summaryrefslogtreecommitdiffstats
path: root/tools/orientationplot/orientationplot.py
diff options
context:
space:
mode:
authorJeff Brown <jeffbrown@google.com>2011-01-23 13:16:01 -0800
committerJeff Brown <jeffbrown@google.com>2011-01-24 13:46:57 -0800
commit4519f07e9c6b993fbe7a3d3df24d71d9450a54f1 (patch)
tree3c642e9c740a54941ab46d80ebc5668ce9ab4cc3 /tools/orientationplot/orientationplot.py
parenta6ce081970a78233ba6b9792149ee5f1390cba7b (diff)
downloadframeworks_base-4519f07e9c6b993fbe7a3d3df24d71d9450a54f1.zip
frameworks_base-4519f07e9c6b993fbe7a3d3df24d71d9450a54f1.tar.gz
frameworks_base-4519f07e9c6b993fbe7a3d3df24d71d9450a54f1.tar.bz2
New orientation listener.
The objective in this listener is to be more careful about the signal processing to prevent spurious orientation changes and to make all of the tweakable factors physically meaningful. The calibration is defined in terms of time constants and does not assume a particular discrete sampling rate. This is useful because it allows us to change the accelerometer sampling interval if desired without having to change the calibration. Moreover, the accelerometer sampling interval can vary +/- 20ms from one sample to the next even in normal circumstances. Proposed orientation changes are weighted by confidence factors that vary exponentially in relation to how close the device is to the ideal orientation change posture (screen is vertical, angle is exactly at the midpoint of the orientation quadrant, and no external acceleration beside gravity). When not in an ideal posture, the device takes proportionally longer to settle into a new orientation state. Added a little tool to plot the log output of the WindowOrientationListener. Check the README for more information about how to use it. Change-Id: I787f02d03582ff26367df65eda8d9ce85c5cb343
Diffstat (limited to 'tools/orientationplot/orientationplot.py')
-rwxr-xr-xtools/orientationplot/orientationplot.py451
1 files changed, 451 insertions, 0 deletions
diff --git a/tools/orientationplot/orientationplot.py b/tools/orientationplot/orientationplot.py
new file mode 100755
index 0000000..07449d4
--- /dev/null
+++ b/tools/orientationplot/orientationplot.py
@@ -0,0 +1,451 @@
+#!/usr/bin/env python2.6
+#
+# Copyright (C) 2011 The Android Open Source Project
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+#
+# Plots debug log output from WindowOrientationListener.
+# See README.txt for details.
+#
+
+import numpy as np
+import matplotlib.pyplot as plot
+import subprocess
+import re
+import fcntl
+import os
+import errno
+import bisect
+from datetime import datetime, timedelta
+
+# Parameters.
+timespan = 15 # seconds total span shown
+scrolljump = 5 # seconds jump when scrolling
+timeticks = 1 # seconds between each time tick
+
+# Non-blocking stream wrapper.
+class NonBlockingStream:
+ def __init__(self, stream):
+ fcntl.fcntl(stream, fcntl.F_SETFL, os.O_NONBLOCK)
+ self.stream = stream
+ self.buffer = ''
+ self.pos = 0
+
+ def readline(self):
+ while True:
+ index = self.buffer.find('\n', self.pos)
+ if index != -1:
+ result = self.buffer[self.pos:index]
+ self.pos = index + 1
+ return result
+
+ self.buffer = self.buffer[self.pos:]
+ self.pos = 0
+ try:
+ chunk = os.read(self.stream.fileno(), 4096)
+ except OSError, e:
+ if e.errno == errno.EAGAIN:
+ return None
+ raise e
+ if len(chunk) == 0:
+ if len(self.buffer) == 0:
+ raise(EOFError)
+ else:
+ result = self.buffer
+ self.buffer = ''
+ self.pos = 0
+ return result
+ self.buffer += chunk
+
+# Plotter
+class Plotter:
+ def __init__(self, adbout):
+ self.adbout = adbout
+
+ self.fig = plot.figure(1)
+ self.fig.suptitle('Window Orientation Listener', fontsize=12)
+ self.fig.set_dpi(96)
+ self.fig.set_size_inches(16, 12, forward=True)
+
+ self.raw_acceleration_x = self._make_timeseries()
+ self.raw_acceleration_y = self._make_timeseries()
+ self.raw_acceleration_z = self._make_timeseries()
+ self.raw_acceleration_axes = self._add_timeseries_axes(
+ 1, 'Raw Acceleration', 'm/s^2', [-20, 20],
+ yticks=range(-15, 16, 5))
+ self.raw_acceleration_line_x = self._add_timeseries_line(
+ self.raw_acceleration_axes, 'x', 'red')
+ self.raw_acceleration_line_y = self._add_timeseries_line(
+ self.raw_acceleration_axes, 'y', 'green')
+ self.raw_acceleration_line_z = self._add_timeseries_line(
+ self.raw_acceleration_axes, 'z', 'blue')
+ self._add_timeseries_legend(self.raw_acceleration_axes)
+
+ shared_axis = self.raw_acceleration_axes
+
+ self.filtered_acceleration_x = self._make_timeseries()
+ self.filtered_acceleration_y = self._make_timeseries()
+ self.filtered_acceleration_z = self._make_timeseries()
+ self.magnitude = self._make_timeseries()
+ self.filtered_acceleration_axes = self._add_timeseries_axes(
+ 2, 'Filtered Acceleration', 'm/s^2', [-20, 20],
+ sharex=shared_axis,
+ yticks=range(-15, 16, 5))
+ self.filtered_acceleration_line_x = self._add_timeseries_line(
+ self.filtered_acceleration_axes, 'x', 'red')
+ self.filtered_acceleration_line_y = self._add_timeseries_line(
+ self.filtered_acceleration_axes, 'y', 'green')
+ self.filtered_acceleration_line_z = self._add_timeseries_line(
+ self.filtered_acceleration_axes, 'z', 'blue')
+ self.magnitude_line = self._add_timeseries_line(
+ self.filtered_acceleration_axes, 'magnitude', 'orange', linewidth=2)
+ self._add_timeseries_legend(self.filtered_acceleration_axes)
+
+ self.tilt_angle = self._make_timeseries()
+ self.tilt_angle_axes = self._add_timeseries_axes(
+ 3, 'Tilt Angle', 'degrees', [-105, 105],
+ sharex=shared_axis,
+ yticks=range(-90, 91, 30))
+ self.tilt_angle_line = self._add_timeseries_line(
+ self.tilt_angle_axes, 'tilt', 'black')
+ self._add_timeseries_legend(self.tilt_angle_axes)
+
+ self.orientation_angle = self._make_timeseries()
+ self.orientation_angle_axes = self._add_timeseries_axes(
+ 4, 'Orientation Angle', 'degrees', [-25, 375],
+ sharex=shared_axis,
+ yticks=range(0, 361, 45))
+ self.orientation_angle_line = self._add_timeseries_line(
+ self.orientation_angle_axes, 'orientation', 'black')
+ self._add_timeseries_legend(self.orientation_angle_axes)
+
+ self.actual_orientation = self._make_timeseries()
+ self.proposed_orientation = self._make_timeseries()
+ self.orientation_axes = self._add_timeseries_axes(
+ 5, 'Actual / Proposed Orientation and Confidence', 'rotation', [-1, 4],
+ sharex=shared_axis,
+ yticks=range(0, 4))
+ self.actual_orientation_line = self._add_timeseries_line(
+ self.orientation_axes, 'actual', 'black', linewidth=2)
+ self.proposed_orientation_line = self._add_timeseries_line(
+ self.orientation_axes, 'proposed', 'purple', linewidth=3)
+ self._add_timeseries_legend(self.orientation_axes)
+
+ self.confidence = [[self._make_timeseries(), self._make_timeseries()] for i in range(0, 4)]
+ self.confidence_polys = []
+
+ self.combined_confidence = self._make_timeseries()
+ self.orientation_confidence = self._make_timeseries()
+ self.tilt_confidence = self._make_timeseries()
+ self.magnitude_confidence = self._make_timeseries()
+ self.confidence_axes = self._add_timeseries_axes(
+ 6, 'Proposed Orientation Confidence Factors', 'confidence', [-0.1, 1.1],
+ sharex=shared_axis,
+ yticks=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
+ self.combined_confidence_line = self._add_timeseries_line(
+ self.confidence_axes, 'combined', 'purple', linewidth=2)
+ self.orientation_confidence_line = self._add_timeseries_line(
+ self.confidence_axes, 'orientation', 'black')
+ self.tilt_confidence_line = self._add_timeseries_line(
+ self.confidence_axes, 'tilt', 'brown')
+ self.magnitude_confidence_line = self._add_timeseries_line(
+ self.confidence_axes, 'magnitude', 'orange')
+ self._add_timeseries_legend(self.confidence_axes)
+
+ self.sample_latency = self._make_timeseries()
+ self.sample_latency_axes = self._add_timeseries_axes(
+ 7, 'Accelerometer Sampling Latency', 'ms', [-10, 500],
+ sharex=shared_axis,
+ yticks=range(0, 500, 100))
+ self.sample_latency_line = self._add_timeseries_line(
+ self.sample_latency_axes, 'latency', 'black')
+ self._add_timeseries_legend(self.sample_latency_axes)
+
+ self.timer = self.fig.canvas.new_timer(interval=100)
+ self.timer.add_callback(lambda: self.update())
+ self.timer.start()
+
+ self.timebase = None
+ self._reset_parse_state()
+
+ # Initialize a time series.
+ def _make_timeseries(self):
+ return [[], []]
+
+ # Add a subplot to the figure for a time series.
+ def _add_timeseries_axes(self, index, title, ylabel, ylim, yticks, sharex=None):
+ num_graphs = 7
+ height = 0.9 / num_graphs
+ top = 0.95 - height * index
+ axes = self.fig.add_axes([0.1, top, 0.8, height],
+ xscale='linear',
+ xlim=[0, timespan],
+ ylabel=ylabel,
+ yscale='linear',
+ ylim=ylim,
+ sharex=sharex)
+ axes.text(0.02, 0.02, title, transform=axes.transAxes, fontsize=10, fontweight='bold')
+ axes.set_xlabel('time (s)', fontsize=10, fontweight='bold')
+ axes.set_ylabel(ylabel, fontsize=10, fontweight='bold')
+ axes.set_xticks(range(0, timespan + 1, timeticks))
+ axes.set_yticks(yticks)
+ axes.grid(True)
+
+ for label in axes.get_xticklabels():
+ label.set_fontsize(9)
+ for label in axes.get_yticklabels():
+ label.set_fontsize(9)
+
+ return axes
+
+ # Add a line to the axes for a time series.
+ def _add_timeseries_line(self, axes, label, color, linewidth=1):
+ return axes.plot([], label=label, color=color, linewidth=linewidth)[0]
+
+ # Add a legend to a time series.
+ def _add_timeseries_legend(self, axes):
+ axes.legend(
+ loc='upper left',
+ bbox_to_anchor=(1.01, 1),
+ borderpad=0.1,
+ borderaxespad=0.1,
+ prop={'size': 10})
+
+ # Resets the parse state.
+ def _reset_parse_state(self):
+ self.parse_raw_acceleration_x = None
+ self.parse_raw_acceleration_y = None
+ self.parse_raw_acceleration_z = None
+ self.parse_filtered_acceleration_x = None
+ self.parse_filtered_acceleration_y = None
+ self.parse_filtered_acceleration_z = None
+ self.parse_magnitude = None
+ self.parse_tilt_angle = None
+ self.parse_orientation_angle = None
+ self.parse_proposed_orientation = None
+ self.parse_combined_confidence = None
+ self.parse_orientation_confidence = None
+ self.parse_tilt_confidence = None
+ self.parse_magnitude_confidence = None
+ self.parse_actual_orientation = None
+ self.parse_confidence = None
+ self.parse_sample_latency = None
+
+ # Update samples.
+ def update(self):
+ timeindex = 0
+ while True:
+ try:
+ line = self.adbout.readline()
+ except EOFError:
+ plot.close()
+ return
+ if line is None:
+ break
+ print line
+
+ try:
+ timestamp = self._parse_timestamp(line)
+ except ValueError, e:
+ continue
+ if self.timebase is None:
+ self.timebase = timestamp
+ delta = timestamp - self.timebase
+ timeindex = delta.seconds + delta.microseconds * 0.000001
+
+ if line.find('Raw acceleration vector:') != -1:
+ self.parse_raw_acceleration_x = self._get_following_number(line, 'x=')
+ self.parse_raw_acceleration_y = self._get_following_number(line, 'y=')
+ self.parse_raw_acceleration_z = self._get_following_number(line, 'z=')
+
+ if line.find('Filtered acceleration vector:') != -1:
+ self.parse_filtered_acceleration_x = self._get_following_number(line, 'x=')
+ self.parse_filtered_acceleration_y = self._get_following_number(line, 'y=')
+ self.parse_filtered_acceleration_z = self._get_following_number(line, 'z=')
+
+ if line.find('magnitude=') != -1:
+ self.parse_magnitude = self._get_following_number(line, 'magnitude=')
+
+ if line.find('tiltAngle=') != -1:
+ self.parse_tilt_angle = self._get_following_number(line, 'tiltAngle=')
+
+ if line.find('orientationAngle=') != -1:
+ self.parse_orientation_angle = self._get_following_number(line, 'orientationAngle=')
+
+ if line.find('Proposal:') != -1:
+ self.parse_proposed_orientation = self._get_following_number(line, 'proposedOrientation=')
+ self.parse_combined_confidence = self._get_following_number(line, 'combinedConfidence=')
+ self.parse_orientation_confidence = self._get_following_number(line, 'orientationConfidence=')
+ self.parse_tilt_confidence = self._get_following_number(line, 'tiltConfidence=')
+ self.parse_magnitude_confidence = self._get_following_number(line, 'magnitudeConfidence=')
+
+ if line.find('Result:') != -1:
+ self.parse_actual_orientation = self._get_following_number(line, 'rotation=')
+ self.parse_confidence = self._get_following_array_of_numbers(line, 'confidence=')
+ self.parse_sample_latency = self._get_following_number(line, 'timeDeltaMS=')
+
+ for i in range(0, 4):
+ if self.parse_confidence is not None:
+ self._append(self.confidence[i][0], timeindex, i)
+ self._append(self.confidence[i][1], timeindex, i + self.parse_confidence[i])
+ else:
+ self._append(self.confidence[i][0], timeindex, None)
+ self._append(self.confidence[i][1], timeindex, None)
+
+ self._append(self.raw_acceleration_x, timeindex, self.parse_raw_acceleration_x)
+ self._append(self.raw_acceleration_y, timeindex, self.parse_raw_acceleration_y)
+ self._append(self.raw_acceleration_z, timeindex, self.parse_raw_acceleration_z)
+ self._append(self.filtered_acceleration_x, timeindex, self.parse_filtered_acceleration_x)
+ self._append(self.filtered_acceleration_y, timeindex, self.parse_filtered_acceleration_y)
+ self._append(self.filtered_acceleration_z, timeindex, self.parse_filtered_acceleration_z)
+ self._append(self.magnitude, timeindex, self.parse_magnitude)
+ self._append(self.tilt_angle, timeindex, self.parse_tilt_angle)
+ self._append(self.orientation_angle, timeindex, self.parse_orientation_angle)
+ self._append(self.actual_orientation, timeindex, self.parse_actual_orientation)
+ self._append(self.proposed_orientation, timeindex, self.parse_proposed_orientation)
+ self._append(self.combined_confidence, timeindex, self.parse_combined_confidence)
+ self._append(self.orientation_confidence, timeindex, self.parse_orientation_confidence)
+ self._append(self.tilt_confidence, timeindex, self.parse_tilt_confidence)
+ self._append(self.magnitude_confidence, timeindex, self.parse_magnitude_confidence)
+ self._append(self.sample_latency, timeindex, self.parse_sample_latency)
+ self._reset_parse_state()
+
+ # Scroll the plots.
+ if timeindex > timespan:
+ bottom = int(timeindex) - timespan + scrolljump
+ self.timebase += timedelta(seconds=bottom)
+ self._scroll(self.raw_acceleration_x, bottom)
+ self._scroll(self.raw_acceleration_y, bottom)
+ self._scroll(self.raw_acceleration_z, bottom)
+ self._scroll(self.filtered_acceleration_x, bottom)
+ self._scroll(self.filtered_acceleration_y, bottom)
+ self._scroll(self.filtered_acceleration_z, bottom)
+ self._scroll(self.magnitude, bottom)
+ self._scroll(self.tilt_angle, bottom)
+ self._scroll(self.orientation_angle, bottom)
+ self._scroll(self.actual_orientation, bottom)
+ self._scroll(self.proposed_orientation, bottom)
+ self._scroll(self.combined_confidence, bottom)
+ self._scroll(self.orientation_confidence, bottom)
+ self._scroll(self.tilt_confidence, bottom)
+ self._scroll(self.magnitude_confidence, bottom)
+ self._scroll(self.sample_latency, bottom)
+ for i in range(0, 4):
+ self._scroll(self.confidence[i][0], bottom)
+ self._scroll(self.confidence[i][1], bottom)
+
+ # Redraw the plots.
+ self.raw_acceleration_line_x.set_data(self.raw_acceleration_x)
+ self.raw_acceleration_line_y.set_data(self.raw_acceleration_y)
+ self.raw_acceleration_line_z.set_data(self.raw_acceleration_z)
+ self.filtered_acceleration_line_x.set_data(self.filtered_acceleration_x)
+ self.filtered_acceleration_line_y.set_data(self.filtered_acceleration_y)
+ self.filtered_acceleration_line_z.set_data(self.filtered_acceleration_z)
+ self.magnitude_line.set_data(self.magnitude)
+ self.tilt_angle_line.set_data(self.tilt_angle)
+ self.orientation_angle_line.set_data(self.orientation_angle)
+ self.actual_orientation_line.set_data(self.actual_orientation)
+ self.proposed_orientation_line.set_data(self.proposed_orientation)
+ self.combined_confidence_line.set_data(self.combined_confidence)
+ self.orientation_confidence_line.set_data(self.orientation_confidence)
+ self.tilt_confidence_line.set_data(self.tilt_confidence)
+ self.magnitude_confidence_line.set_data(self.magnitude_confidence)
+ self.sample_latency_line.set_data(self.sample_latency)
+
+ for poly in self.confidence_polys:
+ poly.remove()
+ self.confidence_polys = []
+ for i in range(0, 4):
+ self.confidence_polys.append(self.orientation_axes.fill_between(self.confidence[i][0][0],
+ self.confidence[i][0][1], self.confidence[i][1][1],
+ facecolor='goldenrod', edgecolor='goldenrod'))
+
+ self.fig.canvas.draw_idle()
+
+ # Scroll a time series.
+ def _scroll(self, timeseries, bottom):
+ bottom_index = bisect.bisect_left(timeseries[0], bottom)
+ del timeseries[0][:bottom_index]
+ del timeseries[1][:bottom_index]
+ for i, timeindex in enumerate(timeseries[0]):
+ timeseries[0][i] = timeindex - bottom
+
+ # Extract a word following the specified prefix.
+ def _get_following_word(self, line, prefix):
+ prefix_index = line.find(prefix)
+ if prefix_index == -1:
+ return None
+ start_index = prefix_index + len(prefix)
+ delim_index = line.find(',', start_index)
+ if delim_index == -1:
+ return line[start_index:]
+ else:
+ return line[start_index:delim_index]
+
+ # Extract a number following the specified prefix.
+ def _get_following_number(self, line, prefix):
+ word = self._get_following_word(line, prefix)
+ if word is None:
+ return None
+ return float(word)
+
+ # Extract an array of numbers following the specified prefix.
+ def _get_following_array_of_numbers(self, line, prefix):
+ prefix_index = line.find(prefix + '[')
+ if prefix_index == -1:
+ return None
+ start_index = prefix_index + len(prefix) + 1
+ delim_index = line.find(']', start_index)
+ if delim_index == -1:
+ return None
+
+ result = []
+ while start_index < delim_index:
+ comma_index = line.find(', ', start_index, delim_index)
+ if comma_index == -1:
+ result.append(float(line[start_index:delim_index]))
+ break;
+ result.append(float(line[start_index:comma_index]))
+ start_index = comma_index + 2
+ return result
+
+ # Add a value to a time series.
+ def _append(self, timeseries, timeindex, number):
+ timeseries[0].append(timeindex)
+ timeseries[1].append(number)
+
+ # Parse the logcat timestamp.
+ # Timestamp has the form '01-21 20:42:42.930'
+ def _parse_timestamp(self, line):
+ return datetime.strptime(line[0:18], '%m-%d %H:%M:%S.%f')
+
+# Notice
+print "Window Orientation Listener plotting tool"
+print "-----------------------------------------\n"
+print "Please turn on the Window Orientation Listener logging in Development Settings."
+
+# Start adb.
+print "Starting adb logcat.\n"
+
+adb = subprocess.Popen(['adb', 'logcat', '-s', '-v', 'time', 'WindowOrientationListener:V'],
+ stdout=subprocess.PIPE)
+adbout = NonBlockingStream(adb.stdout)
+
+# Prepare plotter.
+plotter = Plotter(adbout)
+plotter.update()
+
+# Main loop.
+plot.show()