summaryrefslogtreecommitdiffstats
path: root/services/audioflinger/AudioResamplerDyn.cpp
blob: 6481b85f0c53c8d0afe980a6c61c58cf4248bd95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "AudioResamplerDyn"
//#define LOG_NDEBUG 0

#include <malloc.h>
#include <string.h>
#include <stdlib.h>
#include <dlfcn.h>
#include <math.h>

#include <cutils/compiler.h>
#include <cutils/properties.h>
#include <utils/Debug.h>
#include <utils/Log.h>
#include <audio_utils/primitives.h>

#include "AudioResamplerFirOps.h" // USE_NEON and USE_INLINE_ASSEMBLY defined here
#include "AudioResamplerFirProcess.h"
#include "AudioResamplerFirProcessNeon.h"
#include "AudioResamplerFirGen.h" // requires math.h
#include "AudioResamplerDyn.h"

//#define DEBUG_RESAMPLER

namespace android {

/*
 * InBuffer is a type agnostic input buffer.
 *
 * Layout of the state buffer for halfNumCoefs=8.
 *
 * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
 *  S            I                                R
 *
 * S = mState
 * I = mImpulse
 * R = mRingFull
 * p = past samples, convoluted with the (p)ositive side of sinc()
 * n = future samples, convoluted with the (n)egative side of sinc()
 * r = extra space for implementing the ring buffer
 */

template<typename TC, typename TI, typename TO>
AudioResamplerDyn<TC, TI, TO>::InBuffer::InBuffer()
    : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateCount(0)
{
}

template<typename TC, typename TI, typename TO>
AudioResamplerDyn<TC, TI, TO>::InBuffer::~InBuffer()
{
    init();
}

template<typename TC, typename TI, typename TO>
void AudioResamplerDyn<TC, TI, TO>::InBuffer::init()
{
    free(mState);
    mState = NULL;
    mImpulse = NULL;
    mRingFull = NULL;
    mStateCount = 0;
}

// resizes the state buffer to accommodate the appropriate filter length
template<typename TC, typename TI, typename TO>
void AudioResamplerDyn<TC, TI, TO>::InBuffer::resize(int CHANNELS, int halfNumCoefs)
{
    // calculate desired state size
    size_t stateCount = halfNumCoefs * CHANNELS * 2 * kStateSizeMultipleOfFilterLength;

    // check if buffer needs resizing
    if (mState
            && stateCount == mStateCount
            && mRingFull-mState == (ssize_t) (mStateCount-halfNumCoefs*CHANNELS)) {
        return;
    }

    // create new buffer
    TI* state = NULL;
    (void)posix_memalign(reinterpret_cast<void**>(&state), 32, stateCount*sizeof(*state));
    memset(state, 0, stateCount*sizeof(*state));

    // attempt to preserve state
    if (mState) {
        TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
        TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
        TI* dst = state;

        if (srcLo < mState) {
            dst += mState-srcLo;
            srcLo = mState;
        }
        if (srcHi > mState + mStateCount) {
            srcHi = mState + mStateCount;
        }
        memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
        free(mState);
    }

    // set class member vars
    mState = state;
    mStateCount = stateCount;
    mImpulse = state + halfNumCoefs*CHANNELS; // actually one sample greater than needed
    mRingFull = state + mStateCount - halfNumCoefs*CHANNELS;
}

// copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
template<typename TC, typename TI, typename TO>
template<int CHANNELS>
void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAgain(TI*& impulse, const int halfNumCoefs,
        const TI* const in, const size_t inputIndex)
{
    TI* head = impulse + halfNumCoefs*CHANNELS;
    for (size_t i=0 ; i<CHANNELS ; i++) {
        head[i] = in[inputIndex*CHANNELS + i];
    }
}

// advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
template<typename TC, typename TI, typename TO>
template<int CHANNELS>
void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAdvance(TI*& impulse, const int halfNumCoefs,
        const TI* const in, const size_t inputIndex)
{
    impulse += CHANNELS;

    if (CC_UNLIKELY(impulse >= mRingFull)) {
        const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
        memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
        impulse -= shiftDown;
    }
    readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
}

template<typename TC, typename TI, typename TO>
void AudioResamplerDyn<TC, TI, TO>::Constants::set(
        int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
{
    int bits = 0;
    int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
            static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
    for (int i=lscale; i; ++bits, i>>=1)
        ;
    mL = L;
    mShift = kNumPhaseBits - bits;
    mHalfNumCoefs = halfNumCoefs;
}

template<typename TC, typename TI, typename TO>
AudioResamplerDyn<TC, TI, TO>::AudioResamplerDyn(
        int inChannelCount, int32_t sampleRate, src_quality quality)
    : AudioResampler(inChannelCount, sampleRate, quality),
      mResampleFunc(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY),
    mCoefBuffer(NULL)
{
    mVolumeSimd[0] = mVolumeSimd[1] = 0;
    // The AudioResampler base class assumes we are always ready for 1:1 resampling.
    // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for
    // setSampleRate() for 1:1. (May be removed if precalculated filters are used.)
    mInSampleRate = 0;
    mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
}

template<typename TC, typename TI, typename TO>
AudioResamplerDyn<TC, TI, TO>::~AudioResamplerDyn()
{
    free(mCoefBuffer);
}

template<typename TC, typename TI, typename TO>
void AudioResamplerDyn<TC, TI, TO>::init()
{
    mFilterSampleRate = 0; // always trigger new filter generation
    mInBuffer.init();
}

template<typename TC, typename TI, typename TO>
void AudioResamplerDyn<TC, TI, TO>::setVolume(float left, float right)
{
    AudioResampler::setVolume(left, right);
    if (is_same<TO, float>::value || is_same<TO, double>::value) {
        mVolumeSimd[0] = static_cast<TO>(left);
        mVolumeSimd[1] = static_cast<TO>(right);
    } else {  // integer requires scaling to U4_28 (rounding down)
        // integer volumes are clamped to 0 to UNITY_GAIN so there
        // are no issues with signed overflow.
        mVolumeSimd[0] = u4_28_from_float(clampFloatVol(left));
        mVolumeSimd[1] = u4_28_from_float(clampFloatVol(right));
    }
}

template<typename T> T max(T a, T b) {return a > b ? a : b;}

template<typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}

template<typename TC, typename TI, typename TO>
void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
        double stopBandAtten, int inSampleRate, int outSampleRate, double tbwCheat)
{
    TC* buf = NULL;
    static const double atten = 0.9998;   // to avoid ripple overflow
    double fcr;
    double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);

    (void)posix_memalign(reinterpret_cast<void**>(&buf), 32, (c.mL+1)*c.mHalfNumCoefs*sizeof(TC));
    if (inSampleRate < outSampleRate) { // upsample
        fcr = max(0.5*tbwCheat - tbw/2, tbw/2);
    } else { // downsample
        fcr = max(0.5*tbwCheat*outSampleRate/inSampleRate - tbw/2, tbw/2);
    }
    // create and set filter
    firKaiserGen(buf, c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten);
    c.mFirCoefs = buf;
    if (mCoefBuffer) {
        free(mCoefBuffer);
    }
    mCoefBuffer = buf;
#ifdef DEBUG_RESAMPLER
    // print basic filter stats
    printf("L:%d  hnc:%d  stopBandAtten:%lf  fcr:%lf  atten:%lf  tbw:%lf\n",
            c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten, tbw);
    // test the filter and report results
    double fp = (fcr - tbw/2)/c.mL;
    double fs = (fcr + tbw/2)/c.mL;
    double passMin, passMax, passRipple;
    double stopMax, stopRipple;
    testFir(buf, c.mL, c.mHalfNumCoefs, fp, fs, /*passSteps*/ 1000, /*stopSteps*/ 100000,
            passMin, passMax, passRipple, stopMax, stopRipple);
    printf("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple);
    printf("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple);
#endif
}

// recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop.
static int gcd(int n, int m)
{
    if (m == 0) {
        return n;
    }
    return gcd(m, n % m);
}

static bool isClose(int32_t newSampleRate, int32_t prevSampleRate,
        int32_t filterSampleRate, int32_t outSampleRate)
{

    // different upsampling ratios do not need a filter change.
    if (filterSampleRate != 0
            && filterSampleRate < outSampleRate
            && newSampleRate < outSampleRate)
        return true;

    // check design criteria again if downsampling is detected.
    int pdiff = absdiff(newSampleRate, prevSampleRate);
    int adiff = absdiff(newSampleRate, filterSampleRate);

    // allow up to 6% relative change increments.
    // allow up to 12% absolute change increments (from filter design)
    return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
}

template<typename TC, typename TI, typename TO>
void AudioResamplerDyn<TC, TI, TO>::setSampleRate(int32_t inSampleRate)
{
    if (mInSampleRate == inSampleRate) {
        return;
    }
    int32_t oldSampleRate = mInSampleRate;
    int32_t oldHalfNumCoefs = mConstants.mHalfNumCoefs;
    uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
    bool useS32 = false;

    mInSampleRate = inSampleRate;

    // TODO: Add precalculated Equiripple filters

    if (mFilterQuality != getQuality() ||
            !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) {
        mFilterSampleRate = inSampleRate;
        mFilterQuality = getQuality();

        // Begin Kaiser Filter computation
        //
        // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
        // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
        //
        // For s32 we keep the stop band attenuation at the same as 16b resolution, about
        // 96-98dB
        //

        double stopBandAtten;
        double tbwCheat = 1.; // how much we "cheat" into aliasing
        int halfLength;
        if (mFilterQuality == DYN_HIGH_QUALITY) {
            // 32b coefficients, 64 length
            useS32 = true;
            stopBandAtten = 98.;
            if (inSampleRate >= mSampleRate * 4) {
                halfLength = 48;
            } else if (inSampleRate >= mSampleRate * 2) {
                halfLength = 40;
            } else {
                halfLength = 32;
            }
        } else if (mFilterQuality == DYN_LOW_QUALITY) {
            // 16b coefficients, 16-32 length
            useS32 = false;
            stopBandAtten = 80.;
            if (inSampleRate >= mSampleRate * 4) {
                halfLength = 24;
            } else if (inSampleRate >= mSampleRate * 2) {
                halfLength = 16;
            } else {
                halfLength = 8;
            }
            if (inSampleRate <= mSampleRate) {
                tbwCheat = 1.05;
            } else {
                tbwCheat = 1.03;
            }
        } else { // DYN_MED_QUALITY
            // 16b coefficients, 32-64 length
            // note: > 64 length filters with 16b coefs can have quantization noise problems
            useS32 = false;
            stopBandAtten = 84.;
            if (inSampleRate >= mSampleRate * 4) {
                halfLength = 32;
            } else if (inSampleRate >= mSampleRate * 2) {
                halfLength = 24;
            } else {
                halfLength = 16;
            }
            if (inSampleRate <= mSampleRate) {
                tbwCheat = 1.03;
            } else {
                tbwCheat = 1.01;
            }
        }

        // determine the number of polyphases in the filterbank.
        // for 16b, it is desirable to have 2^(16/2) = 256 phases.
        // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
        //
        // We are a bit more lax on this.

        int phases = mSampleRate / gcd(mSampleRate, inSampleRate);

        // TODO: Once dynamic sample rate change is an option, the code below
        // should be modified to execute only when dynamic sample rate change is enabled.
        //
        // as above, #phases less than 63 is too few phases for accurate linear interpolation.
        // we increase the phases to compensate, but more phases means more memory per
        // filter and more time to compute the filter.
        //
        // if we know that the filter will be used for dynamic sample rate changes,
        // that would allow us skip this part for fixed sample rate resamplers.
        //
        while (phases<63) {
            phases *= 2; // this code only needed to support dynamic rate changes
        }

        if (phases>=256) {  // too many phases, always interpolate
            phases = 127;
        }

        // create the filter
        mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
        createKaiserFir(mConstants, stopBandAtten,
                inSampleRate, mSampleRate, tbwCheat);
    } // End Kaiser filter

    // update phase and state based on the new filter.
    const Constants& c(mConstants);
    mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
    const uint32_t phaseWrapLimit = c.mL << c.mShift;
    // try to preserve as much of the phase fraction as possible for on-the-fly changes
    mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
            * phaseWrapLimit / oldPhaseWrapLimit;
    mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
    mPhaseIncrement = static_cast<uint32_t>(static_cast<uint64_t>(phaseWrapLimit)
            * inSampleRate / mSampleRate);

    // determine which resampler to use
    // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
    int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
    if (locked) {
        mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
    }

    // stride is the minimum number of filter coefficients processed per loop iteration.
    // We currently only allow a stride of 16 to match with SIMD processing.
    // This means that the filter length must be a multiple of 16,
    // or half the filter length (mHalfNumCoefs) must be a multiple of 8.
    //
    // Note: A stride of 2 is achieved with non-SIMD processing.
    int stride = ((c.mHalfNumCoefs & 7) == 0) ? 16 : 2;
    LOG_ALWAYS_FATAL_IF(stride < 16, "Resampler stride must be 16 or more");
    LOG_ALWAYS_FATAL_IF(mChannelCount < 1 || mChannelCount > 8,
            "Resampler channels(%d) must be between 1 to 8", mChannelCount);
    // stride 16 (falls back to stride 2 for machines that do not support NEON)
    if (locked) {
        switch (mChannelCount) {
        case 1:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, true, 16>;
            break;
        case 2:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, true, 16>;
            break;
        case 3:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, true, 16>;
            break;
        case 4:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, true, 16>;
            break;
        case 5:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, true, 16>;
            break;
        case 6:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, true, 16>;
            break;
        case 7:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, true, 16>;
            break;
        case 8:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, true, 16>;
            break;
        }
    } else {
        switch (mChannelCount) {
        case 1:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, false, 16>;
            break;
        case 2:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, false, 16>;
            break;
        case 3:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, false, 16>;
            break;
        case 4:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, false, 16>;
            break;
        case 5:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, false, 16>;
            break;
        case 6:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, false, 16>;
            break;
        case 7:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, false, 16>;
            break;
        case 8:
            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, false, 16>;
            break;
        }
    }
#ifdef DEBUG_RESAMPLER
    printf("channels:%d  %s  stride:%d  %s  coef:%d  shift:%d\n",
            mChannelCount, locked ? "locked" : "interpolated",
            stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
#endif
}

template<typename TC, typename TI, typename TO>
size_t AudioResamplerDyn<TC, TI, TO>::resample(int32_t* out, size_t outFrameCount,
            AudioBufferProvider* provider)
{
    return (this->*mResampleFunc)(reinterpret_cast<TO*>(out), outFrameCount, provider);
}

template<typename TC, typename TI, typename TO>
template<int CHANNELS, bool LOCKED, int STRIDE>
size_t AudioResamplerDyn<TC, TI, TO>::resample(TO* out, size_t outFrameCount,
        AudioBufferProvider* provider)
{
    // TODO Mono -> Mono is not supported. OUTPUT_CHANNELS reflects minimum of stereo out.
    const int OUTPUT_CHANNELS = (CHANNELS < 2) ? 2 : CHANNELS;
    const Constants& c(mConstants);
    const TC* const coefs = mConstants.mFirCoefs;
    TI* impulse = mInBuffer.getImpulse();
    size_t inputIndex = 0;
    uint32_t phaseFraction = mPhaseFraction;
    const uint32_t phaseIncrement = mPhaseIncrement;
    size_t outputIndex = 0;
    size_t outputSampleCount = outFrameCount * OUTPUT_CHANNELS;
    const uint32_t phaseWrapLimit = c.mL << c.mShift;
    size_t inFrameCount = (phaseIncrement * (uint64_t)outFrameCount + phaseFraction)
            / phaseWrapLimit;
    // sanity check that inFrameCount is in signed 32 bit integer range.
    ALOG_ASSERT(0 <= inFrameCount && inFrameCount < (1U << 31));

    //ALOGV("inFrameCount:%d  outFrameCount:%d"
    //        "  phaseIncrement:%u  phaseFraction:%u  phaseWrapLimit:%u",
    //        inFrameCount, outFrameCount, phaseIncrement, phaseFraction, phaseWrapLimit);

    // NOTE: be very careful when modifying the code here. register
    // pressure is very high and a small change might cause the compiler
    // to generate far less efficient code.
    // Always sanity check the result with objdump or test-resample.

    // the following logic is a bit convoluted to keep the main processing loop
    // as tight as possible with register allocation.
    while (outputIndex < outputSampleCount) {
        //ALOGV("LOOP: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
        //        "  phaseFraction:%u  phaseWrapLimit:%u",
        //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);

        // check inputIndex overflow
        ALOG_ASSERT(inputIndex <= mBuffer.frameCount, "inputIndex%d > frameCount%d",
                inputIndex, mBuffer.frameCount);
        // Buffer is empty, fetch a new one if necessary (inFrameCount > 0).
        // We may not fetch a new buffer if the existing data is sufficient.
        while (mBuffer.frameCount == 0 && inFrameCount > 0) {
            mBuffer.frameCount = inFrameCount;
            provider->getNextBuffer(&mBuffer,
                    calculateOutputPTS(outputIndex / OUTPUT_CHANNELS));
            if (mBuffer.raw == NULL) {
                goto resample_exit;
            }
            inFrameCount -= mBuffer.frameCount;
            if (phaseFraction >= phaseWrapLimit) { // read in data
                mInBuffer.template readAdvance<CHANNELS>(
                        impulse, c.mHalfNumCoefs,
                        reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
                inputIndex++;
                phaseFraction -= phaseWrapLimit;
                while (phaseFraction >= phaseWrapLimit) {
                    if (inputIndex >= mBuffer.frameCount) {
                        inputIndex = 0;
                        provider->releaseBuffer(&mBuffer);
                        break;
                    }
                    mInBuffer.template readAdvance<CHANNELS>(
                            impulse, c.mHalfNumCoefs,
                            reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
                    inputIndex++;
                    phaseFraction -= phaseWrapLimit;
                }
            }
        }
        const TI* const in = reinterpret_cast<const TI*>(mBuffer.raw);
        const size_t frameCount = mBuffer.frameCount;
        const int coefShift = c.mShift;
        const int halfNumCoefs = c.mHalfNumCoefs;
        const TO* const volumeSimd = mVolumeSimd;

        // main processing loop
        while (CC_LIKELY(outputIndex < outputSampleCount)) {
            // caution: fir() is inlined and may be large.
            // output will be loaded with the appropriate values
            //
            // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
            // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
            //
            //ALOGV("LOOP2: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
            //        "  phaseFraction:%u  phaseWrapLimit:%u",
            //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
            ALOG_ASSERT(phaseFraction < phaseWrapLimit);
            fir<CHANNELS, LOCKED, STRIDE>(
                    &out[outputIndex],
                    phaseFraction, phaseWrapLimit,
                    coefShift, halfNumCoefs, coefs,
                    impulse, volumeSimd);

            outputIndex += OUTPUT_CHANNELS;

            phaseFraction += phaseIncrement;
            while (phaseFraction >= phaseWrapLimit) {
                if (inputIndex >= frameCount) {
                    goto done;  // need a new buffer
                }
                mInBuffer.template readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
                inputIndex++;
                phaseFraction -= phaseWrapLimit;
            }
        }
done:
        // We arrive here when we're finished or when the input buffer runs out.
        // Regardless we need to release the input buffer if we've acquired it.
        if (inputIndex > 0) {  // we've acquired a buffer (alternatively could check frameCount)
            ALOG_ASSERT(inputIndex == frameCount, "inputIndex(%d) != frameCount(%d)",
                    inputIndex, frameCount);  // must have been fully read.
            inputIndex = 0;
            provider->releaseBuffer(&mBuffer);
            ALOG_ASSERT(mBuffer.frameCount == 0);
        }
    }

resample_exit:
    // inputIndex must be zero in all three cases:
    // (1) the buffer never was been acquired; (2) the buffer was
    // released at "done:"; or (3) getNextBuffer() failed.
    ALOG_ASSERT(inputIndex == 0, "Releasing: inputindex:%d frameCount:%d  phaseFraction:%u",
            inputIndex, mBuffer.frameCount, phaseFraction);
    ALOG_ASSERT(mBuffer.frameCount == 0); // there must be no frames in the buffer
    mInBuffer.setImpulse(impulse);
    mPhaseFraction = phaseFraction;
    return outputIndex / OUTPUT_CHANNELS;
}

/* instantiate templates used by AudioResampler::create */
template class AudioResamplerDyn<float, float, float>;
template class AudioResamplerDyn<int16_t, int16_t, int32_t>;
template class AudioResamplerDyn<int32_t, int16_t, int32_t>;

// ----------------------------------------------------------------------------
} // namespace android