1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <math.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
static double sinc(double x) {
if (fabs(x) == 0.0f) return 1.0f;
return sin(x) / x;
}
static double sqr(double x) {
return x*x;
}
static double I0(double x) {
// from the Numerical Recipes in C p. 237
double ax,ans,y;
ax=fabs(x);
if (ax < 3.75) {
y=x/3.75;
y*=y;
ans=1.0+y*(3.5156229+y*(3.0899424+y*(1.2067492
+y*(0.2659732+y*(0.360768e-1+y*0.45813e-2)))));
} else {
y=3.75/ax;
ans=(exp(ax)/sqrt(ax))*(0.39894228+y*(0.1328592e-1
+y*(0.225319e-2+y*(-0.157565e-2+y*(0.916281e-2
+y*(-0.2057706e-1+y*(0.2635537e-1+y*(-0.1647633e-1
+y*0.392377e-2))))))));
}
return ans;
}
static double kaiser(int k, int N, double beta) {
if (k < 0 || k > N)
return 0;
return I0(beta * sqrt(1.0 - sqr((2.0*k)/N - 1.0))) / I0(beta);
}
static void usage(char* name) {
fprintf(stderr,
"usage: %s [-h] [-d] [-s sample_rate] [-c cut-off_frequency] [-n half_zero_crossings] [-f {float|fixed}] [-b beta] [-v dBFS] [-l lerp]\n"
" %s [-h] [-d] [-s sample_rate] [-c cut-off_frequency] [-n half_zero_crossings] [-f {float|fixed}] [-b beta] [-v dBFS] -p M/N\n"
" -h this help message\n"
" -d debug, print comma-separated coefficient table\n"
" -p generate poly-phase filter coefficients, with sample increment M/N\n"
" -s sample rate (48000)\n"
" -c cut-off frequency (20478)\n"
" -n number of zero-crossings on one side (8)\n"
" -l number of lerping bits (4)\n"
" -f output format, can be fixed-point or floating-point (fixed)\n"
" -b kaiser window parameter beta (7.865 [-80dB])\n"
" -v attenuation in dBFS (0)\n",
name, name
);
exit(0);
}
int main(int argc, char** argv)
{
// nc is the number of bits to store the coefficients
const int nc = 32;
bool polyphase = false;
unsigned int polyM = 160;
unsigned int polyN = 147;
bool debug = false;
double Fs = 48000;
double Fc = 20478;
double atten = 1;
int format = 0;
// in order to keep the errors associated with the linear
// interpolation of the coefficients below the quantization error
// we must satisfy:
// 2^nz >= 2^(nc/2)
//
// for 16 bit coefficients that would be 256
//
// note that increasing nz only increases memory requirements,
// but doesn't increase the amount of computation to do.
//
//
// see:
// Smith, J.O. Digital Audio Resampling Home Page
// https://ccrma.stanford.edu/~jos/resample/, 2011-03-29
//
int nz = 4;
// | 0.1102*(A - 8.7) A > 50
// beta = | 0.5842*(A - 21)^0.4 + 0.07886*(A - 21) 21 <= A <= 50
// | 0 A < 21
// with A is the desired stop-band attenuation in dBFS
//
// for eg:
//
// 30 dB 2.210
// 40 dB 3.384
// 50 dB 4.538
// 60 dB 5.658
// 70 dB 6.764
// 80 dB 7.865
// 90 dB 8.960
// 100 dB 10.056
double beta = 7.865;
// 2*nzc = (A - 8) / (2.285 * dw)
// with dw the transition width = 2*pi*dF/Fs
//
int nzc = 8;
//
// Example:
// 44.1 KHz to 48 KHz resampling
// 100 dB rejection above 28 KHz
// (the spectrum will fold around 24 KHz and we want 100 dB rejection
// at the point where the folding reaches 20 KHz)
// ...___|_____
// | \|
// | ____/|\____
// |/alias| \
// ------/------+------\---------> KHz
// 20 24 28
// Transition band 8 KHz, or dw = 1.0472
//
// beta = 10.056
// nzc = 20
//
int ch;
while ((ch = getopt(argc, argv, ":hds:c:n:f:l:b:p:v:")) != -1) {
switch (ch) {
case 'd':
debug = true;
break;
case 'p':
if (sscanf(optarg, "%u/%u", &polyM, &polyN) != 2) {
usage(argv[0]);
}
polyphase = true;
break;
case 's':
Fs = atof(optarg);
break;
case 'c':
Fc = atof(optarg);
break;
case 'n':
nzc = atoi(optarg);
break;
case 'l':
nz = atoi(optarg);
break;
case 'f':
if (!strcmp(optarg,"fixed")) format = 0;
else if (!strcmp(optarg,"float")) format = 1;
else usage(argv[0]);
break;
case 'b':
beta = atof(optarg);
break;
case 'v':
atten = pow(10, -fabs(atof(optarg))*0.05 );
break;
case 'h':
default:
usage(argv[0]);
break;
}
}
// cut off frequency ratio Fc/Fs
double Fcr = Fc / Fs;
// total number of coefficients (one side)
const int M = (1 << nz);
const int N = M * nzc;
// generate the right half of the filter
if (!debug) {
printf("// cmd-line: ");
for (int i=1 ; i<argc ; i++) {
printf("%s ", argv[i]);
}
printf("\n");
if (!polyphase) {
printf("const int32_t RESAMPLE_FIR_SIZE = %d;\n", N);
printf("const int32_t RESAMPLE_FIR_LERP_INT_BITS = %d;\n", nz);
printf("const int32_t RESAMPLE_FIR_NUM_COEF = %d;\n", nzc);
} else {
printf("const int32_t RESAMPLE_FIR_SIZE = %d;\n", 2*nzc*polyN);
printf("const int32_t RESAMPLE_FIR_NUM_COEF = %d;\n", 2*nzc);
}
if (!format) {
printf("const int32_t RESAMPLE_FIR_COEF_BITS = %d;\n", nc);
}
printf("\n");
printf("static %s resampleFIR[] = {", !format ? "int32_t" : "float");
}
if (!polyphase) {
for (int i=0 ; i<=M ; i++) { // an extra set of coefs for interpolation
for (int j=0 ; j<nzc ; j++) {
int ix = j*M + i;
double x = (2.0 * M_PI * ix * Fcr) / (1 << nz);
double y = kaiser(ix+N, 2*N, beta) * sinc(x) * 2.0 * Fcr;
y *= atten;
if (!debug) {
if (j == 0)
printf("\n ");
}
if (!format) {
int64_t yi = floor(y * ((1ULL<<(nc-1))) + 0.5);
if (yi >= (1LL<<(nc-1))) yi = (1LL<<(nc-1))-1;
printf("0x%08x, ", int32_t(yi));
} else {
printf("%.9g%s ", y, debug ? "," : "f,");
}
}
}
} else {
for (int j=0 ; j<polyN ; j++) {
// calculate the phase
double p = ((polyM*j) % polyN) / double(polyN);
if (!debug) printf("\n ");
else printf("\n");
// generate a FIR per phase
for (int i=-nzc ; i<nzc ; i++) {
double x = 2.0 * M_PI * Fcr * (i + p);
double y = kaiser(i+N, 2*N, beta) * sinc(x) * 2.0 * Fcr;;
y *= atten;
if (!format) {
int64_t yi = floor(y * ((1ULL<<(nc-1))) + 0.5);
if (yi >= (1LL<<(nc-1))) yi = (1LL<<(nc-1))-1;
printf("0x%08x", int32_t(yi));
} else {
printf("%.9g%s", y, debug ? "" : "f");
}
if (debug && (i==nzc-1)) {
} else {
printf(", ");
}
}
}
}
if (!debug) {
printf("\n};");
}
printf("\n");
return 0;
}
// http://www.csee.umbc.edu/help/sound/AFsp-V2R1/html/audio/ResampAudio.html
|