT_OF_2) >> 14);
            }
            q_adjust -= (k >> 1);    /* adjust Q instead of shifting up */
        }
        else if (k > 0)
        {
            if (k & 1)
            {                               /* multiply by 1/sqrt(2)  */
                power_adj = (UInt)(((UInt32) power_adj * INV_SQRT_OF_2) >> 14);
            }
            q_adjust += (k >> 1);   /* adjust Q instead of shifting down */
        }

        /*
         *    Compute 1/sqrt(power), where 0.5 < power < 1.0 is approximated
         *    using a polynomial order INV_SQRT_POLY_ORDER
         */

        pInvSqrtCoeff = inv_sqrt_coeff;

        inv_sqrt_power  = (*(pInvSqrtCoeff++) * power) >> 15;
        inv_sqrt_power += *(pInvSqrtCoeff++);
        inv_sqrt_power  = (inv_sqrt_power * power) >> 15;
        inv_sqrt_power += *(pInvSqrtCoeff++);
        inv_sqrt_power  = (inv_sqrt_power * power) >> 15;
        inv_sqrt_power += *(pInvSqrtCoeff++);
        inv_sqrt_power  = (inv_sqrt_power * power) >> 15;
        inv_sqrt_power += *(pInvSqrtCoeff);

        inv_sqrt_power  = (inv_sqrt_power * power_adj) >> 13;

        pArray = &random_array[0];

        for (k = (band_length >> 1); k != 0; k--)
        {
            temp        = *(pArray) * inv_sqrt_power;
            *(pArray++) = temp;
            temp        = *(pArray) * inv_sqrt_power;
            *(pArray++) = temp;
        } /* END for (k=half_band_length; k > 0; k--) */

    }   /* if(power) */

    /*
     *      Adjust Q with the value corresponding to 2^(floor(power_scale/4))
     */

    q_adjust  -= (power_scale >> 2);

    return (q_adjust);

} /* gen_rand_vector */