1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
|
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_AUDIO_RESAMPLER_FIR_GEN_H
#define ANDROID_AUDIO_RESAMPLER_FIR_GEN_H
#include "utils/Compat.h"
namespace android {
/*
* generates a sine wave at equal steps.
*
* As most of our functions use sine or cosine at equal steps,
* it is very efficient to compute them that way (single multiply and subtract),
* rather than invoking the math library sin() or cos() each time.
*
* SineGen uses Goertzel's Algorithm (as a generator not a filter)
* to calculate sine(wstart + n * wstep) or cosine(wstart + n * wstep)
* by stepping through 0, 1, ... n.
*
* e^i(wstart+wstep) = 2cos(wstep) * e^i(wstart) - e^i(wstart-wstep)
*
* or looking at just the imaginary sine term, as the cosine follows identically:
*
* sin(wstart+wstep) = 2cos(wstep) * sin(wstart) - sin(wstart-wstep)
*
* Goertzel's algorithm is more efficient than the angle addition formula,
* e^i(wstart+wstep) = e^i(wstart) * e^i(wstep), which takes up to
* 4 multiplies and 2 adds (or 3* and 3+) and requires both sine and
* cosine generation due to the complex * complex multiply (full rotation).
*
* See: http://en.wikipedia.org/wiki/Goertzel_algorithm
*
*/
class SineGen {
public:
SineGen(double wstart, double wstep, bool cosine = false) {
if (cosine) {
mCurrent = cos(wstart);
mPrevious = cos(wstart - wstep);
} else {
mCurrent = sin(wstart);
mPrevious = sin(wstart - wstep);
}
mTwoCos = 2.*cos(wstep);
}
SineGen(double expNow, double expPrev, double twoCosStep) {
mCurrent = expNow;
mPrevious = expPrev;
mTwoCos = twoCosStep;
}
inline double value() const {
return mCurrent;
}
inline void advance() {
double tmp = mCurrent;
mCurrent = mCurrent*mTwoCos - mPrevious;
mPrevious = tmp;
}
inline double valueAdvance() {
double tmp = mCurrent;
mCurrent = mCurrent*mTwoCos - mPrevious;
mPrevious = tmp;
return tmp;
}
private:
double mCurrent; // current value of sine/cosine
double mPrevious; // previous value of sine/cosine
double mTwoCos; // stepping factor
};
/*
* generates a series of sine generators, phase offset by fixed steps.
*
* This is used to generate polyphase sine generators, one per polyphase
* in the filter code below.
*
* The SineGen returned by value() starts at innerStart = outerStart + n*outerStep;
* increments by innerStep.
*
*/
class SineGenGen {
public:
SineGenGen(double outerStart, double outerStep, double innerStep, bool cosine = false)
: mSineInnerCur(outerStart, outerStep, cosine),
mSineInnerPrev(outerStart-innerStep, outerStep, cosine)
{
mTwoCos = 2.*cos(innerStep);
}
inline SineGen value() {
return SineGen(mSineInnerCur.value(), mSineInnerPrev.value(), mTwoCos);
}
inline void advance() {
mSineInnerCur.advance();
mSineInnerPrev.advance();
}
inline SineGen valueAdvance() {
return SineGen(mSineInnerCur.valueAdvance(), mSineInnerPrev.valueAdvance(), mTwoCos);
}
private:
SineGen mSineInnerCur; // generate the inner sine values (stepped by outerStep).
SineGen mSineInnerPrev; // generate the inner sine previous values
// (behind by innerStep, stepped by outerStep).
double mTwoCos; // the inner stepping factor for the returned SineGen.
};
static inline double sqr(double x) {
return x * x;
}
/*
* rounds a double to the nearest integer for FIR coefficients.
*
* One variant uses noise shaping, which must keep error history
* to work (the err parameter, initialized to 0).
* The other variant is a non-noise shaped version for
* S32 coefficients (noise shaping doesn't gain much).
*
* Caution: No bounds saturation is applied, but isn't needed in this case.
*
* @param x is the value to round.
*
* @param maxval is the maximum integer scale factor expressed as an int64 (for headroom).
* Typically this may be the maximum positive integer+1 (using the fact that double precision
* FIR coefficients generated here are never that close to 1.0 to pose an overflow condition).
*
* @param err is the previous error (actual - rounded) for the previous rounding op.
* For 16b coefficients this can improve stopband dB performance by up to 2dB.
*
* Many variants exist for the noise shaping: http://en.wikipedia.org/wiki/Noise_shaping
*
*/
static inline int64_t toint(double x, int64_t maxval, double& err) {
double val = x * maxval;
double ival = floor(val + 0.5 + err*0.2);
err = val - ival;
return static_cast<int64_t>(ival);
}
static inline int64_t toint(double x, int64_t maxval) {
return static_cast<int64_t>(floor(x * maxval + 0.5));
}
/*
* Modified Bessel function of the first kind
* http://en.wikipedia.org/wiki/Bessel_function
*
* The formulas are taken from Abramowitz and Stegun,
* _Handbook of Mathematical Functions_ (links below):
*
* http://people.math.sfu.ca/~cbm/aands/page_375.htm
* http://people.math.sfu.ca/~cbm/aands/page_378.htm
*
* http://dlmf.nist.gov/10.25
* http://dlmf.nist.gov/10.40
*
* Note we assume x is nonnegative (the function is symmetric,
* pass in the absolute value as needed).
*
* Constants are compile time derived with templates I0Term<> and
* I0ATerm<> to the precision of the compiler. The series can be expanded
* to any precision needed, but currently set around 24b precision.
*
* We use a bit of template math here, constexpr would probably be
* more appropriate for a C++11 compiler.
*
* For the intermediate range 3.75 < x < 15, we use minimax polynomial fit.
*
*/
template <int N>
struct I0Term {
static const CONSTEXPR double value = I0Term<N-1>::value / (4. * N * N);
};
template <>
struct I0Term<0> {
static const CONSTEXPR double value = 1.;
};
template <int N>
struct I0ATerm {
static const CONSTEXPR double value = I0ATerm<N-1>::value * (2.*N-1.) * (2.*N-1.) / (8. * N);
};
template <>
struct I0ATerm<0> { // 1/sqrt(2*PI);
static const CONSTEXPR double value = 0.398942280401432677939946059934381868475858631164934657665925;
};
#if USE_HORNERS_METHOD
/* Polynomial evaluation of A + Bx + Cx^2 + Dx^3 + ...
* using Horner's Method: http://en.wikipedia.org/wiki/Horner's_method
*
* This has fewer multiplications than Estrin's method below, but has back to back
* floating point dependencies.
*
* On ARM this appears to work slower, so USE_HORNERS_METHOD is not default enabled.
*/
inline double Poly2(double A, double B, double x) {
return A + x * B;
}
inline double Poly4(double A, double B, double C, double D, double x) {
return A + x * (B + x * (C + x * (D)));
}
inline double Poly7(double A, double B, double C, double D, double E, double F, double G,
double x) {
return A + x * (B + x * (C + x * (D + x * (E + x * (F + x * (G))))));
}
inline double Poly9(double A, double B, double C, double D, double E, double F, double G,
double H, double I, double x) {
return A + x * (B + x * (C + x * (D + x * (E + x * (F + x * (G + x * (H + x * (I))))))));
}
#else
/* Polynomial evaluation of A + Bx + Cx^2 + Dx^3 + ...
* using Estrin's Method: http://en.wikipedia.org/wiki/Estrin's_scheme
*
* This is typically faster, perhaps gains about 5-10% overall on ARM processors
* over Horner's method above.
*/
inline double Poly2(double A, double B, double x) {
return A + B * x;
}
inline double Poly3(double A, double B, double C, double x, double x2) {
return Poly2(A, B, x) + C * x2;
}
inline double Poly3(double A, double B, double C, double x) {
return Poly2(A, B, x) + C * x * x;
}
inline double Poly4(double A, double B, double C, double D, double x, double x2) {
return Poly2(A, B, x) + Poly2(C, D, x) * x2; // same as poly2(poly2, poly2, x2);
}
inline double Poly4(double A, double B, double C, double D, double x) {
return Poly4(A, B, C, D, x, x * x);
}
inline double Poly7(double A, double B, double C, double D, double E, double F, double G,
double x) {
double x2 = x * x;
return Poly4(A, B, C, D, x, x2) + Poly3(E, F, G, x, x2) * (x2 * x2);
}
inline double Poly8(double A, double B, double C, double D, double E, double F, double G,
double H, double x, double x2, double x4) {
return Poly4(A, B, C, D, x, x2) + Poly4(E, F, G, H, x, x2) * x4;
}
inline double Poly9(double A, double B, double C, double D, double E, double F, double G,
double H, double I, double x) {
double x2 = x * x;
#if 1
// It does not seem faster to explicitly decompose Poly8 into Poly4, but
// could depend on compiler floating point scheduling.
double x4 = x2 * x2;
return Poly8(A, B, C, D, E, F, G, H, x, x2, x4) + I * (x4 * x4);
#else
double val = Poly4(A, B, C, D, x, x2);
double x4 = x2 * x2;
return val + Poly4(E, F, G, H, x, x2) * x4 + I * (x4 * x4);
#endif
}
#endif
static inline double I0(double x) {
if (x < 3.75) {
x *= x;
return Poly7(I0Term<0>::value, I0Term<1>::value,
I0Term<2>::value, I0Term<3>::value,
I0Term<4>::value, I0Term<5>::value,
I0Term<6>::value, x); // e < 1.6e-7
}
if (1) {
/*
* Series expansion coefs are easy to calculate, but are expanded around 0,
* so error is unequal over the interval 0 < x < 3.75, the error being
* significantly better near 0.
*
* A better solution is to use precise minimax polynomial fits.
*
* We use a slightly more complicated solution for 3.75 < x < 15, based on
* the tables in Blair and Edwards, "Stable Rational Minimax Approximations
* to the Modified Bessel Functions I0(x) and I1(x)", Chalk Hill Nuclear Laboratory,
* AECL-4928.
*
* http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/06/178/6178667.pdf
*
* See Table 11 for 0 < x < 15; e < 10^(-7.13).
*
* Note: Beta cannot exceed 15 (hence Stopband cannot exceed 144dB = 24b).
*
* This speeds up overall computation by about 40% over using the else clause below,
* which requires sqrt and exp.
*
*/
x *= x;
double num = Poly9(-0.13544938430e9, -0.33153754512e8,
-0.19406631946e7, -0.48058318783e5,
-0.63269783360e3, -0.49520779070e1,
-0.24970910370e-1, -0.74741159550e-4,
-0.18257612460e-6, x);
double y = x - 225.; // reflection around 15 (squared)
double den = Poly4(-0.34598737196e8, 0.23852643181e6,
-0.70699387620e3, 0.10000000000e1, y);
return num / den;
#if IO_EXTENDED_BETA
/* Table 42 for x > 15; e < 10^(-8.11).
* This is used for Beta>15, but is disabled here as
* we never use Beta that high.
*
* NOTE: This should be enabled only for x > 15.
*/
double y = 1./x;
double z = y - (1./15);
double num = Poly2(0.415079861746e1, -0.5149092496e1, z);
double den = Poly3(0.103150763823e2, -0.14181687413e2,
0.1000000000e1, z);
return exp(x) * sqrt(y) * num / den;
#endif
} else {
/*
* NOT USED, but reference for large Beta.
*
* Abramowitz and Stegun asymptotic formula.
* works for x > 3.75.
*/
double y = 1./x;
return exp(x) * sqrt(y) *
// note: reciprocal squareroot may be easier!
// http://en.wikipedia.org/wiki/Fast_inverse_square_root
Poly9(I0ATerm<0>::value, I0ATerm<1>::value,
I0ATerm<2>::value, I0ATerm<3>::value,
I0ATerm<4>::value, I0ATerm<5>::value,
I0ATerm<6>::value, I0ATerm<7>::value,
I0ATerm<8>::value, y); // (... e) < 1.9e-7
}
}
/* A speed optimized version of the Modified Bessel I0() which incorporates
* the sqrt and numerator multiply and denominator divide into the computation.
* This speeds up filter computation by about 10-15%.
*/
static inline double I0SqrRat(double x2, double num, double den) {
if (x2 < (3.75 * 3.75)) {
return Poly7(I0Term<0>::value, I0Term<1>::value,
I0Term<2>::value, I0Term<3>::value,
I0Term<4>::value, I0Term<5>::value,
I0Term<6>::value, x2) * num / den; // e < 1.6e-7
}
num *= Poly9(-0.13544938430e9, -0.33153754512e8,
-0.19406631946e7, -0.48058318783e5,
-0.63269783360e3, -0.49520779070e1,
-0.24970910370e-1, -0.74741159550e-4,
-0.18257612460e-6, x2); // e < 10^(-7.13).
double y = x2 - 225.; // reflection around 15 (squared)
den *= Poly4(-0.34598737196e8, 0.23852643181e6,
-0.70699387620e3, 0.10000000000e1, y);
return num / den;
}
/*
* calculates the transition bandwidth for a Kaiser filter
*
* Formula 3.2.8, Vaidyanathan, _Multirate Systems and Filter Banks_, p. 48
* Formula 7.76, Oppenheim and Schafer, _Discrete-time Signal Processing, 3e_, p. 542
*
* @param halfNumCoef is half the number of coefficients per filter phase.
*
* @param stopBandAtten is the stop band attenuation desired.
*
* @return the transition bandwidth in normalized frequency (0 <= f <= 0.5)
*/
static inline double firKaiserTbw(int halfNumCoef, double stopBandAtten) {
return (stopBandAtten - 7.95)/((2.*14.36)*halfNumCoef);
}
/*
* calculates the fir transfer response of the overall polyphase filter at w.
*
* Calculates the DTFT transfer coefficient H(w) for 0 <= w <= PI, utilizing the
* fact that h[n] is symmetric (cosines only, no complex arithmetic).
*
* We use Goertzel's algorithm to accelerate the computation to essentially
* a single multiply and 2 adds per filter coefficient h[].
*
* Be careful be careful to consider that h[n] is the overall polyphase filter,
* with L phases, so rescaling H(w)/L is probably what you expect for "unity gain",
* as you only use one of the polyphases at a time.
*/
template <typename T>
static inline double firTransfer(const T* coef, int L, int halfNumCoef, double w) {
double accum = static_cast<double>(coef[0])*0.5; // "center coefficient" from first bank
coef += halfNumCoef; // skip first filterbank (picked up by the last filterbank).
#if SLOW_FIRTRANSFER
/* Original code for reference. This is equivalent to the code below, but slower. */
for (int i=1 ; i<=L ; ++i) {
for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) {
accum += cos(ix*w)*static_cast<double>(*coef++);
}
}
#else
/*
* Our overall filter is stored striped by polyphases, not a contiguous h[n].
* We could fetch coefficients in a non-contiguous fashion
* but that will not scale to vector processing.
*
* We apply Goertzel's algorithm directly to each polyphase filter bank instead of
* using cosine generation/multiplication, thereby saving one multiply per inner loop.
*
* See: http://en.wikipedia.org/wiki/Goertzel_algorithm
* Also: Oppenheim and Schafer, _Discrete Time Signal Processing, 3e_, p. 720.
*
* We use the basic recursion to incorporate the cosine steps into real sequence x[n]:
* s[n] = x[n] + (2cosw)*s[n-1] + s[n-2]
*
* y[n] = s[n] - e^(iw)s[n-1]
* = sum_{k=-\infty}^{n} x[k]e^(-iw(n-k))
* = e^(-iwn) sum_{k=0}^{n} x[k]e^(iwk)
*
* The summation contains the frequency steps we want multiplied by the source
* (similar to a DTFT).
*
* Using symmetry, and just the real part (be careful, this must happen
* after any internal complex multiplications), the polyphase filterbank
* transfer function is:
*
* Hpp[n, w, w_0] = sum_{k=0}^{n} x[k] * cos(wk + w_0)
* = Re{ e^(iwn + iw_0) y[n]}
* = cos(wn+w_0) * s[n] - cos(w(n+1)+w_0) * s[n-1]
*
* using the fact that s[n] of real x[n] is real.
*
*/
double dcos = 2. * cos(L*w);
int start = ((halfNumCoef)*L + 1);
SineGen cc((start - L) * w, w, true); // cosine
SineGen cp(start * w, w, true); // cosine
for (int i=1 ; i<=L ; ++i) {
double sc = 0;
double sp = 0;
for (int j=0 ; j<halfNumCoef ; ++j) {
double tmp = sc;
sc = static_cast<double>(*coef++) + dcos*sc - sp;
sp = tmp;
}
// If we are awfully clever, we can apply Goertzel's algorithm
// again on the sc and sp sequences returned here.
accum += cc.valueAdvance() * sc - cp.valueAdvance() * sp;
}
#endif
return accum*2.;
}
/*
* evaluates the minimum and maximum |H(f)| bound in a band region.
*
* This is usually done with equally spaced increments in the target band in question.
* The passband is often very small, and sampled that way. The stopband is often much
* larger.
*
* We use the fact that the overall polyphase filter has an additional bank at the end
* for interpolation; hence it is overspecified for the H(f) computation. Thus the
* first polyphase is never actually checked, excepting its first term.
*
* In this code we use the firTransfer() evaluator above, which uses Goertzel's
* algorithm to calculate the transfer function at each point.
*
* TODO: An alternative with equal spacing is the FFT/DFT. An alternative with unequal
* spacing is a chirp transform.
*
* @param coef is the designed polyphase filter banks
*
* @param L is the number of phases (for interpolation)
*
* @param halfNumCoef should be half the number of coefficients for a single
* polyphase.
*
* @param fstart is the normalized frequency start.
*
* @param fend is the normalized frequency end.
*
* @param steps is the number of steps to take (sampling) between frequency start and end
*
* @param firMin returns the minimum transfer |H(f)| found
*
* @param firMax returns the maximum transfer |H(f)| found
*
* 0 <= f <= 0.5.
* This is used to test passband and stopband performance.
*/
template <typename T>
static void testFir(const T* coef, int L, int halfNumCoef,
double fstart, double fend, int steps, double &firMin, double &firMax) {
double wstart = fstart*(2.*M_PI);
double wend = fend*(2.*M_PI);
double wstep = (wend - wstart)/steps;
double fmax, fmin;
double trf = firTransfer(coef, L, halfNumCoef, wstart);
if (trf<0) {
trf = -trf;
}
fmin = fmax = trf;
wstart += wstep;
for (int i=1; i<steps; ++i) {
trf = firTransfer(coef, L, halfNumCoef, wstart);
if (trf<0) {
trf = -trf;
}
if (trf>fmax) {
fmax = trf;
}
else if (trf<fmin) {
fmin = trf;
}
wstart += wstep;
}
// renormalize - this is only needed for integer filter types
double norm = 1./((1ULL<<(sizeof(T)*8-1))*L);
firMin = fmin * norm;
firMax = fmax * norm;
}
/*
* evaluates the |H(f)| lowpass band characteristics.
*
* This function tests the lowpass characteristics for the overall polyphase filter,
* and is used to verify the design. For this case, fp should be set to the
* passband normalized frequency from 0 to 0.5 for the overall filter (thus it
* is the designed polyphase bank value / L). Likewise for fs.
*
* @param coef is the designed polyphase filter banks
*
* @param L is the number of phases (for interpolation)
*
* @param halfNumCoef should be half the number of coefficients for a single
* polyphase.
*
* @param fp is the passband normalized frequency, 0 < fp < fs < 0.5.
*
* @param fs is the stopband normalized frequency, 0 < fp < fs < 0.5.
*
* @param passSteps is the number of passband sampling steps.
*
* @param stopSteps is the number of stopband sampling steps.
*
* @param passMin is the minimum value in the passband
*
* @param passMax is the maximum value in the passband (useful for scaling). This should
* be less than 1., to avoid sine wave test overflow.
*
* @param passRipple is the passband ripple. Typically this should be less than 0.1 for
* an audio filter. Generally speaker/headphone device characteristics will dominate
* the passband term.
*
* @param stopMax is the maximum value in the stopband.
*
* @param stopRipple is the stopband ripple, also known as stopband attenuation.
* Typically this should be greater than ~80dB for low quality, and greater than
* ~100dB for full 16b quality, otherwise aliasing may become noticeable.
*
*/
template <typename T>
static void testFir(const T* coef, int L, int halfNumCoef,
double fp, double fs, int passSteps, int stopSteps,
double &passMin, double &passMax, double &passRipple,
double &stopMax, double &stopRipple) {
double fmin, fmax;
testFir(coef, L, halfNumCoef, 0., fp, passSteps, fmin, fmax);
double d1 = (fmax - fmin)/2.;
passMin = fmin;
passMax = fmax;
passRipple = -20.*log10(1. - d1); // passband ripple
testFir(coef, L, halfNumCoef, fs, 0.5, stopSteps, fmin, fmax);
// fmin is really not important for the stopband.
stopMax = fmax;
stopRipple = -20.*log10(fmax); // stopband ripple/attenuation
}
/*
* Calculates the overall polyphase filter based on a windowed sinc function.
*
* The windowed sinc is an odd length symmetric filter of exactly L*halfNumCoef*2+1
* taps for the entire kernel. This is then decomposed into L+1 polyphase filterbanks.
* The last filterbank is used for interpolation purposes (and is mostly composed
* of the first bank shifted by one sample), and is unnecessary if one does
* not do interpolation.
*
* We use the last filterbank for some transfer function calculation purposes,
* so it needs to be generated anyways.
*
* @param coef is the caller allocated space for coefficients. This should be
* exactly (L+1)*halfNumCoef in size.
*
* @param L is the number of phases (for interpolation)
*
* @param halfNumCoef should be half the number of coefficients for a single
* polyphase.
*
* @param stopBandAtten is the stopband value, should be >50dB.
*
* @param fcr is cutoff frequency/sampling rate (<0.5). At this point, the energy
* should be 6dB less. (fcr is where the amplitude drops by half). Use the
* firKaiserTbw() to calculate the transition bandwidth. fcr is the midpoint
* between the stop band and the pass band (fstop+fpass)/2.
*
* @param atten is the attenuation (generally slightly less than 1).
*/
template <typename T>
static inline void firKaiserGen(T* coef, int L, int halfNumCoef,
double stopBandAtten, double fcr, double atten) {
//
// Formula 3.2.5, 3.2.7, Vaidyanathan, _Multirate Systems and Filter Banks_, p. 48
// Formula 7.75, Oppenheim and Schafer, _Discrete-time Signal Processing, 3e_, p. 542
//
// See also: http://melodi.ee.washington.edu/courses/ee518/notes/lec17.pdf
//
// Kaiser window and beta parameter
//
// | 0.1102*(A - 8.7) A > 50
// beta = | 0.5842*(A - 21)^0.4 + 0.07886*(A - 21) 21 <= A <= 50
// | 0. A < 21
//
// with A is the desired stop-band attenuation in dBFS
//
// 30 dB 2.210
// 40 dB 3.384
// 50 dB 4.538
// 60 dB 5.658
// 70 dB 6.764
// 80 dB 7.865
// 90 dB 8.960
// 100 dB 10.056
const int N = L * halfNumCoef; // non-negative half
const double beta = 0.1102 * (stopBandAtten - 8.7); // >= 50dB always
const double xstep = (2. * M_PI) * fcr / L;
const double xfrac = 1. / N;
const double yscale = atten * L / (I0(beta) * M_PI);
const double sqrbeta = sqr(beta);
// We use sine generators, which computes sines on regular step intervals.
// This speeds up overall computation about 40% from computing the sine directly.
SineGenGen sgg(0., xstep, L*xstep); // generates sine generators (one per polyphase)
for (int i=0 ; i<=L ; ++i) { // generate an extra set of coefs for interpolation
// computation for a single polyphase of the overall filter.
SineGen sg = sgg.valueAdvance(); // current sine generator for "j" inner loop.
double err = 0; // for noise shaping on int16_t coefficients (over each polyphase)
for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) {
double y;
if (CC_LIKELY(ix)) {
double x = static_cast<double>(ix);
// sine generator: sg.valueAdvance() returns sin(ix*xstep);
// y = I0(beta * sqrt(1.0 - sqr(x * xfrac))) * yscale * sg.valueAdvance() / x;
y = I0SqrRat(sqrbeta * (1.0 - sqr(x * xfrac)), yscale * sg.valueAdvance(), x);
} else {
y = 2. * atten * fcr; // center of filter, sinc(0) = 1.
sg.advance();
}
if (is_same<T, int16_t>::value) { // int16_t needs noise shaping
*coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1), err));
} else if (is_same<T, int32_t>::value) {
*coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1)));
} else { // assumed float or double
*coef++ = static_cast<T>(y);
}
}
}
}
}; // namespace android
#endif /*ANDROID_AUDIO_RESAMPLER_FIR_GEN_H*/
|