summaryrefslogtreecommitdiffstats
path: root/core/java/android/hardware
diff options
context:
space:
mode:
authorMathias Agopian <mathias@google.com>2010-11-22 15:48:10 -0800
committerMathias Agopian <mathias@google.com>2010-11-30 14:07:09 -0800
commit7badd2c402f9e8e9fd13f6915ad2e32301f9f305 (patch)
tree8b63e562633664ac368885c839ea5273c5b00bff /core/java/android/hardware
parent24754c9f94b1bd8b176456da82a6059b2e8ded0f (diff)
downloadframeworks_base-7badd2c402f9e8e9fd13f6915ad2e32301f9f305.zip
frameworks_base-7badd2c402f9e8e9fd13f6915ad2e32301f9f305.tar.gz
frameworks_base-7badd2c402f9e8e9fd13f6915ad2e32301f9f305.tar.bz2
allow rotation-vector to have 4 components
- upadte documentation for rotation vector - update method dealing with rotation vector to deal with 4 components - virtual rotation-vector sensor reports all four components - improve SensorManager documentation layout Whent he 4-th component of the rotation-vector is present, we can save a square-root when computing the quaternion or rotation matrix from it. Change-Id: Ia84d278dd5f0909fab1c5ba050f8df2679e2c7c8
Diffstat (limited to 'core/java/android/hardware')
-rw-r--r--core/java/android/hardware/SensorEvent.java48
-rw-r--r--core/java/android/hardware/SensorManager.java21
2 files changed, 49 insertions, 20 deletions
diff --git a/core/java/android/hardware/SensorEvent.java b/core/java/android/hardware/SensorEvent.java
index 32ff3b3..8c55bf3 100644
--- a/core/java/android/hardware/SensorEvent.java
+++ b/core/java/android/hardware/SensorEvent.java
@@ -220,25 +220,47 @@ public class SensorEvent {
* </p>
*
* <h4>{@link android.hardware.Sensor#TYPE_GRAVITY Sensor.TYPE_GRAVITY}:</h4>
- * A three dimensional vector indicating the direction and magnitude of gravity. Units
- * are m/s^2. The coordinate system is the same as is used by the acceleration sensor.
+ * <p>A three dimensional vector indicating the direction and magnitude of gravity. Units
+ * are m/s^2. The coordinate system is the same as is used by the acceleration sensor.</p>
+ * <p><b>Note:</b> When the device is at rest, the output of the gravity sensor should be identical
+ * to that of the accelerometer.</p>
*
* <h4>{@link android.hardware.Sensor#TYPE_LINEAR_ACCELERATION Sensor.TYPE_LINEAR_ACCELERATION}:</h4>
* A three dimensional vector indicating acceleration along each device axis, not including
* gravity. All values have units of m/s^2. The coordinate system is the same as is used by the
- * acceleration sensor.
+ * acceleration sensor.
+ * <p>The output of the accelerometer, gravity and linear-acceleration sensors must obey the
+ * following relation:</p>
+ * <p><ul>acceleration = gravity + linear-acceleration</ul></p>
*
* <h4>{@link android.hardware.Sensor#TYPE_ROTATION_VECTOR Sensor.TYPE_ROTATION_VECTOR}:</h4>
- * The rotation vector represents the orientation of the device as a combination of an angle
- * and an axis, in which the device has rotated through an angle theta around an axis
- * &lt;x, y, z>. The three elements of the rotation vector are
- * &lt;x*sin(theta/2), y*sin(theta/2), z*sin(theta/2)>, such that the magnitude of the rotation
- * vector is equal to sin(theta/2), and the direction of the rotation vector is equal to the
- * direction of the axis of rotation. The three elements of the rotation vector are equal to
- * the last three components of a unit quaternion
- * &lt;cos(theta/2), x*sin(theta/2), y*sin(theta/2), z*sin(theta/2)>. Elements of the rotation
- * vector are unitless. The x,y, and z axis are defined in the same way as the acceleration
- * sensor.
+ * <p>The rotation vector represents the orientation of the device as a combination of an <i>angle</i>
+ * and an <i>axis</i>, in which the device has rotated through an angle &#952 around an axis
+ * &lt;x, y, z>.</p>
+ * <p>The three elements of the rotation vector are
+ * &lt;x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>, such that the magnitude of the rotation
+ * vector is equal to sin(&#952/2), and the direction of the rotation vector is equal to the
+ * direction of the axis of rotation.</p>
+ * </p>The three elements of the rotation vector are equal to
+ * the last three components of a <b>unit</b> quaternion
+ * &lt;cos(&#952/2), x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>.</p>
+ * <p>Elements of the rotation vector are unitless.
+ * The x,y, and z axis are defined in the same way as the acceleration
+ * sensor.</p>
+ * <ul>
+ * <p>
+ * values[0]: x*sin(&#952/2)
+ * </p>
+ * <p>
+ * values[1]: y*sin(&#952/2)
+ * </p>
+ * <p>
+ * values[2]: z*sin(&#952/2)
+ * </p>
+ * <p>
+ * values[3]: cos(&#952/2) <i>(optional: only if value.length = 4)</i>
+ * </p>
+ * </ul>
*
* <h4>{@link android.hardware.Sensor#TYPE_ORIENTATION
* Sensor.TYPE_ORIENTATION}:</h4> All values are angles in degrees.
diff --git a/core/java/android/hardware/SensorManager.java b/core/java/android/hardware/SensorManager.java
index c178aee..1b799ae 100644
--- a/core/java/android/hardware/SensorManager.java
+++ b/core/java/android/hardware/SensorManager.java
@@ -1938,13 +1938,18 @@ public class SensorManager
* @param R an array of floats in which to store the rotation matrix
*/
public static void getRotationMatrixFromVector(float[] R, float[] rotationVector) {
- float q0 = (float)Math.sqrt(1 - rotationVector[0]*rotationVector[0] -
- rotationVector[1]*rotationVector[1] -
- rotationVector[2]*rotationVector[2]);
+
+ float q0;
float q1 = rotationVector[0];
float q2 = rotationVector[1];
float q3 = rotationVector[2];
+ if (rotationVector.length == 4) {
+ q0 = rotationVector[3];
+ } else {
+ q0 = (float)Math.sqrt(1 - q1*q1 - q2*q2 - q3*q3);
+ }
+
float sq_q1 = 2 * q1 * q1;
float sq_q2 = 2 * q2 * q2;
float sq_q3 = 2 * q3 * q3;
@@ -1995,10 +2000,12 @@ public class SensorManager
* @param Q an array of floats in which to store the computed quaternion
*/
public static void getQuaternionFromVector(float[] Q, float[] rv) {
- float w = (float)Math.sqrt(1 - rv[0]*rv[0] - rv[1]*rv[1] - rv[2]*rv[2]);
- //In this case, the w component of the quaternion is known to be a positive number
-
- Q[0] = w;
+ if (rv.length == 4) {
+ Q[0] = rv[3];
+ } else {
+ //In this case, the w component of the quaternion is known to be a positive number
+ Q[0] = (float)Math.sqrt(1 - rv[0]*rv[0] - rv[1]*rv[1] - rv[2]*rv[2]);
+ }
Q[1] = rv[0];
Q[2] = rv[1];
Q[3] = rv[2];