summaryrefslogtreecommitdiffstats
path: root/docs
diff options
context:
space:
mode:
authorTim Murray <timmurray@google.com>2013-04-05 22:47:29 +0000
committerAndroid (Google) Code Review <android-gerrit@google.com>2013-04-05 22:47:29 +0000
commitbdc87d50db42999fbfeb0d75a98d1cb0e3730bc0 (patch)
treed12737a4ee6175630eb2fb69cd888b66a20c08aa /docs
parent36b859a61f05539ada25a51b77b641d1a6904061 (diff)
parenta90842283e322b1210e2bea5850b05177e3d87af (diff)
downloadframeworks_base-bdc87d50db42999fbfeb0d75a98d1cb0e3730bc0.zip
frameworks_base-bdc87d50db42999fbfeb0d75a98d1cb0e3730bc0.tar.gz
frameworks_base-bdc87d50db42999fbfeb0d75a98d1cb0e3730bc0.tar.bz2
Merge "Remove all public mention of RS graphics from docs." into jb-mr2-dev
Diffstat (limited to 'docs')
-rw-r--r--docs/html/about/versions/android-4.0.jd54
-rw-r--r--docs/html/guide/topics/graphics/renderscript/graphics.jd994
2 files changed, 7 insertions, 1041 deletions
diff --git a/docs/html/about/versions/android-4.0.jd b/docs/html/about/versions/android-4.0.jd
index f2fd0c4..868227a 100644
--- a/docs/html/about/versions/android-4.0.jd
+++ b/docs/html/about/versions/android-4.0.jd
@@ -122,7 +122,7 @@ to invoke an action that indicates the user wants to add a contact to a social n
receiving the app uses it to invite the specified contact to that
social network. Most apps will be on the receiving-end of this operation. For example, the
built-in People app invokes the invite intent when the user selects "Add connection" for a specific
-social app that's listed in a person's contact details.</p>
+social app that's listed in a person's contact details.</p>
<p>To make your app visible as in the "Add connection" list, your app must provide a sync adapter to
sync contact information from your social network. You must then indicate to the system that your
@@ -327,7 +327,7 @@ image (usually done by calling the {@link android.opengl.GLES20#glTexImage2D glT
function). You may provide multiple mipmap levels. If the output texture has not been bound to a
texture image, it will be automatically bound by the effect as a {@link
android.opengl.GLES20#GL_TEXTURE_2D} and with one mipmap level (0), which will have the same
-size as the input.</p>
+size as the input.</p>
<p>All effects listed in {@link android.media.effect.EffectFactory} are guaranteed to be supported.
However, some additional effects available from external libraries are not supported by all devices,
@@ -452,7 +452,7 @@ android.hardware.Camera.Parameters#getMaxNumDetectedFaces()} and ensure the retu
value is greater than zero. Also, some devices may not support identification of eyes and mouth,
in which case, those fields in the {@link android.hardware.Camera.Face} object will be null.</p>
-
+
<h4>Focus and metering areas</h4>
<p>Camera apps can now control the areas that the camera uses for focus and for metering white
@@ -495,7 +495,7 @@ added in API level 9.</p>
<h4>Other camera features</h4>
-<ul>
+<ul>
<li>While recording video, you can now call {@link android.hardware.Camera#takePicture
takePicture()} to save a photo without interrupting the video session. Before doing so, you should
call {@link android.hardware.Camera.Parameters#isVideoSnapshotSupported} to be sure the hardware
@@ -775,7 +775,7 @@ methods that allow the view and its parents to add more contextual information t
<li>When invoked, the {@link
android.view.View#sendAccessibilityEvent sendAccessibilityEvent()} and {@link
android.view.View#sendAccessibilityEventUnchecked sendAccessibilityEventUnchecked()} methods defer
-to {@link android.view.View#onInitializeAccessibilityEvent onInitializeAccessibilityEvent()}.
+to {@link android.view.View#onInitializeAccessibilityEvent onInitializeAccessibilityEvent()}.
<p>Custom implementations of {@link android.view.View} might want to implement {@link
android.view.View#onInitializeAccessibilityEvent onInitializeAccessibilityEvent()} to
attach additional accessibility information to the {@link
@@ -1022,46 +1022,6 @@ roaming or connected to Wi-Fi.</p>
-<h3 id="RenderScript">RenderScript</h3>
-
-<p>Three major features have been added to RenderScript:</p>
-
-<ul>
- <li>Off-screen rendering to a framebuffer object</li>
- <li>Rendering inside a view</li>
- <li>RS for each from the framework APIs</li>
-</ul>
-
-<p>The {@link android.renderscript.Allocation} class now supports a {@link
-android.renderscript.Allocation#USAGE_GRAPHICS_RENDER_TARGET} memory space, which allows you to
-render things directly into the {@link android.renderscript.Allocation} and use it as a framebuffer
-object.</p>
-
-<p>{@link android.renderscript.RSTextureView} provides a means to display RenderScript graphics
-inside of a {@link android.view.View}, unlike {@link android.renderscript.RSSurfaceView}, which
-creates a separate window. This key difference allows you to do things such as move, transform, or
-animate an {@link android.renderscript.RSTextureView} as well as draw RenderScript graphics inside
-a view that lies within an activity layout.</p>
-
-<p>The {@link android.renderscript.Script#forEach Script.forEach()} method allows you to call
-RenderScript compute scripts from the VM level and have them automatically delegated to available
-cores on the device. You do not use this method directly, but any compute RenderScript that you
-write will have a {@link android.renderscript.Script#forEach forEach()} method that you can call in
-the reflected RenderScript class. You can call the reflected {@link
-android.renderscript.Script#forEach forEach()} method by passing in an input {@link
-android.renderscript.Allocation} to process, an output {@link android.renderscript.Allocation} to
-write the result to, and a {@link android.renderscript.FieldPacker} data structure in case the
-RenderScript needs more information. Only one of the {@link android.renderscript.Allocation}s is
-necessary and the data structure is optional.</p>
-
-
-
-
-
-
-
-
-
<h3 id="Enterprise">Enterprise</h3>
<p>Android 4.0 expands the capabilities for enterprise application with the following features.</p>
@@ -1758,7 +1718,7 @@ href="{@docRoot}guide/topics/manifest/uses-sdk-element.html#target">{@code targe
notes for more information.</li>
</ul>
</dd>
-
+
<dt><a href="android-3.1.html">Android 3.1</a></dt>
<dd>
<ul>
@@ -1781,7 +1741,7 @@ android.net.rtp} documentation.</li>
notes for many more new APIs.</li>
</ul>
</dd>
-
+
<dt><a href="android-3.2.html">Android 3.2</a></dt>
<dd>
<ul>
diff --git a/docs/html/guide/topics/graphics/renderscript/graphics.jd b/docs/html/guide/topics/graphics/renderscript/graphics.jd
deleted file mode 100644
index 58676ea..0000000
--- a/docs/html/guide/topics/graphics/renderscript/graphics.jd
+++ /dev/null
@@ -1,994 +0,0 @@
-page.title=Graphics
-parent.title=Renderscript
-parent.link=index.html
-
-@jd:body
-
- <div id="qv-wrapper">
- <div id="qv">
- <h2>In this document</h2>
-
- <ol>
- <li>
- <a href="#creating-graphics-rs">Creating a Graphics Renderscript</a>
- <ol>
- <li><a href="#creating-native">Creating the Renderscript file</a></li>
- <li><a href="#creating-entry">Creating the Renderscript entry point class</a></li>
- <li><a href="#creating-view">Creating the view class</a></li>
- <li><a href="#creating-activity">Creating the activity class</a></li>
- </ol>
- </li>
- <li>
- <a href="#drawing">Drawing</a>
- <ol>
- <li><a href="#drawing-rsg">Simple drawing</a></li>
- <li><a href="#drawing-mesh">Drawing with a mesh</a></li>
- </ol>
- </li>
- <li>
- <a href="#shaders">Shaders</a>
- <ol>
- <li><a href="#shader-bindings">Shader bindings</a></li>
- <li><a href="#shader-sampler">Defining a sampler</a></li>
- </ol>
- </li>
- <li>
- <a href="#fbo">Rendering to a Framebuffer Object</a>
- </li>
- </ol>
-
- <h2>Related Samples</h2>
-
- <ol>
- <li><a href="{@docRoot}resources/samples/RenderScript/Balls/index.html">Balls</a></li>
-
- <li><a href="{@docRoot}resources/samples/RenderScript/Fountain/index.html">Fountain</a></li>
-
- <li><a href="{@docRoot}resources/samples/RenderScript/FountainFbo/index.html">FountainFbo</a></li>
-
- <li><a href="{@docRoot}resources/samples/RenderScript/HelloWorld/index.html">Hello
-World</a></li>
-
- <li><a
-href="{@docRoot}resources/samples/RenderScript/MiscSamples/index.html">Misc Samples</a></li>
- </ol>
- </div>
- </div>
-
- <p>Renderscript provides a number of graphics APIs for rendering, both at the Android
- framework level as well as at the Renderscript runtime level. For instance, the Android framework APIs let you
- create meshes and define shaders to customize the graphical rendering pipeline. The native
- Renderscript graphics APIs let you draw the actual meshes to render your scene. You need to
- be familiar with both APIs to appropriately render graphics on an Android-powered device.</p>
-
- <h2 id="creating-graphics-rs">Creating a Graphics Renderscript</h2>
-
- <p>Renderscript applications require various layers of code, so it is useful to create the following
- files to help keep your application organized:</p>
-
- <dl>
- <dt>The Renderscript <code>.rs</code> file</dt>
-
- <dd>This file contains the logic to do the graphics rendering.</dd>
-
- <dt>The Renderscript entry point <code>.java</code> class</dt>
-
- <dd>This class allows the view class to interact with the code defined in the <code>.rs</code>
- file. This class contains a Renderscript object (instance of
- <code>ScriptC_<em>renderscript_file</em></code>), which allows your Android framework code to
- call the Renderscript code. In general, this class does much of the setup for Renderscript
- such as shader and mesh building and memory allocation and binding. The SDK samples follow the
- convention of naming this file ActivityRS.java,
- where Activity is the name of your main activity class.</dd>
-
- <dt>The view <code>.java</code> class</dt>
-
- <dd>This class extends {@link android.renderscript.RSSurfaceView} or {@link
- android.renderscript.RSTextureView} to provide a surface to render on. A {@link
- android.renderscript.RSSurfaceView} consumes a whole window, but a {@link
- android.renderscript.RSTextureView} allows you to draw Renderscript graphics inside of a
- view and add it to a {@link android.view.ViewGroup} alongside
- other views. In this class, you create a {@link android.renderscript.RenderScriptGL} context object
- with a call to {@link android.renderscript.RSSurfaceView#createRenderScriptGL
- RSSurfaceView.createRenderscriptGL()} or {@link android.renderscript.RSTextureView#createRenderScriptGL
- RSTextureView.createRenderscriptGL()}. The {@link android.renderscript.RenderScriptGL} context object
- contains information about the current rendering state of Renderscript such as the vertex and
- fragment shaders. You pass this context object to the Renderscript entry point class, so that
- class can modify the rendering context if needed and bind the Renderscript code to the context. Once bound,
- the view class can use the Renderscript code to display graphics.
- The view class should also implement callbacks for events inherited from {@link
- android.view.View}, such as {@link android.view.View#onTouchEvent onTouchEvent()} and {@link
- android.view.View#onKeyDown onKeyDown()} if you want to detect these types of user interactions.
- The SDK samples follow the convention of naming this file ActivityView.java,
- where Activity is the name of your main activity class</dd>
-
- <dt>The activity <code>.java</code> class</dt>
-
- <dd>This class is the main activity class and sets your {@link android.renderscript.RSSurfaceView} as the main content
- view for this activity or uses the {@link android.renderscript.RSTextureView} alongside other views.</dd>
- </dl>
- <p>Figure 1 describes how these classes interact with one another in a graphics Renderscript:</p>
-
- <img src="{@docRoot}images/rs_graphics.png">
- <p class="img-caption"><strong>Figure 1.</strong> Graphics Renderscript overview</p>
-
-
- <p>The following sections describe how to create an application that uses a graphics Renderscript by using
- the <a href="{@docRoot}resources/samples/RenderScript/Fountain/index.html">Renderscript Fountain
- sample</a> that is provided in the SDK as a guide (some code has been modified from its original
- form for simplicity).</p>
-
- <h3 id="creating-native">Creating the Renderscript file</h3>
-
- <p>Your Renderscript code resides in <code>.rs</code> and <code>.rsh</code> (headers) files in the
- <code>&lt;project_root&gt;/src/</code> directory. This code contains the logic to render your
- graphics and declares all other necessary items such as variables, structs,
- and pointers. Every graphics <code>.rs</code> file generally contains the following items:</p>
-
- <ul>
- <li>A pragma declaration (<code>#pragma rs java_package_name(<em>package.name</em>)</code>) that declares
- the package name of the <code>.java</code> reflection of this Renderscript.</li>
-
- <li>A pragma declaration (<code>#pragma version(1)</code>) that declares the version of Renderscript that
- you are using (1 is the only value for now).</li>
-
- <li>A <code>#include "rs_graphics.rsh"</code> declaration.</li>
-
- <li>A <code>root()</code> function. This is the main worker function for your Renderscript and
- calls Renderscript graphics functions to render scenes. This function is called every time a
- frame refresh occurs, which is specified as its return value. A <code>0</code> (zero) specified for
- the return value says to only render the frame when a property of the scene that you are
- rendering changes. A non-zero positive integer specifies the refresh rate of the frame in
- milliseconds.
-
- <p class="note"><strong>Note:</strong> The Renderscript runtime makes its best effort to
- refresh the frame at the specified rate. For example, if you are creating a live wallpaper
- and set the return value to 20, the Renderscript runtime renders the wallpaper at 50fps if it has just
- enough or more resources to do so. It renders as fast as it can if not enough resources
- are available.</p>
-
- <p>For more information on using the Renderscript graphics functions, see the <a href=
- "#drawing">Drawing</a> section.</p>
- </li>
-
- <li>An <code>init()</code> function. This allows you to do initialization of your
- Renderscript before the <code>root()</code> function runs, such as assigning values to variables. This
- function runs once and is called automatically when the Renderscript starts, before anything
- else in your Renderscript. Creating this function is optional.</li>
-
- <li>Any variables, pointers, and structures that you wish to use in your Renderscript code (can
- be declared in <code>.rsh</code> files if desired)</li>
- </ul>
-
- <p>The following code shows how the <code>fountain.rs</code> file is implemented:</p>
- <pre>
-#pragma version(1)
-
-// Tell which java package name the reflected files should belong to
-#pragma rs java_package_name(com.example.android.rs.fountain)
-
-//declare shader binding
-#pragma stateFragment(parent)
-
-// header with graphics APIs, must include explicitly
-#include "rs_graphics.rsh"
-
-static int newPart = 0;
-
-// the mesh to render
-rs_mesh partMesh;
-
-// the point representing where a particle is rendered
-typedef struct __attribute__((packed, aligned(4))) Point {
- float2 delta;
- float2 position;
- uchar4 color;
-} Point_t;
-Point_t *point;
-
-// main worker function that renders particles onto the screen
-int root() {
- float dt = min(rsGetDt(), 0.1f);
- rsgClearColor(0.f, 0.f, 0.f, 1.f);
- const float height = rsgGetHeight();
- const int size = rsAllocationGetDimX(rsGetAllocation(point));
- float dy2 = dt * (10.f);
- Point_t * p = point;
- for (int ct=0; ct &lt; size; ct++) {
- p-&gt;delta.y += dy2;
- p-&gt;position += p-&gt;delta;
- if ((p-&gt;position.y &gt; height) &amp;&amp; (p-&gt;delta.y &gt; 0)) {
- p-&gt;delta.y *= -0.3f;
- }
- p++;
- }
-
- rsgDrawMesh(partMesh);
- return 1;
-}
-
-// adds particles to the screen to render
-static float4 partColor[10];
-void addParticles(int rate, float x, float y, int index, bool newColor)
-{
- if (newColor) {
- partColor[index].x = rsRand(0.5f, 1.0f);
- partColor[index].y = rsRand(1.0f);
- partColor[index].z = rsRand(1.0f);
- }
- float rMax = ((float)rate) * 0.02f;
- int size = rsAllocationGetDimX(rsGetAllocation(point));
- uchar4 c = rsPackColorTo8888(partColor[index]);
-
- Point_t * np = &amp;point[newPart];
- float2 p = {x, y};
- while (rate--) {
- float angle = rsRand(3.14f * 2.f);
- float len = rsRand(rMax);
- np-&gt;delta.x = len * sin(angle);
- np-&gt;delta.y = len * cos(angle);
- np-&gt;position = p;
- np-&gt;color = c;
- newPart++;
- np++;
- if (newPart &gt;= size) {
- newPart = 0;
- np = &amp;point[newPart];
- }
- }
-}
-</pre>
-
- <h3 id="creating-entry">Creating the Renderscript entry point class</h3>
-
- <p>When you create a Renderscript (<code>.rs</code>) file, it is helpful to create a
- corresponding Android framework class that is an entry point into the <code>.rs</code> file.
- The most important thing this class does is receive a {@link android.renderscript.RenderScriptGL} rendering context
- object from the <a href="#creating-view">view class</a> and binds the actual Renderscript
- code to the rendering context. This notifies your view class of the code that it needs
- to render graphics.
- </p>
-
- <p>In addition, this class should contain all of the things needed to set up Renderscript.
- Some important things that you need to do in this class are:</p>
-
- <ul>
- <li>Create a Renderscript object
- <code>ScriptC_<em>rs_filename</em></code>. The Renderscript object is attached to the Renderscript bytecode, which is platform-independent and
- gets compiled on the device when the Renderscript application runs. The bytecode is referenced
- as a raw resource and is passed into the constructor for the Renderscript object.
- For example, this is how the <a href="{@docRoot}resources/samples/RenderScript/Fountain/index.html">Fountain</a>
- sample creates the Renderscript object:
- <pre>
- RenderScriptGL rs; //obtained from the view class
- Resources res; //obtained from the view class
- ...
- ScriptC_fountain mScript = new ScriptC_fountain(mRS, mRes, R.raw.fountain);
- </pre>
- </li>
- <li>Allocate any necessary memory and bind it to your Renderscript code via the Renderscript object.</li>
- <li>Build any necessary meshes and bind them to the Renderscript code via the Renderscript object.</li>
- <li>Create any necessary programs and bind them to the Renderscript code via the Renderscript object.</li>
- </ul>
-
- <p>The following code shows how the <a href=
- "{@docRoot}resources/samples/RenderScript/Fountain/src/com/example/android/rs/fountain/FountainRS.html">
- FountainRS</a> class is implemented:</p>
- <pre>
-package com.example.android.rs.fountain;
-
-import android.content.res.Resources;
-import android.renderscript.*;
-import android.util.Log;
-
-public class FountainRS {
- public static final int PART_COUNT = 50000;
-
- public FountainRS() {
- }
-
- /**
- * This provides us with the Renderscript context and resources
- * that allow us to create the Renderscript object
- */
- private Resources mRes;
- private RenderScriptGL mRS;
-
- // Renderscript object
- private ScriptC_fountain mScript;
-
- // Called by the view class to initialize the Renderscript context and renderer
- public void init(RenderScriptGL rs, Resources res) {
- mRS = rs;
- mRes = res;
-
- /**
- * Create a shader and bind to the Renderscript context
- */
- ProgramFragmentFixedFunction.Builder pfb = new ProgramFragmentFixedFunction.Builder(rs);
- pfb.setVaryingColor(true);
- rs.bindProgramFragment(pfb.create());
-
- /**
- * Allocate memory for the particles to render and create the mesh to draw
- */
- ScriptField_Point points = new ScriptField_Point(mRS, PART_COUNT);
- Mesh.AllocationBuilder smb = new Mesh.AllocationBuilder(mRS);
- smb.addVertexAllocation(points.getAllocation());
- smb.addIndexSetType(Mesh.Primitive.POINT);
- Mesh sm = smb.create();
-
- /**
- * Create and bind the Renderscript object to the Renderscript context
- */
- mScript = new ScriptC_fountain(mRS, mRes, R.raw.fountain);
- mScript.set_partMesh(sm);
- mScript.bind_point(points);
- mRS.bindRootScript(mScript);
- }
-
- boolean holdingColor[] = new boolean[10];
-
- /**
- * Calls Renderscript functions (invoke_addParticles)
- * via the Renderscript object to add particles to render
- * based on where a user touches the screen.
- */
- public void newTouchPosition(float x, float y, float pressure, int id) {
- if (id &gt;= holdingColor.length) {
- return;
- }
- int rate = (int)(pressure * pressure * 500.f);
- if (rate &gt; 500) {
- rate = 500;
- }
- if (rate &gt; 0) {
- mScript.invoke_addParticles(rate, x, y, id, !holdingColor[id]);
- holdingColor[id] = true;
- } else {
- holdingColor[id] = false;
- }
-
- }
-}
-</pre>
-
-
- <h3 id="creating-view">Creating the view class</h3>
-
-
- <p>To display graphics, you need a view to render on. Create a class that extends {@link
- android.renderscript.RSSurfaceView} or {@link android.renderscript.RSTextureView}. This class
- allows you to create a {@link android.renderscript.RenderScriptGL} context object by calling and
- pass it to the Rendscript entry point class to bind the two. Once bound, the content is aware
- of the code that it needs to use to render graphics with. If your Renderscript code
- depends on any type of information that the view is aware of, such as touches from the user,
- you can also use this class to relay that information to the Renderscript entry point class.
- The following code shows how the <code>FountainView</code> class is implemented:</p>
- <pre>
-package com.example.android.rs.fountain;
-
-import android.renderscript.RSTextureView;
-import android.renderscript.RenderScriptGL;
-import android.content.Context;
-import android.view.MotionEvent;
-
-public class FountainView extends RSTextureView {
-
- public FountainView(Context context) {
- super(context);
- }
- // Renderscript context
- private RenderScriptGL mRS;
- // Renderscript entry point object that calls Renderscript code
- private FountainRS mRender;
-
- /**
- * Create Renderscript context and initialize Renderscript entry point
- */
- &#064;Override
- protected void onAttachedToWindow() {
- super.onAttachedToWindow();
- android.util.Log.e("rs", "onAttachedToWindow");
- if (mRS == null) {
- RenderScriptGL.SurfaceConfig sc = new RenderScriptGL.SurfaceConfig();
- mRS = createRenderScriptGL(sc);
- mRender = new FountainRS();
- mRender.init(mRS, getResources());
- }
- }
-
- &#064;Override
- protected void onDetachedFromWindow() {
- super.onDetachedFromWindow();
- android.util.Log.e("rs", "onDetachedFromWindow");
- if (mRS != null) {
- mRS = null;
- destroyRenderScriptGL();
- }
- }
-
-
- /**
- * Use callbacks to relay data to Renderscript entry point class
- */
- &#064;Override
- public boolean onTouchEvent(MotionEvent ev)
- {
- int act = ev.getActionMasked();
- if (act == ev.ACTION_UP) {
- mRender.newTouchPosition(0, 0, 0, ev.getPointerId(0));
- return false;
- } else if (act == MotionEvent.ACTION_POINTER_UP) {
- // only one pointer going up, we can get the index like this
- int pointerIndex = ev.getActionIndex();
- int pointerId = ev.getPointerId(pointerIndex);
- mRender.newTouchPosition(0, 0, 0, pointerId);
- }
- int count = ev.getHistorySize();
- int pcount = ev.getPointerCount();
-
- for (int p=0; p &lt; pcount; p++) {
- int id = ev.getPointerId(p);
- mRender.newTouchPosition(ev.getX(p),
- ev.getY(p),
- ev.getPressure(p),
- id);
-
- for (int i=0; i &lt; count; i++) {
- mRender.newTouchPosition(ev.getHistoricalX(p, i),
- ev.getHistoricalY(p, i),
- ev.getHistoricalPressure(p, i),
- id);
- }
- }
- return true;
- }
-}
-</pre>
-
- <h3 id="creating-activity">Creating the activity class</h3>
-
- <p>Applications that use Renderscript still behave like normal Android applications, so you
- need an activity class that handles activity lifecycle callback events appropriately. The activity class
- also sets your {@link android.renderscript.RSSurfaceView} view class to be the main content view of the
- activity or uses your {@link android.renderscript.RSTextureView}
- in a {@link android.view.ViewGroup} alongside other views.</p>
-
- <p>The following code shows how the <a href="{@docRoot}resources/samples/RenderScript/Fountain/index.html">Fountain</a>
- sample declares its activity class:</p>
- <pre>
-package com.example.android.rs.fountain;
-
-import android.app.Activity;
-import android.os.Bundle;
-import android.util.Log;
-
-public class Fountain extends Activity {
-
- private static final String LOG_TAG = "libRS_jni";
- private static final boolean DEBUG = false;
- private static final boolean LOG_ENABLED = false;
-
- private FountainView mView;
-
- &#064;Override
- public void onCreate(Bundle icicle) {
- super.onCreate(icicle);
-
- // Create our Preview view and set it as
- // the content of our activity
- mView = new FountainView(this);
- setContentView(mView);
- }
-
- &#064;Override
- protected void onResume() {
- Log.e("rs", "onResume");
-
- // Ideally a game should implement onResume() and onPause()
- // to take appropriate action when the activity looses focus
- super.onResume();
- mView.resume();
- }
-
- &#064;Override
- protected void onPause() {
- Log.e("rs", "onPause");
-
- // Ideally a game should implement onResume() and onPause()
- // to take appropriate action when the activity looses focus
- super.onPause();
- mView.pause();
-
- }
-
- static void log(String message) {
- if (LOG_ENABLED) {
- Log.v(LOG_TAG, message);
- }
- }
-}
-</pre>
-
-<p>Now that you have an idea of what is involved in a Renderscript graphics application, you can
-start building your own. It might be easiest to begin with one of the
-<a href="{@docRoot}resources/samples/RenderScript/index.html">Renderscript samples</a> as a starting
-point if this is your first time using Renderscript.</p>
-
- <h2 id="drawing">Drawing</h2>
- <p>The following sections describe how to use the graphics functions to draw with Renderscript.</p>
-
- <h3 id="drawing-rsg">Simple drawing</h3>
-
- <p>The native Renderscript APIs provide a few convenient functions to easily draw a polygon or text to
- the screen. You call these in your <code>root()</code> function to have them render to the {@link
- android.renderscript.RSSurfaceView} or {@link android.renderscript.RSTextureView}. These functions are
- available for simple drawing and should not be used for complex graphics rendering:</p>
-
- <ul>
- <li><code>rsgDrawRect()</code>: Sets up a mesh and draws a rectangle to the screen. It uses the
- top left vertex and bottom right vertex of the rectangle to draw.</li>
-
- <li><code>rsgDrawQuad()</code>: Sets up a mesh and draws a quadrilateral to the screen.</li>
-
- <li><code>rsgDrawQuadTexCoords()</code>: Sets up a mesh and draws a quadrilateral to the screen
- using the provided coordinates of a texture.</li>
-
- <li><code>rsgDrawText()</code>: Draws specified text to the screen. Use <code>rsgFontColor()</code>
- to set the color of the text.</li>
- </ul>
-
- <h3 id="drawing-mesh">Drawing with a mesh</h3>
-
- <p>When you want to render complex scenes to the screen, instantiate a {@link
- android.renderscript.Mesh} and draw it with <code>rsgDrawMesh()</code>. A {@link
- android.renderscript.Mesh} is a collection of allocations that represent vertex data (positions,
- normals, texture coordinates) and index data that provides information on how to draw triangles
- and lines with the provided vertex data. You can build a Mesh in three different ways:</p>
-
- <ul>
- <li>Build the mesh with the {@link android.renderscript.Mesh.TriangleMeshBuilder} class, which
- allows you to specify a set of vertices and indices for each triangle that you want to draw.</li>
-
- <li>Build the mesh using an {@link android.renderscript.Allocation} or a set of {@link
- android.renderscript.Allocation}s with the {@link android.renderscript.Mesh.AllocationBuilder}
- class. This approach allows you to build a mesh with vertices already stored in memory, which allows you
- to specify the vertices in Renderscript or Android framework code.</li>
-
- <li>Build the mesh with the {@link android.renderscript.Mesh.Builder} class. You should use
- this convenience method when you know the data types you want to use to build your mesh, but
- don't want to make separate memory allocations like with {@link
- android.renderscript.Mesh.AllocationBuilder}. You can specify the types that you want and this
- mesh builder automatically creates the memory allocations for you.</li>
- </ul>
-
- <p>To create a mesh using the {@link android.renderscript.Mesh.TriangleMeshBuilder}, you need to
- supply it with a set of vertices and the indices for the vertices that comprise the triangle. For
- example, the following code specifies three vertices, which are added to an internal array,
- indexed in the order they were added. The call to {@link
- android.renderscript.Mesh.TriangleMeshBuilder#addTriangle addTriangle()} draws the triangle with
- vertex 0, 1, and 2 (the vertices are drawn counter-clockwise).</p>
- <pre>
-int float2VtxSize = 2;
-Mesh.TriangleMeshBuilder triangles = new Mesh.TriangleMeshBuilder(renderscriptGL,
-float2VtxSize, Mesh.TriangleMeshBuilder.COLOR);
-triangles.addVertex(300.f, 300.f);
-triangles.addVertex(150.f, 450.f);
-triangles.addVertex(450.f, 450.f);
-triangles.addTriangle(0 , 1, 2);
-Mesh smP = triangle.create(true);
-script.set_mesh(smP);
-</pre>
-
- <p>To draw a mesh using the {@link android.renderscript.Mesh.AllocationBuilder}, you need to
- supply it with one or more allocations that contain the vertex data:</p>
- <pre>
-Allocation vertices;
-
-...
-Mesh.AllocationBuilder triangle = new Mesh.AllocationBuilder(mRS);
-smb.addVertexAllocation(vertices.getAllocation());
-smb.addIndexSetType(Mesh.Primitive.TRIANGLE);
-Mesh smP = smb.create();
-script.set_mesh(smP);
-</pre>
-
- <p>In your Renderscript code, draw the built mesh to the screen:</p>
- <pre>
-rs_mesh mesh;
-...
-
-int root(){
-...
-rsgDrawMesh(mesh);
-...
-return 0; //specify a non zero, positive integer to specify the frame refresh.
- //0 refreshes the frame only when the mesh changes.
-}
-</pre>
-
- <h2 id="shader">Programs</h2>
-
- <p>You can attach four program objects to the {@link android.renderscript.RenderScriptGL} context
- to customize the rendering pipeline. For example, you can create vertex and fragment shaders in
- GLSL or build a raster program object that controls culling. The four programs mirror a
- traditional graphical rendering pipeline:</p>
-
- <table>
- <tr>
- <th>Android Object Type</th>
-
- <th>Renderscript Native Type</th>
-
- <th>Description</th>
- </tr>
-
- <tr>
- <td>{@link android.renderscript.ProgramVertex}</td>
-
- <td>rs_program_vertex</td>
-
- <td>
- <p>The Renderscript vertex program, also known as a vertex shader, describes the stage in
- the graphics pipeline responsible for manipulating geometric data in a user-defined way.
- The object is constructed by providing Renderscript with the following data:</p>
-
- <ul>
- <li>An {@link android.renderscript.Element} describing its varying inputs or attributes</li>
-
- <li>GLSL shader string that defines the body of the program</li>
-
- <li>a {@link android.renderscript.Type} that describes the layout of an
- Allocation containing constant or uniform inputs</li>
- </ul>
-
- <p>Once the program is created, bind it to the {@link android.renderscript.RenderScriptGL}
- graphics context by calling {@link android.renderscript.RenderScriptGL#bindProgramVertex
- bindProgramVertex()}. It is then used for all subsequent draw calls until you bind a new
- program. If the program has constant inputs, the user needs to bind an allocation
- containing those inputs. The allocation's type must match the one provided during creation.
- </p>
-
- <p>The Renderscript runtime then does all the necessary plumbing to send those constants to
- the graphics hardware. Varying inputs to the shader, such as position, normal, and texture
- coordinates are matched by name between the input {@link android.renderscript.Element}
- and the mesh object that is being drawn. The signatures don't have to be exact or in any
- strict order. As long as the input name in the shader matches a channel name and size
- available on the mesh, the Renderscript runtime handles connecting the two. Unlike OpenGL
- there is no need to link the vertex and fragment programs.</p>
-
- <p>To bind shader constants to the program, declare a <code>struct</code> that contains the necessary
- shader constants in your Renderscript code. This <code>struct</code> is generated into a
- reflected class that you can use as a constant input element during the program's creation.
- It is an easy way to create an instance of this <code>struct</code> as an allocation. You would then
- bind this {@link android.renderscript.Allocation} to the program and the
- Renderscript runtime sends the data that is contained in the <code>struct</code> to the hardware
- when necessary. To update shader constants, you change the values in the
- {@link android.renderscript.Allocation} and notify the Renderscript
- code of the change.</p>
-
- <p>The {@link android.renderscript.ProgramVertexFixedFunction.Builder} class also
- lets you build a simple vertex shader without writing GLSL code.
- </p>
- </td>
- </tr>
-
- <tr>
- <td>{@link android.renderscript.ProgramFragment}</td>
-
- <td>rs_program_fragment</td>
-
- <td>
- <p>The Renderscript fragment program, also known as a fragment shader, is responsible for
- manipulating pixel data in a user-defined way. It's constructed from a GLSL shader string
- containing the program body, texture inputs, and a {@link android.renderscript.Type}
- object that describes the constants
- used by the program. Like the vertex programs, when an {@link android.renderscript.Allocation}
- with constant input
- values is bound to the shader, its values are sent to the graphics program automatically.
- Note that the values inside the {@link android.renderscript.Allocation} are not explicitly tracked.
- If they change between two draw calls using the same program object, notify the runtime of that change by
- calling <code>rsgAllocationSyncAll()</code>, so it can send the new values to hardware. Communication
- between the vertex and fragment programs is handled internally in the GLSL code. For
- example, if the fragment program is expecting a varying input called <code>varTex0</code>, the GLSL code
- inside the program vertex must provide it.</p>
-
- <p>To bind shader constructs to the program, declare a <code>struct</code> that contains the necessary
- shader constants in your Renderscript code. This <code>struct</code> is generated into a
- reflected class that you can use as a constant input element during the program's creation.
- It is an easy way to create an instance of this <code>struct</code> as an allocation. You would then
- bind this {@link android.renderscript.Allocation} to the program and the
- Renderscript runtime sends the data that is contained in the <code>struct</code> to the hardware
- when necessary. To update shader constants, you change the values in the
- {@link android.renderscript.Allocation} and notify the Renderscript
- code of the change.</p>
-
- <p>The {@link android.renderscript.ProgramFragmentFixedFunction.Builder} class also
- lets you build a simple fragment shader without writing GLSL code.
- </p>
- </td>
- </tr>
-
- <tr>
- <td>{@link android.renderscript.ProgramStore}</td>
-
- <td>rs_program_store</td>
-
- <td>The Renderscript store program contains a set of parameters that control how the graphics
- hardware writes to the framebuffer. It could be used to enable and disable depth writes and
- testing, setup various blending modes for effects like transparency and define write masks
- for color components.</td>
- </tr>
-
- <tr>
- <td>{@link android.renderscript.ProgramRaster}</td>
-
- <td>rs_program_raster</td>
-
- <td>The Renderscript raster program is primarily used to specify whether point sprites are enabled and to
- control the culling mode. By default back faces are culled.</td>
- </tr>
- </table>
-
- <p>The following example defines a vertex shader in GLSL and binds it to a Renderscript context object:</p>
- <pre>
- private RenderScriptGL glRenderer; //rendering context
- private ScriptField_Point mPoints; //vertices
- private ScriptField_VpConsts mVpConsts; //shader constants
-
- ...
-
- ProgramVertex.Builder sb = new ProgramVertex.Builder(glRenderer);
- String t = "varying vec4 varColor;\n" +
- "void main() {\n" +
- " vec4 pos = vec4(0.0, 0.0, 0.0, 1.0);\n" +
- " pos.xy = ATTRIB_position;\n" +
- " gl_Position = UNI_MVP * pos;\n" +
- " varColor = vec4(1.0, 1.0, 1.0, 1.0);\n" +
- " gl_PointSize = ATTRIB_size;\n" +
- "}\n";
- sb.setShader(t);
- sb.addConstant(mVpConsts.getType());
- sb.addInput(mPoints.getElement());
- ProgramVertex pvs = sb.create();
- pvs.bindConstants(mVpConsts.getAllocation(), 0);
- glRenderer.bindProgramVertex(pvs);
-</pre>
-
-
- <p>The <a href=
- "{@docRoot}resources/samples/RenderScript/MiscSamples/src/com/example/android/rs/miscsamples/RsRenderStatesRS.html">
- RsRenderStatesRS</a> sample has many examples on how to create a shader without writing GLSL.</p>
-
- <h3 id="shader-bindings">Program bindings</h3>
-
- <p>You can also declare four pragmas that control default program bindings to the {@link
- android.renderscript.RenderScriptGL} context when the script is executing:</p>
-
- <ul>
- <li><code>stateVertex</code></li>
-
- <li><code>stateFragment</code></li>
-
- <li><code>stateRaster</code></li>
-
- <li><code>stateStore</code></li>
- </ul>
-
- <p>The possible values for each pragma are <code>parent</code> or <code>default</code>. Using
- <code>default</code> binds the shaders to the graphical context with the system defaults.</p>
-
- <p>Using <code>parent</code> binds the shaders in the same manner as it is bound in the calling
- script. If this is the root script, the parent state is taken from the bind points that are set
- by the {@link android.renderscript.RenderScriptGL} bind methods.</p>
-
- <p>For example, you can define this at the top of your graphics Renderscript code to have
- the vertex and store programs inherent the bind properties from their parent scripts:</p>
- <pre>
-#pragma stateVertex(parent)
-#pragma stateStore(parent)
-</pre>
-
- <h3 id="shader-sampler">Defining a sampler</h3>
-
- <p>A {@link android.renderscript.Sampler} object defines how data is extracted from textures.
- Samplers are bound to a {@link android.renderscript.ProgramFragment} alongside the texture
- whose sampling they control. These
- objects are used to specify such things as edge clamping behavior, whether mip-maps are used, and
- the amount of anisotropy required. There might be situations where hardware does not support the
- desired behavior of the sampler. In these cases, the Renderscript runtime attempts to provide the
- closest possible approximation. For example, the user requested 16x anisotropy, but only 8x was
- set because it's the best available on the hardware.</p>
-
- <p>The <a href=
- "{@docRoot}resources/samples/RenderScript/MiscSamples/src/com/example/android/rs/miscsamples/RsRenderStatesRS.html">
- RsRenderStatesRS</a> sample has many examples on how to create a sampler and bind it to a
- Fragment program.</p>
-
-
-
-<h2 id="fbo">Rendering to a Framebuffer Object</h2>
-
-<p>Framebuffer objects allow you to render offscreen instead of in the default onscreen
-framebuffer. This approach might be useful for situations where you need to post-process a texture before
-rendering it to the screen, or when you want to composite two scenes in one such as rendering a rear-view
-mirror of a car. There are two buffers associated with a framebuffer object: a color buffer
-and a depth buffer. The color buffer (required) contains the actual pixel data of the scene
-that you are rendering, and the depth buffer (optional) contains the values necessary to figure
-out what vertices are drawn depending on their z-values.</p>
-
-<p>In general, you need to do the following to render to a framebuffer object:</p>
-
-<ul>
- <li>Create {@link android.renderscript.Allocation} objects for the color buffer and
- depth buffer (if needed). Specify the {@link
- android.renderscript.Allocation#USAGE_GRAPHICS_RENDER_TARGET} usage attribute for these
- allocations to notify the Renderscript runtime to use these allocations for the framebuffer
- object. For the color buffer allocation, you most likely need to declare the {@link
- android.renderscript.Allocation#USAGE_GRAPHICS_TEXTURE} usage attribute
- to use the color buffer as a texture, which is the most common use of the framebuffer object.</li>
-
- <li>Tell the Renderscript runtime to render to the framebuffer object instead of the default
- framebuffer by calling <code>rsgBindColorTarget()</code> and passing it the color buffer
- allocation. If applicable, call <code>rsgBindDepthTarget()</code> passing in the depth buffer
- allocation as well.</li>
-
- <li>Render your scene normally with the <code>rsgDraw</code> functions. The scene will be
- rendered into the color buffer instead of the default onscreen framebuffer.</li>
-
- <li>When done, tell the Renderscript runtime stop rendering to the color buffer and back
- to the default framebuffer by calling <code>rsgClearAllRenderTargets()</code>.</li>
-
- <li>Create a fragment shader and bind a the color buffer to it as a texture.</li>
-
- <li>Render your scene to the default framebuffer. The texture will be used according
- to the way you setup your fragment shader.</li>
-</ul>
-
-<p>The following example shows you how to render to a framebuffer object by modifying the
-<a href="{@docRoot}guide/resources/renderscript/Fountain/">Fountain</a> Renderscript sample. The end
-result is the <a href="{@docRoot}guide/resources/renderscript/FountainFBO/">FountainFBO</a> sample.
-The modifications render the exact same scene into a framebuffer object as it does the default
-framebuffer. The framebuffer object is then rendered into the default framebuffer in a small
-area at the top left corner of the screen.</p>
-
-<ol>
- <li>Modify <code>fountain.rs</code> and add the following global variables. This creates setter
- methods when this file is reflected into a <code>.java</code> file, allowing you to allocate
- memory in your Android framework code and binding it to the Renderscript runtime.
-<pre>
-//allocation for color buffer
-rs_allocation gColorBuffer;
-//fragment shader for rendering without a texture (used for rendering to framebuffer object)
-rs_program_fragment gProgramFragment;
-//fragment shader for rendering with a texture (used for rendering to default framebuffer)
-rs_program_fragment gTextureProgramFragment;
-</pre>
- </li>
-
- <li>Modify the root function of <code>fountain.rs</code> to look like the following code. The
- modifications are commented:
-<pre>
-int root() {
- float dt = min(rsGetDt(), 0.1f);
- rsgClearColor(0.f, 0.f, 0.f, 1.f);
- const float height = rsgGetHeight();
- const int size = rsAllocationGetDimX(rsGetAllocation(point));
- float dy2 = dt * (10.f);
- Point_t * p = point;
- for (int ct=0; ct < size; ct++) {
- p->delta.y += dy2;
- p->position += p->delta;
- if ((p->position.y > height) && (p->delta.y > 0)) {
- p->delta.y *= -0.3f;
- }
- p++;
- }
- //Tell Renderscript runtime to render to the frame buffer object
- rsgBindColorTarget(gColorBuffer, 0);
- //Begin rendering on a white background
- rsgClearColor(1.f, 1.f, 1.f, 1.f);
- rsgDrawMesh(partMesh);
-
- //When done, tell Renderscript runtime to stop rendering to framebuffer object
- rsgClearAllRenderTargets();
-
- //Bind a new fragment shader that declares the framebuffer object to be used as a texture
- rsgBindProgramFragment(gTextureProgramFragment);
-
- //Bind the framebuffer object to the fragment shader at slot 0 as a texture
- rsgBindTexture(gTextureProgramFragment, 0, gColorBuffer);
- //Draw a quad using the framebuffer object as the texture
- float startX = 10, startY = 10;
- float s = 256;
- rsgDrawQuadTexCoords(startX, startY, 0, 0, 1,
- startX, startY + s, 0, 0, 0,
- startX + s, startY + s, 0, 1, 0,
- startX + s, startY, 0, 1, 1);
-
- //Rebind the original fragment shader to render as normal
- rsgBindProgramFragment(gProgramFragment);
-
- //Render the main scene
- rsgDrawMesh(partMesh);
-
- return 1;
-}
-</pre>
- </li>
-
- <li>In the <code>FountainRS.java</code> file, modify the <code>init()</code> method to look
- like the following code. The modifications are commented:
-
-<pre>
-/* Add necessary members */
-private ScriptC_fountainfbo mScript;
-private Allocation mColorBuffer;
-private ProgramFragment mProgramFragment;
-private ProgramFragment mTextureProgramFragment;
-
-public void init(RenderScriptGL rs, Resources res) {
- mRS = rs;
- mRes = res;
-
- ScriptField_Point points = new ScriptField_Point(mRS, PART_COUNT);
-
- Mesh.AllocationBuilder smb = new Mesh.AllocationBuilder(mRS);
- smb.addVertexAllocation(points.getAllocation());
- smb.addIndexSetType(Mesh.Primitive.POINT);
- Mesh sm = smb.create();
-
- mScript = new ScriptC_fountainfbo(mRS, mRes, R.raw.fountainfbo);
- mScript.set_partMesh(sm);
- mScript.bind_point(points);
-
- ProgramFragmentFixedFunction.Builder pfb = new ProgramFragmentFixedFunction.Builder(rs);
- pfb.setVaryingColor(true);
- mProgramFragment = pfb.create();
- mScript.set_gProgramFragment(mProgramFragment);
-
- /* Second fragment shader to use a texture (framebuffer object) to draw with */
- pfb.setTexture(ProgramFragmentFixedFunction.Builder.EnvMode.REPLACE,
- ProgramFragmentFixedFunction.Builder.Format.RGBA, 0);
-
- /* Set the fragment shader in the Renderscript runtime */
- mTextureProgramFragment = pfb.create();
- mScript.set_gTextureProgramFragment(mTextureProgramFragment);
-
- /* Create the allocation for the color buffer */
- Type.Builder colorBuilder = new Type.Builder(mRS, Element.RGBA_8888(mRS));
- colorBuilder.setX(256).setY(256);
- mColorBuffer = Allocation.createTyped(mRS, colorBuilder.create(),
- Allocation.USAGE_GRAPHICS_TEXTURE |
- Allocation.USAGE_GRAPHICS_RENDER_TARGET);
-
- /* Set the allocation in the Renderscript runtime */
- mScript.set_gColorBuffer(mColorBuffer);
-
- mRS.bindRootScript(mScript);
-}
-</pre>
-
-<p class="note"><strong>Note:</strong> This sample doesn't use a depth buffer, but the following code
-shows you how to declare an example depth buffer if you need to use
-one for your application. The depth buffer must have the same dimensions as the color buffer:
-
-<pre>
-Allocation mDepthBuffer;
-
-...
-
-Type.Builder b = new Type.Builder(mRS, Element.createPixel(mRS, DataType.UNSIGNED_16,
- DataKind.PIXEL_DEPTH));
-b.setX(256).setY(256);
-mDepthBuffer = Allocation.createTyped(mRS, b.create(),
-Allocation.USAGE_GRAPHICS_RENDER_TARGET);
-
-</pre>
-</p>
-</li>
-
- <li>Run and use the sample. The smaller, white quad on the top-left corner is using the
- framebuffer object as a texture, which renders the same scene as the main rendering.</li>
-</ol>