summaryrefslogtreecommitdiffstats
path: root/tools/orientationplot
diff options
context:
space:
mode:
authorAdam Lesinski <adamlesinski@google.com>2014-01-23 18:17:42 -0800
committerAdam Lesinski <adamlesinski@google.com>2014-01-27 10:31:04 -0800
commit282e181b58cf72b6ca770dc7ca5f91f135444502 (patch)
treee313e7ab30ff4679562efa37bde29cfcb9e375d3 /tools/orientationplot
parent7023df08f14ec5dee76ac54c03e870f84e297636 (diff)
downloadframeworks_base-282e181b58cf72b6ca770dc7ca5f91f135444502.zip
frameworks_base-282e181b58cf72b6ca770dc7ca5f91f135444502.tar.gz
frameworks_base-282e181b58cf72b6ca770dc7ca5f91f135444502.tar.bz2
Revert "Move frameworks/base/tools/ to frameworks/tools/"
This reverts commit 9f6a119c8aa276432ece4fe2118bd8a3c9b1067e.
Diffstat (limited to 'tools/orientationplot')
-rw-r--r--tools/orientationplot/README.txt87
-rwxr-xr-xtools/orientationplot/orientationplot.py457
2 files changed, 544 insertions, 0 deletions
diff --git a/tools/orientationplot/README.txt b/tools/orientationplot/README.txt
new file mode 100644
index 0000000..d53f65e
--- /dev/null
+++ b/tools/orientationplot/README.txt
@@ -0,0 +1,87 @@
+This directory contains a simple python script for visualizing
+the behavior of the WindowOrientationListener.
+
+
+PREREQUISITES
+-------------
+
+1. Python 2.6
+2. numpy
+3. matplotlib
+
+
+USAGE
+-----
+
+The tool works by scaping the debug log output from WindowOrientationListener
+for interesting data and then plotting it.
+
+1. Plug in the device. Ensure that it is the only device plugged in
+ since this script is of very little brain and will get confused otherwise.
+
+2. Enable the Window Orientation Listener debugging data log.
+ adb shell setprop debug.orientation.log true
+ adb shell stop
+ adb shell start
+
+3. Run "orientationplot.py".
+
+
+WHAT IT ALL MEANS
+-----------------
+
+The tool displays several time series graphs that plot the output of the
+WindowOrientationListener. Here you can see the raw accelerometer data,
+filtered accelerometer data, measured tilt and orientation angle, confidence
+intervals for the proposed orientation and accelerometer latency.
+
+Things to look for:
+
+1. Ensure the filtering is not too aggressive. If the filter cut-off frequency is
+ less than about 1Hz, then the filtered accelorometer data becomes too smooth
+ and the latency for orientation detection goes up. One way to observe this
+ is by holding the device vertically in one orientation then sharply turning
+ it 90 degrees to a different orientation. Compared the rapid changes in the
+ raw accelerometer data with the smoothed out filtered data. If the filtering
+ is too aggressive, the filter response may lag by hundreds of milliseconds.
+
+2. Ensure that there is an appropriate gap between adjacent orientation angles
+ for hysteresis. Try holding the device in one orientation and slowly turning
+ it 90 degrees. Note that the confidence intervals will all drop to 0 at some
+ point in between the two orientations; that is the gap. The gap should be
+ observed between all adjacent pairs of orientations when turning the device
+ in either direction.
+
+ Next try holding the device in one orientation and rapidly turning it end
+ over end to a midpoint about 45 degrees between two opposing orientations.
+ There should be no gap observed initially. The algorithm should pick one
+ of the orientations and settle into it (since it is obviously quite
+ different from the original orientation of the device). However, once it
+ settles, the confidence values should start trending to 0 again because
+ the measured orientation angle is now within the gap between the new
+ orientation and the adjacent orientation.
+
+ In other words, the hysteresis gap applies only when the measured orientation
+ angle (say, 45 degrees) is between the current orientation's ideal angle
+ (say, 0 degrees) and an adjacent orientation's ideal angle (say, 90 degrees).
+
+3. Accelerometer jitter. The accelerometer latency graph displays the interval
+ between sensor events as reported by the SensorEvent.timestamp field. It
+ should be a fairly constant 60ms. If the latency jumps around wildly or
+ greatly exceeds 60ms then there is a problem with the accelerometer or the
+ sensor manager.
+
+4. The orientation angle is not measured when the tilt is too close to 90 or -90
+ degrees (refer to MAX_TILT constant). Consequently, you should expect there
+ to be no data. Likewise, all dependent calculations are suppressed in this case
+ so there will be no orientation proposal either.
+
+5. Each orientation has its own bound on allowable tilt angles. It's a good idea to
+ verify that these limits are being enforced by gradually varying the tilt of
+ the device until it is inside/outside the limit for each orientation.
+
+6. Orientation changes should be significantly harder when the device is held
+ overhead. People reading on tablets in bed often have their head turned
+ a little to the side, or they hold the device loosely so its orientation
+ can be a bit unusual. The tilt is a good indicator of whether the device is
+ overhead.
diff --git a/tools/orientationplot/orientationplot.py b/tools/orientationplot/orientationplot.py
new file mode 100755
index 0000000..6fc3922
--- /dev/null
+++ b/tools/orientationplot/orientationplot.py
@@ -0,0 +1,457 @@
+#!/usr/bin/env python2.6
+#
+# Copyright (C) 2011 The Android Open Source Project
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+#
+# Plots debug log output from WindowOrientationListener.
+# See README.txt for details.
+#
+
+import numpy as np
+import matplotlib.pyplot as plot
+import subprocess
+import re
+import fcntl
+import os
+import errno
+import bisect
+from datetime import datetime, timedelta
+
+# Parameters.
+timespan = 15 # seconds total span shown
+scrolljump = 5 # seconds jump when scrolling
+timeticks = 1 # seconds between each time tick
+
+# Non-blocking stream wrapper.
+class NonBlockingStream:
+ def __init__(self, stream):
+ fcntl.fcntl(stream, fcntl.F_SETFL, os.O_NONBLOCK)
+ self.stream = stream
+ self.buffer = ''
+ self.pos = 0
+
+ def readline(self):
+ while True:
+ index = self.buffer.find('\n', self.pos)
+ if index != -1:
+ result = self.buffer[self.pos:index]
+ self.pos = index + 1
+ return result
+
+ self.buffer = self.buffer[self.pos:]
+ self.pos = 0
+ try:
+ chunk = os.read(self.stream.fileno(), 4096)
+ except OSError, e:
+ if e.errno == errno.EAGAIN:
+ return None
+ raise e
+ if len(chunk) == 0:
+ if len(self.buffer) == 0:
+ raise(EOFError)
+ else:
+ result = self.buffer
+ self.buffer = ''
+ self.pos = 0
+ return result
+ self.buffer += chunk
+
+# Plotter
+class Plotter:
+ def __init__(self, adbout):
+ self.adbout = adbout
+
+ self.fig = plot.figure(1)
+ self.fig.suptitle('Window Orientation Listener', fontsize=12)
+ self.fig.set_dpi(96)
+ self.fig.set_size_inches(16, 12, forward=True)
+
+ self.raw_acceleration_x = self._make_timeseries()
+ self.raw_acceleration_y = self._make_timeseries()
+ self.raw_acceleration_z = self._make_timeseries()
+ self.raw_acceleration_magnitude = self._make_timeseries()
+ self.raw_acceleration_axes = self._add_timeseries_axes(
+ 1, 'Raw Acceleration', 'm/s^2', [-20, 20],
+ yticks=range(-15, 16, 5))
+ self.raw_acceleration_line_x = self._add_timeseries_line(
+ self.raw_acceleration_axes, 'x', 'red')
+ self.raw_acceleration_line_y = self._add_timeseries_line(
+ self.raw_acceleration_axes, 'y', 'green')
+ self.raw_acceleration_line_z = self._add_timeseries_line(
+ self.raw_acceleration_axes, 'z', 'blue')
+ self.raw_acceleration_line_magnitude = self._add_timeseries_line(
+ self.raw_acceleration_axes, 'magnitude', 'orange', linewidth=2)
+ self._add_timeseries_legend(self.raw_acceleration_axes)
+
+ shared_axis = self.raw_acceleration_axes
+
+ self.filtered_acceleration_x = self._make_timeseries()
+ self.filtered_acceleration_y = self._make_timeseries()
+ self.filtered_acceleration_z = self._make_timeseries()
+ self.filtered_acceleration_magnitude = self._make_timeseries()
+ self.filtered_acceleration_axes = self._add_timeseries_axes(
+ 2, 'Filtered Acceleration', 'm/s^2', [-20, 20],
+ sharex=shared_axis,
+ yticks=range(-15, 16, 5))
+ self.filtered_acceleration_line_x = self._add_timeseries_line(
+ self.filtered_acceleration_axes, 'x', 'red')
+ self.filtered_acceleration_line_y = self._add_timeseries_line(
+ self.filtered_acceleration_axes, 'y', 'green')
+ self.filtered_acceleration_line_z = self._add_timeseries_line(
+ self.filtered_acceleration_axes, 'z', 'blue')
+ self.filtered_acceleration_line_magnitude = self._add_timeseries_line(
+ self.filtered_acceleration_axes, 'magnitude', 'orange', linewidth=2)
+ self._add_timeseries_legend(self.filtered_acceleration_axes)
+
+ self.tilt_angle = self._make_timeseries()
+ self.tilt_angle_axes = self._add_timeseries_axes(
+ 3, 'Tilt Angle', 'degrees', [-105, 105],
+ sharex=shared_axis,
+ yticks=range(-90, 91, 30))
+ self.tilt_angle_line = self._add_timeseries_line(
+ self.tilt_angle_axes, 'tilt', 'black')
+ self._add_timeseries_legend(self.tilt_angle_axes)
+
+ self.orientation_angle = self._make_timeseries()
+ self.orientation_angle_axes = self._add_timeseries_axes(
+ 4, 'Orientation Angle', 'degrees', [-25, 375],
+ sharex=shared_axis,
+ yticks=range(0, 361, 45))
+ self.orientation_angle_line = self._add_timeseries_line(
+ self.orientation_angle_axes, 'orientation', 'black')
+ self._add_timeseries_legend(self.orientation_angle_axes)
+
+ self.current_rotation = self._make_timeseries()
+ self.proposed_rotation = self._make_timeseries()
+ self.predicted_rotation = self._make_timeseries()
+ self.orientation_axes = self._add_timeseries_axes(
+ 5, 'Current / Proposed Orientation', 'rotation', [-1, 4],
+ sharex=shared_axis,
+ yticks=range(0, 4))
+ self.current_rotation_line = self._add_timeseries_line(
+ self.orientation_axes, 'current', 'black', linewidth=2)
+ self.predicted_rotation_line = self._add_timeseries_line(
+ self.orientation_axes, 'predicted', 'purple', linewidth=3)
+ self.proposed_rotation_line = self._add_timeseries_line(
+ self.orientation_axes, 'proposed', 'green', linewidth=3)
+ self._add_timeseries_legend(self.orientation_axes)
+
+ self.time_until_settled = self._make_timeseries()
+ self.time_until_flat_delay_expired = self._make_timeseries()
+ self.time_until_swing_delay_expired = self._make_timeseries()
+ self.time_until_acceleration_delay_expired = self._make_timeseries()
+ self.stability_axes = self._add_timeseries_axes(
+ 6, 'Proposal Stability', 'ms', [-10, 600],
+ sharex=shared_axis,
+ yticks=range(0, 600, 100))
+ self.time_until_settled_line = self._add_timeseries_line(
+ self.stability_axes, 'time until settled', 'black', linewidth=2)
+ self.time_until_flat_delay_expired_line = self._add_timeseries_line(
+ self.stability_axes, 'time until flat delay expired', 'green')
+ self.time_until_swing_delay_expired_line = self._add_timeseries_line(
+ self.stability_axes, 'time until swing delay expired', 'blue')
+ self.time_until_acceleration_delay_expired_line = self._add_timeseries_line(
+ self.stability_axes, 'time until acceleration delay expired', 'red')
+ self._add_timeseries_legend(self.stability_axes)
+
+ self.sample_latency = self._make_timeseries()
+ self.sample_latency_axes = self._add_timeseries_axes(
+ 7, 'Accelerometer Sampling Latency', 'ms', [-10, 500],
+ sharex=shared_axis,
+ yticks=range(0, 500, 100))
+ self.sample_latency_line = self._add_timeseries_line(
+ self.sample_latency_axes, 'latency', 'black')
+ self._add_timeseries_legend(self.sample_latency_axes)
+
+ self.fig.canvas.mpl_connect('button_press_event', self._on_click)
+ self.paused = False
+
+ self.timer = self.fig.canvas.new_timer(interval=100)
+ self.timer.add_callback(lambda: self.update())
+ self.timer.start()
+
+ self.timebase = None
+ self._reset_parse_state()
+
+ # Handle a click event to pause or restart the timer.
+ def _on_click(self, ev):
+ if not self.paused:
+ self.paused = True
+ self.timer.stop()
+ else:
+ self.paused = False
+ self.timer.start()
+
+ # Initialize a time series.
+ def _make_timeseries(self):
+ return [[], []]
+
+ # Add a subplot to the figure for a time series.
+ def _add_timeseries_axes(self, index, title, ylabel, ylim, yticks, sharex=None):
+ num_graphs = 7
+ height = 0.9 / num_graphs
+ top = 0.95 - height * index
+ axes = self.fig.add_axes([0.1, top, 0.8, height],
+ xscale='linear',
+ xlim=[0, timespan],
+ ylabel=ylabel,
+ yscale='linear',
+ ylim=ylim,
+ sharex=sharex)
+ axes.text(0.02, 0.02, title, transform=axes.transAxes, fontsize=10, fontweight='bold')
+ axes.set_xlabel('time (s)', fontsize=10, fontweight='bold')
+ axes.set_ylabel(ylabel, fontsize=10, fontweight='bold')
+ axes.set_xticks(range(0, timespan + 1, timeticks))
+ axes.set_yticks(yticks)
+ axes.grid(True)
+
+ for label in axes.get_xticklabels():
+ label.set_fontsize(9)
+ for label in axes.get_yticklabels():
+ label.set_fontsize(9)
+
+ return axes
+
+ # Add a line to the axes for a time series.
+ def _add_timeseries_line(self, axes, label, color, linewidth=1):
+ return axes.plot([], label=label, color=color, linewidth=linewidth)[0]
+
+ # Add a legend to a time series.
+ def _add_timeseries_legend(self, axes):
+ axes.legend(
+ loc='upper left',
+ bbox_to_anchor=(1.01, 1),
+ borderpad=0.1,
+ borderaxespad=0.1,
+ prop={'size': 10})
+
+ # Resets the parse state.
+ def _reset_parse_state(self):
+ self.parse_raw_acceleration_x = None
+ self.parse_raw_acceleration_y = None
+ self.parse_raw_acceleration_z = None
+ self.parse_raw_acceleration_magnitude = None
+ self.parse_filtered_acceleration_x = None
+ self.parse_filtered_acceleration_y = None
+ self.parse_filtered_acceleration_z = None
+ self.parse_filtered_acceleration_magnitude = None
+ self.parse_tilt_angle = None
+ self.parse_orientation_angle = None
+ self.parse_current_rotation = None
+ self.parse_proposed_rotation = None
+ self.parse_predicted_rotation = None
+ self.parse_time_until_settled = None
+ self.parse_time_until_flat_delay_expired = None
+ self.parse_time_until_swing_delay_expired = None
+ self.parse_time_until_acceleration_delay_expired = None
+ self.parse_sample_latency = None
+
+ # Update samples.
+ def update(self):
+ timeindex = 0
+ while True:
+ try:
+ line = self.adbout.readline()
+ except EOFError:
+ plot.close()
+ return
+ if line is None:
+ break
+ print line
+
+ try:
+ timestamp = self._parse_timestamp(line)
+ except ValueError, e:
+ continue
+ if self.timebase is None:
+ self.timebase = timestamp
+ delta = timestamp - self.timebase
+ timeindex = delta.seconds + delta.microseconds * 0.000001
+
+ if line.find('Raw acceleration vector:') != -1:
+ self.parse_raw_acceleration_x = self._get_following_number(line, 'x=')
+ self.parse_raw_acceleration_y = self._get_following_number(line, 'y=')
+ self.parse_raw_acceleration_z = self._get_following_number(line, 'z=')
+ self.parse_raw_acceleration_magnitude = self._get_following_number(line, 'magnitude=')
+
+ if line.find('Filtered acceleration vector:') != -1:
+ self.parse_filtered_acceleration_x = self._get_following_number(line, 'x=')
+ self.parse_filtered_acceleration_y = self._get_following_number(line, 'y=')
+ self.parse_filtered_acceleration_z = self._get_following_number(line, 'z=')
+ self.parse_filtered_acceleration_magnitude = self._get_following_number(line, 'magnitude=')
+
+ if line.find('tiltAngle=') != -1:
+ self.parse_tilt_angle = self._get_following_number(line, 'tiltAngle=')
+
+ if line.find('orientationAngle=') != -1:
+ self.parse_orientation_angle = self._get_following_number(line, 'orientationAngle=')
+
+ if line.find('Result:') != -1:
+ self.parse_current_rotation = self._get_following_number(line, 'currentRotation=')
+ self.parse_proposed_rotation = self._get_following_number(line, 'proposedRotation=')
+ self.parse_predicted_rotation = self._get_following_number(line, 'predictedRotation=')
+ self.parse_sample_latency = self._get_following_number(line, 'timeDeltaMS=')
+ self.parse_time_until_settled = self._get_following_number(line, 'timeUntilSettledMS=')
+ self.parse_time_until_flat_delay_expired = self._get_following_number(line, 'timeUntilFlatDelayExpiredMS=')
+ self.parse_time_until_swing_delay_expired = self._get_following_number(line, 'timeUntilSwingDelayExpiredMS=')
+ self.parse_time_until_acceleration_delay_expired = self._get_following_number(line, 'timeUntilAccelerationDelayExpiredMS=')
+
+ self._append(self.raw_acceleration_x, timeindex, self.parse_raw_acceleration_x)
+ self._append(self.raw_acceleration_y, timeindex, self.parse_raw_acceleration_y)
+ self._append(self.raw_acceleration_z, timeindex, self.parse_raw_acceleration_z)
+ self._append(self.raw_acceleration_magnitude, timeindex, self.parse_raw_acceleration_magnitude)
+ self._append(self.filtered_acceleration_x, timeindex, self.parse_filtered_acceleration_x)
+ self._append(self.filtered_acceleration_y, timeindex, self.parse_filtered_acceleration_y)
+ self._append(self.filtered_acceleration_z, timeindex, self.parse_filtered_acceleration_z)
+ self._append(self.filtered_acceleration_magnitude, timeindex, self.parse_filtered_acceleration_magnitude)
+ self._append(self.tilt_angle, timeindex, self.parse_tilt_angle)
+ self._append(self.orientation_angle, timeindex, self.parse_orientation_angle)
+ self._append(self.current_rotation, timeindex, self.parse_current_rotation)
+ if self.parse_proposed_rotation >= 0:
+ self._append(self.proposed_rotation, timeindex, self.parse_proposed_rotation)
+ else:
+ self._append(self.proposed_rotation, timeindex, None)
+ if self.parse_predicted_rotation >= 0:
+ self._append(self.predicted_rotation, timeindex, self.parse_predicted_rotation)
+ else:
+ self._append(self.predicted_rotation, timeindex, None)
+ self._append(self.time_until_settled, timeindex, self.parse_time_until_settled)
+ self._append(self.time_until_flat_delay_expired, timeindex, self.parse_time_until_flat_delay_expired)
+ self._append(self.time_until_swing_delay_expired, timeindex, self.parse_time_until_swing_delay_expired)
+ self._append(self.time_until_acceleration_delay_expired, timeindex, self.parse_time_until_acceleration_delay_expired)
+ self._append(self.sample_latency, timeindex, self.parse_sample_latency)
+ self._reset_parse_state()
+
+ # Scroll the plots.
+ if timeindex > timespan:
+ bottom = int(timeindex) - timespan + scrolljump
+ self.timebase += timedelta(seconds=bottom)
+ self._scroll(self.raw_acceleration_x, bottom)
+ self._scroll(self.raw_acceleration_y, bottom)
+ self._scroll(self.raw_acceleration_z, bottom)
+ self._scroll(self.raw_acceleration_magnitude, bottom)
+ self._scroll(self.filtered_acceleration_x, bottom)
+ self._scroll(self.filtered_acceleration_y, bottom)
+ self._scroll(self.filtered_acceleration_z, bottom)
+ self._scroll(self.filtered_acceleration_magnitude, bottom)
+ self._scroll(self.tilt_angle, bottom)
+ self._scroll(self.orientation_angle, bottom)
+ self._scroll(self.current_rotation, bottom)
+ self._scroll(self.proposed_rotation, bottom)
+ self._scroll(self.predicted_rotation, bottom)
+ self._scroll(self.time_until_settled, bottom)
+ self._scroll(self.time_until_flat_delay_expired, bottom)
+ self._scroll(self.time_until_swing_delay_expired, bottom)
+ self._scroll(self.time_until_acceleration_delay_expired, bottom)
+ self._scroll(self.sample_latency, bottom)
+
+ # Redraw the plots.
+ self.raw_acceleration_line_x.set_data(self.raw_acceleration_x)
+ self.raw_acceleration_line_y.set_data(self.raw_acceleration_y)
+ self.raw_acceleration_line_z.set_data(self.raw_acceleration_z)
+ self.raw_acceleration_line_magnitude.set_data(self.raw_acceleration_magnitude)
+ self.filtered_acceleration_line_x.set_data(self.filtered_acceleration_x)
+ self.filtered_acceleration_line_y.set_data(self.filtered_acceleration_y)
+ self.filtered_acceleration_line_z.set_data(self.filtered_acceleration_z)
+ self.filtered_acceleration_line_magnitude.set_data(self.filtered_acceleration_magnitude)
+ self.tilt_angle_line.set_data(self.tilt_angle)
+ self.orientation_angle_line.set_data(self.orientation_angle)
+ self.current_rotation_line.set_data(self.current_rotation)
+ self.proposed_rotation_line.set_data(self.proposed_rotation)
+ self.predicted_rotation_line.set_data(self.predicted_rotation)
+ self.time_until_settled_line.set_data(self.time_until_settled)
+ self.time_until_flat_delay_expired_line.set_data(self.time_until_flat_delay_expired)
+ self.time_until_swing_delay_expired_line.set_data(self.time_until_swing_delay_expired)
+ self.time_until_acceleration_delay_expired_line.set_data(self.time_until_acceleration_delay_expired)
+ self.sample_latency_line.set_data(self.sample_latency)
+
+ self.fig.canvas.draw_idle()
+
+ # Scroll a time series.
+ def _scroll(self, timeseries, bottom):
+ bottom_index = bisect.bisect_left(timeseries[0], bottom)
+ del timeseries[0][:bottom_index]
+ del timeseries[1][:bottom_index]
+ for i, timeindex in enumerate(timeseries[0]):
+ timeseries[0][i] = timeindex - bottom
+
+ # Extract a word following the specified prefix.
+ def _get_following_word(self, line, prefix):
+ prefix_index = line.find(prefix)
+ if prefix_index == -1:
+ return None
+ start_index = prefix_index + len(prefix)
+ delim_index = line.find(',', start_index)
+ if delim_index == -1:
+ return line[start_index:]
+ else:
+ return line[start_index:delim_index]
+
+ # Extract a number following the specified prefix.
+ def _get_following_number(self, line, prefix):
+ word = self._get_following_word(line, prefix)
+ if word is None:
+ return None
+ return float(word)
+
+ # Extract an array of numbers following the specified prefix.
+ def _get_following_array_of_numbers(self, line, prefix):
+ prefix_index = line.find(prefix + '[')
+ if prefix_index == -1:
+ return None
+ start_index = prefix_index + len(prefix) + 1
+ delim_index = line.find(']', start_index)
+ if delim_index == -1:
+ return None
+
+ result = []
+ while start_index < delim_index:
+ comma_index = line.find(', ', start_index, delim_index)
+ if comma_index == -1:
+ result.append(float(line[start_index:delim_index]))
+ break;
+ result.append(float(line[start_index:comma_index]))
+ start_index = comma_index + 2
+ return result
+
+ # Add a value to a time series.
+ def _append(self, timeseries, timeindex, number):
+ timeseries[0].append(timeindex)
+ timeseries[1].append(number)
+
+ # Parse the logcat timestamp.
+ # Timestamp has the form '01-21 20:42:42.930'
+ def _parse_timestamp(self, line):
+ return datetime.strptime(line[0:18], '%m-%d %H:%M:%S.%f')
+
+# Notice
+print "Window Orientation Listener plotting tool"
+print "-----------------------------------------\n"
+print "Please turn on the Window Orientation Listener logging in Development Settings."
+
+# Start adb.
+print "Starting adb logcat.\n"
+
+adb = subprocess.Popen(['adb', 'logcat', '-s', '-v', 'time', 'WindowOrientationListener:V'],
+ stdout=subprocess.PIPE)
+adbout = NonBlockingStream(adb.stdout)
+
+# Prepare plotter.
+plotter = Plotter(adbout)
+plotter.update()
+
+# Main loop.
+plot.show()