diff options
-rw-r--r-- | libs/hwui/AmbientShadow.cpp | 6 | ||||
-rw-r--r-- | libs/hwui/SpotShadow.cpp | 910 | ||||
-rw-r--r-- | libs/hwui/SpotShadow.h | 34 | ||||
-rw-r--r-- | libs/hwui/Vector.h | 4 |
4 files changed, 303 insertions, 651 deletions
diff --git a/libs/hwui/AmbientShadow.cpp b/libs/hwui/AmbientShadow.cpp index cb3a002..21c869b 100644 --- a/libs/hwui/AmbientShadow.cpp +++ b/libs/hwui/AmbientShadow.cpp @@ -326,9 +326,9 @@ void AmbientShadow::createAmbientShadow(bool isCasterOpaque, shadowVertexBuffer.updateVertexCount(vertexBufferIndex); shadowVertexBuffer.updateIndexCount(indexBufferIndex); - ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Vertex Buffer"); - ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Index Buffer"); - ShadowTessellator::checkOverflow(umbraIndex, totalUmbraCount, "Umbra Buffer"); + ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Ambient Vertex Buffer"); + ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Ambient Index Buffer"); + ShadowTessellator::checkOverflow(umbraIndex, totalUmbraCount, "Ambient Umbra Buffer"); #if DEBUG_SHADOW for (int i = 0; i < vertexBufferIndex; i++) { diff --git a/libs/hwui/SpotShadow.cpp b/libs/hwui/SpotShadow.cpp index df28ae8..e8f1b9a 100644 --- a/libs/hwui/SpotShadow.cpp +++ b/libs/hwui/SpotShadow.cpp @@ -618,68 +618,6 @@ void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCente } /** - * Converts a polygon specified with CW vertices into an array of distance-from-centroid values. - * - * Returns false in error conditions - * - * @param poly Array of vertices. Note that these *must* be CW. - * @param polyLength The number of vertices in the polygon. - * @param polyCentroid The centroid of the polygon, from which rays will be cast - * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size - */ -bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid, - float* rayDist) { - const int rays = SHADOW_RAY_COUNT; - const float step = M_PI * 2 / rays; - - const Vector2* lastVertex = &(poly[polyLength - 1]); - float startAngle = angle(*lastVertex, polyCentroid); - - // Start with the ray that's closest to and less than startAngle - int rayIndex = floor((startAngle - EPSILON) / step); - rayIndex = (rayIndex + rays) % rays; // ensure positive - - for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) { - /* - * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that - * intersect these will be those that are between the two angles from the centroid that the - * vertices define. - * - * Because the polygon vertices are stored clockwise, the closest ray with an angle - * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does - * not intersect with poly[i-1], poly[i]. - */ - float currentAngle = angle(poly[polyIndex], polyCentroid); - - // find first ray that will not intersect the line segment poly[i-1] & poly[i] - int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step); - firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive - - // Iterate through all rays that intersect with poly[i-1], poly[i] line segment. - // This may be 0 rays. - while (rayIndex != firstRayIndexOnNextSegment) { - float distanceToIntersect = rayIntersectPoints(polyCentroid, - cos(rayIndex * step), - sin(rayIndex * step), - *lastVertex, poly[polyIndex]); - if (distanceToIntersect < 0) { -#if DEBUG_SHADOW - ALOGW("ERROR: convertPolyToRayDist failed"); -#endif - return false; // error case, abort - } - - rayDist[rayIndex] = distanceToIntersect; - - rayIndex = (rayIndex - 1 + rays) % rays; - } - lastVertex = &poly[polyIndex]; - } - - return true; -} - -/** * This is only for experimental purpose. * After intersections are calculated, we could smooth the polygon if needed. * So far, we don't think it is more appealing yet. @@ -700,490 +638,223 @@ void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) { } } -/** - * Generate a array of the angleData for either umbra or penumbra vertices. - * - * This array will be merged and used to guide where to shoot the rays, in clockwise order. - * - * @param angleDataList The result array of angle data. - * - * @return int The maximum angle's index in the array. - */ -int SpotShadow::setupAngleList(VertexAngleData* angleDataList, - int polyLength, const Vector2* polygon, const Vector2& centroid, - bool isPenumbra, const char* name) { - float maxAngle = FLT_MIN; - int maxAngleIndex = 0; - for (int i = 0; i < polyLength; i++) { - float currentAngle = angle(polygon[i], centroid); - if (currentAngle > maxAngle) { - maxAngle = currentAngle; - maxAngleIndex = i; - } - angleDataList[i].set(currentAngle, isPenumbra, i); -#if DEBUG_SHADOW - ALOGD("%s AngleList i %d %f", name, i, currentAngle); -#endif - } - return maxAngleIndex; -} +// Index pair is meant for storing the tessellation information for the penumbra +// area. One index must come from exterior tangent of the circles, the other one +// must come from the interior tangent of the circles. +struct IndexPair { + int outerIndex; + int innerIndex; +}; -/** - * Make sure the polygons are indeed in clockwise order. - * - * Possible reasons to return false: 1. The input polygon is not setup properly. 2. The hull - * algorithm is not able to generate it properly. - * - * Anyway, since the algorithm depends on the clockwise, when these kind of unexpected error - * situation is found, we need to detect it and early return without corrupting the memory. - * - * @return bool True if the angle list is actually from big to small. - */ -bool SpotShadow::checkClockwise(int indexOfMaxAngle, int listLength, VertexAngleData* angleList, - const char* name) { - int currentIndex = indexOfMaxAngle; -#if DEBUG_SHADOW - ALOGD("max index %d", currentIndex); -#endif - for (int i = 0; i < listLength - 1; i++) { - // TODO: Cache the last angle. - float currentAngle = angleList[currentIndex].mAngle; - float nextAngle = angleList[(currentIndex + 1) % listLength].mAngle; - if (currentAngle < nextAngle) { -#if DEBUG_SHADOW - ALOGE("%s, is not CW, at index %d", name, currentIndex); -#endif - return false; +// For one penumbra vertex, find the cloest umbra vertex and return its index. +inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) { + float minLengthSquared = FLT_MAX; + int resultIndex = -1; + bool hasDecreased = false; + // Starting with some negative offset, assuming both umbra and penumbra are starting + // at the same angle, this can help to find the result faster. + // Normally, loop 3 times, we can find the closest point. + int offset = polygonLength - 2; + for (int i = 0; i < polygonLength; i++) { + int currentIndex = (i + offset) % polygonLength; + float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared(); + if (currentLengthSquared < minLengthSquared) { + if (minLengthSquared != FLT_MAX) { + hasDecreased = true; + } + minLengthSquared = currentLengthSquared; + resultIndex = currentIndex; + } else if (currentLengthSquared > minLengthSquared && hasDecreased) { + // Early break b/c we have found the closet one and now the length + // is increasing again. + break; } - currentIndex = (currentIndex + 1) % listLength; } - return true; + if(resultIndex == -1) { + ALOGE("resultIndex is -1, the polygon must be invalid!"); + resultIndex = 0; + } + return resultIndex; } -/** - * Check the polygon is clockwise. - * - * @return bool True is the polygon is clockwise. - */ -bool SpotShadow::checkPolyClockwise(int polyAngleLength, int maxPolyAngleIndex, - const float* polyAngleList) { - bool isPolyCW = true; - // Starting from maxPolyAngleIndex , check around to make sure angle decrease. - for (int i = 0; i < polyAngleLength - 1; i++) { - float currentAngle = polyAngleList[(i + maxPolyAngleIndex) % polyAngleLength]; - float nextAngle = polyAngleList[(i + maxPolyAngleIndex + 1) % polyAngleLength]; - if (currentAngle < nextAngle) { - isPolyCW = false; - } +inline bool sameDirections(bool isPositiveCross, float a, float b) { + if (isPositiveCross) { + return a >= 0 && b >= 0; + } else { + return a <= 0 && b <= 0; } - return isPolyCW; } -/** - * Given the sorted array of all the vertices angle data, calculate for each - * vertices, the offset value to array element which represent the start edge - * of the polygon we need to shoot the ray at. - * - * TODO: Calculate this for umbra and penumbra in one loop using one single array. - * - * @param distances The result of the array distance counter. - */ -void SpotShadow::calculateDistanceCounter(bool needsOffsetToUmbra, int angleLength, - const VertexAngleData* allVerticesAngleData, int* distances) { - - bool firstVertexIsPenumbra = allVerticesAngleData[0].mIsPenumbra; - // If we want distance to inner, then we just set to 0 when we see inner. - bool needsSearch = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra; - int distanceCounter = 0; - if (needsSearch) { - int foundIndex = -1; - for (int i = (angleLength - 1); i >= 0; i--) { - bool currentIsOuter = allVerticesAngleData[i].mIsPenumbra; - // If we need distance to inner, then we need to find a inner vertex. - if (currentIsOuter != firstVertexIsPenumbra) { - foundIndex = i; - break; - } - } - LOG_ALWAYS_FATAL_IF(foundIndex == -1, "Wrong index found, means either" - " umbra or penumbra's length is 0"); - distanceCounter = angleLength - foundIndex; - } +// Find the right polygon edge to shoot the ray at. +inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir, + const Vector2* polyToCentroid, int polyLength) { + // Make sure we loop with a bound. + for (int i = 0; i < polyLength; i++) { + int currentIndex = (i + startPolyIndex) % polyLength; + const Vector2& currentToCentroid = polyToCentroid[currentIndex]; + const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength]; + + float currentCrossUmbra = currentToCentroid.cross(umbraDir); + float umbraCrossNext = umbraDir.cross(nextToCentroid); + if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) { #if DEBUG_SHADOW - ALOGD("distances[0] is %d", distanceCounter); + ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex ); #endif - - distances[0] = distanceCounter; // means never see a target poly - - for (int i = 1; i < angleLength; i++) { - bool firstVertexIsPenumbra = allVerticesAngleData[i].mIsPenumbra; - // When we needs for distance for each outer vertex to inner, then we - // increase the distance when seeing outer vertices. Otherwise, we clear - // to 0. - bool needsIncrement = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra; - // If counter is not -1, that means we have seen an other polygon's vertex. - if (needsIncrement && distanceCounter != -1) { - distanceCounter++; - } else { - distanceCounter = 0; + return currentIndex; } - distances[i] = distanceCounter; } + LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex); + return -1; } -/** - * Given umbra and penumbra angle data list, merge them by sorting the angle - * from the biggest to smallest. - * - * @param allVerticesAngleData The result array of merged angle data. - */ -void SpotShadow::mergeAngleList(int maxUmbraAngleIndex, int maxPenumbraAngleIndex, - const VertexAngleData* umbraAngleList, int umbraLength, - const VertexAngleData* penumbraAngleList, int penumbraLength, - VertexAngleData* allVerticesAngleData) { - - int totalRayNumber = umbraLength + penumbraLength; - int umbraIndex = maxUmbraAngleIndex; - int penumbraIndex = maxPenumbraAngleIndex; - - float currentUmbraAngle = umbraAngleList[umbraIndex].mAngle; - float currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle; - - // TODO: Clean this up using a while loop with 2 iterators. - for (int i = 0; i < totalRayNumber; i++) { - if (currentUmbraAngle > currentPenumbraAngle) { - allVerticesAngleData[i] = umbraAngleList[umbraIndex]; - umbraIndex = (umbraIndex + 1) % umbraLength; - - // If umbraIndex round back, that means we are running out of - // umbra vertices to merge, so just copy all the penumbra leftover. - // Otherwise, we update the currentUmbraAngle. - if (umbraIndex != maxUmbraAngleIndex) { - currentUmbraAngle = umbraAngleList[umbraIndex].mAngle; - } else { - for (int j = i + 1; j < totalRayNumber; j++) { - allVerticesAngleData[j] = penumbraAngleList[penumbraIndex]; - penumbraIndex = (penumbraIndex + 1) % penumbraLength; - } +// Generate the index pair for penumbra / umbra vertices, and more penumbra vertices +// if needed. +inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength, + const Vector2* umbra, int umbraLength, Vector2* newPenumbra, int& newPenumbraIndex, + IndexPair* verticesPair, int& verticesPairIndex) { + // In order to keep everything in just one loop, we need to pre-compute the + // closest umbra vertex for the last penumbra vertex. + int previousClosestUmbraIndex = getClosestUmbraIndex(penumbra[penumbraLength - 1], + umbra, umbraLength); + for (int i = 0; i < penumbraLength; i++) { + const Vector2& currentPenumbraVertex = penumbra[i]; + // For current penumbra vertex, starting from previousClosestUmbraIndex, + // then check the next one until the distance increase. + // The last one before the increase is the umbra vertex we need to pair with. + int currentUmbraIndex = previousClosestUmbraIndex; + float currentLengthSquared = (currentPenumbraVertex - umbra[currentUmbraIndex]).lengthSquared(); + int currentClosestUmbraIndex = -1; + int indexDelta = 0; + for (int j = 1; j < umbraLength; j++) { + int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength; + float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared(); + if (newLengthSquared > currentLengthSquared) { + currentClosestUmbraIndex = (previousClosestUmbraIndex + j - 1) % umbraLength; break; - } - } else { - allVerticesAngleData[i] = penumbraAngleList[penumbraIndex]; - penumbraIndex = (penumbraIndex + 1) % penumbraLength; - // If penumbraIndex round back, that means we are running out of - // penumbra vertices to merge, so just copy all the umbra leftover. - // Otherwise, we update the currentPenumbraAngle. - if (penumbraIndex != maxPenumbraAngleIndex) { - currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle; } else { - for (int j = i + 1; j < totalRayNumber; j++) { - allVerticesAngleData[j] = umbraAngleList[umbraIndex]; - umbraIndex = (umbraIndex + 1) % umbraLength; - } - break; + currentLengthSquared = newLengthSquared; + indexDelta++; } } - } -} - -#if DEBUG_SHADOW -/** - * DEBUG ONLY: Verify all the offset compuation is correctly done by examining - * each vertex and its neighbor. - */ -static void verifyDistanceCounter(const VertexAngleData* allVerticesAngleData, - const int* distances, int angleLength, const char* name) { - int currentDistance = distances[0]; - for (int i = 1; i < angleLength; i++) { - if (distances[i] != INT_MIN) { - if (!((currentDistance + 1) == distances[i] - || distances[i] == 0)) { - ALOGE("Wrong distance found at i %d name %s", i, name); + LOG_ALWAYS_FATAL_IF(currentClosestUmbraIndex == -1, "Can't find a closet umbra vertext at all"); + + if (indexDelta > 1) { + // For those umbra don't have penumbra, generate new penumbra vertices by interpolation. + // + // Assuming Pi for penumbra vertices, and Ui for umbra vertices. + // In the case like below P1 paired with U1 and P2 paired with U5. + // U2 to U4 are unpaired umbra vertices. + // + // P1 P2 + // | | + // U1 U2 U3 U4 U5 + // + // We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3 + // to pair with U2 to U4. + // + // P1 P1.1 P1.2 P1.3 P2 + // | | | | | + // U1 U2 U3 U4 U5 + // + // That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra + // vertex's location. + int newPenumbraNumber = indexDelta - 1; + + float accumulatedDeltaLength[newPenumbraNumber]; + float totalDeltaLength = 0; + + // To save time, cache the previous umbra vertex info outside the loop + // and update each loop. + Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex]; + Vector2 skippedUmbra; + // Use umbra data to precompute the length b/t unpaired umbra vertices, + // and its ratio against the total length. + for (int k = 0; k < indexDelta; k++) { + int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength; + skippedUmbra = umbra[skippedUmbraIndex]; + float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length(); + + totalDeltaLength += currentDeltaLength; + accumulatedDeltaLength[k] = totalDeltaLength; + + previousClosestUmbra = skippedUmbra; } - currentDistance = distances[i]; - if (currentDistance != 0) { - bool currentOuter = allVerticesAngleData[i].mIsPenumbra; - for (int j = 1; j <= (currentDistance - 1); j++) { - bool neigborOuter = - allVerticesAngleData[(i + angleLength - j) % angleLength].mIsPenumbra; - if (neigborOuter != currentOuter) { - ALOGE("Wrong distance found at i %d name %s", i, name); - } - } - bool oppositeOuter = - allVerticesAngleData[(i + angleLength - currentDistance) % angleLength].mIsPenumbra; - if (oppositeOuter == currentOuter) { - ALOGE("Wrong distance found at i %d name %s", i, name); - } - } - } - } -} -/** - * DEBUG ONLY: Verify all the angle data compuated are is correctly done - */ -static void verifyAngleData(int totalRayNumber, const VertexAngleData* allVerticesAngleData, - const int* distancesToInner, const int* distancesToOuter, - const VertexAngleData* umbraAngleList, int maxUmbraAngleIndex, int umbraLength, - const VertexAngleData* penumbraAngleList, int maxPenumbraAngleIndex, - int penumbraLength) { - for (int i = 0; i < totalRayNumber; i++) { - ALOGD("currentAngleList i %d, angle %f, isInner %d, index %d distancesToInner" - " %d distancesToOuter %d", i, allVerticesAngleData[i].mAngle, - !allVerticesAngleData[i].mIsPenumbra, - allVerticesAngleData[i].mVertexIndex, distancesToInner[i], distancesToOuter[i]); - } + const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength]; + // Then for each unpaired umbra vertex, create a new penumbra by the ratio, + // and pair them togehter. + for (int k = 0; k < newPenumbraNumber; k++) { + float weightForCurrentPenumbra = 1.0f; + if (totalDeltaLength != 0.0f) { + weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength; + } + float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra; - verifyDistanceCounter(allVerticesAngleData, distancesToInner, totalRayNumber, "distancesToInner"); - verifyDistanceCounter(allVerticesAngleData, distancesToOuter, totalRayNumber, "distancesToOuter"); + Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra + + previousPenumbra * weightForPreviousPenumbra; - for (int i = 0; i < totalRayNumber; i++) { - if ((distancesToInner[i] * distancesToOuter[i]) != 0) { - ALOGE("distancesToInner wrong at index %d distancesToInner[i] %d," - " distancesToOuter[i] %d", i, distancesToInner[i], distancesToOuter[i]); - } - } - int currentUmbraVertexIndex = - umbraAngleList[maxUmbraAngleIndex].mVertexIndex; - int currentPenumbraVertexIndex = - penumbraAngleList[maxPenumbraAngleIndex].mVertexIndex; - for (int i = 0; i < totalRayNumber; i++) { - if (allVerticesAngleData[i].mIsPenumbra == true) { - if (allVerticesAngleData[i].mVertexIndex != currentPenumbraVertexIndex) { - ALOGW("wrong penumbra indexing i %d allVerticesAngleData[i].mVertexIndex %d " - "currentpenumbraVertexIndex %d", i, - allVerticesAngleData[i].mVertexIndex, currentPenumbraVertexIndex); - } - currentPenumbraVertexIndex = (currentPenumbraVertexIndex + 1) % penumbraLength; - } else { - if (allVerticesAngleData[i].mVertexIndex != currentUmbraVertexIndex) { - ALOGW("wrong umbra indexing i %d allVerticesAngleData[i].mVertexIndex %d " - "currentUmbraVertexIndex %d", i, - allVerticesAngleData[i].mVertexIndex, currentUmbraVertexIndex); + int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength; + verticesPair[verticesPairIndex++] = {newPenumbraIndex, skippedUmbraIndex}; + newPenumbra[newPenumbraIndex++] = interpolatedPenumbra; } - currentUmbraVertexIndex = (currentUmbraVertexIndex + 1) % umbraLength; } - } - for (int i = 0; i < totalRayNumber - 1; i++) { - float currentAngle = allVerticesAngleData[i].mAngle; - float nextAngle = allVerticesAngleData[(i + 1) % totalRayNumber].mAngle; - if (currentAngle < nextAngle) { - ALOGE("Unexpected angle values!, currentAngle nextAngle %f %f", currentAngle, nextAngle); - } - } -} -#endif + verticesPair[verticesPairIndex++] = {newPenumbraIndex, currentClosestUmbraIndex}; + newPenumbra[newPenumbraIndex++] = currentPenumbraVertex; -/** - * In order to compute the occluded umbra, we need to setup the angle data list - * for the polygon data. Since we only store one poly vertex per polygon vertex, - * this array only needs to be a float array which are the angles for each vertex. - * - * @param polyAngleList The result list - * - * @return int The index for the maximum angle in this array. - */ -int SpotShadow::setupPolyAngleList(float* polyAngleList, int polyAngleLength, - const Vector2* poly2d, const Vector2& centroid) { - int maxPolyAngleIndex = -1; - float maxPolyAngle = -FLT_MAX; - for (int i = 0; i < polyAngleLength; i++) { - polyAngleList[i] = angle(poly2d[i], centroid); - if (polyAngleList[i] > maxPolyAngle) { - maxPolyAngle = polyAngleList[i]; - maxPolyAngleIndex = i; - } + previousClosestUmbraIndex = currentClosestUmbraIndex; } - return maxPolyAngleIndex; -} - -/** - * For umbra and penumbra, given the offset info and the current ray number, - * find the right edge index (the (starting vertex) for the ray to shoot at. - * - * @return int The index of the starting vertex of the edge. - */ -inline int SpotShadow::getEdgeStartIndex(const int* offsets, int rayIndex, int totalRayNumber, - const VertexAngleData* allVerticesAngleData) { - int tempOffset = offsets[rayIndex]; - int targetRayIndex = (rayIndex - tempOffset + totalRayNumber) % totalRayNumber; - return allVerticesAngleData[targetRayIndex].mVertexIndex; } -/** - * For the occluded umbra, given the array of angles, find the index of the - * starting vertex of the edge, for the ray to shoo at. - * - * TODO: Save the last result to shorten the search distance. - * - * @return int The index of the starting vertex of the edge. - */ -inline int SpotShadow::getPolyEdgeStartIndex(int maxPolyAngleIndex, int polyLength, - const float* polyAngleList, float rayAngle) { - int minPolyAngleIndex = (maxPolyAngleIndex + polyLength - 1) % polyLength; - int resultIndex = -1; - if (rayAngle > polyAngleList[maxPolyAngleIndex] - || rayAngle <= polyAngleList[minPolyAngleIndex]) { - resultIndex = minPolyAngleIndex; - } else { - for (int i = 0; i < polyLength - 1; i++) { - int currentIndex = (maxPolyAngleIndex + i) % polyLength; - int nextIndex = (maxPolyAngleIndex + i + 1) % polyLength; - if (rayAngle <= polyAngleList[currentIndex] - && rayAngle > polyAngleList[nextIndex]) { - resultIndex = currentIndex; - } - } +// Precompute all the polygon's vector, return true if the reference cross product is positive. +inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength, + const Vector2& centroid, Vector2* polyToCentroid) { + for (int j = 0; j < polyLength; j++) { + polyToCentroid[j] = poly2d[j] - centroid; } - if (CC_UNLIKELY(resultIndex == -1)) { - // TODO: Add more error handling here. - ALOGE("Wrong index found, means no edge can't be found for rayAngle %f", rayAngle); + float refCrossProduct = 0; + for (int j = 0; j < polyLength; j++) { + refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]); + if (refCrossProduct != 0) { + break; + } } - return resultIndex; + + return refCrossProduct > 0; } -/** - * Convert the incoming polygons into arrays of vertices, for each ray. - * Ray only shoots when there is one vertex either on penumbra on umbra. - * - * Finally, it will generate vertices per ray for umbra, penumbra and optionally - * occludedUmbra. - * - * Return true (success) when all vertices are generated - */ -int SpotShadow::convertPolysToVerticesPerRay( - bool hasOccludedUmbraArea, const Vector2* poly2d, int polyLength, - const Vector2* umbra, int umbraLength, const Vector2* penumbra, - int penumbraLength, const Vector2& centroid, - Vector2* umbraVerticesPerRay, Vector2* penumbraVerticesPerRay, - Vector2* occludedUmbraVerticesPerRay) { - int totalRayNumber = umbraLength + penumbraLength; - - // For incoming umbra / penumbra polygons, we will build an intermediate data - // structure to help us sort all the vertices according to the vertices. - // Using this data structure, we can tell where (the angle) to shoot the ray, - // whether we shoot at penumbra edge or umbra edge, and which edge to shoot at. - // - // We first parse each vertices and generate a table of VertexAngleData. - // Based on that, we create 2 arrays telling us which edge to shoot at. - VertexAngleData allVerticesAngleData[totalRayNumber]; - VertexAngleData umbraAngleList[umbraLength]; - VertexAngleData penumbraAngleList[penumbraLength]; - - int polyAngleLength = hasOccludedUmbraArea ? polyLength : 0; - float polyAngleList[polyAngleLength]; - - const int maxUmbraAngleIndex = - setupAngleList(umbraAngleList, umbraLength, umbra, centroid, false, "umbra"); - const int maxPenumbraAngleIndex = - setupAngleList(penumbraAngleList, penumbraLength, penumbra, centroid, true, "penumbra"); - const int maxPolyAngleIndex = setupPolyAngleList(polyAngleList, polyAngleLength, poly2d, centroid); - - // Check all the polygons here are CW. - bool isPolyCW = checkPolyClockwise(polyAngleLength, maxPolyAngleIndex, polyAngleList); - bool isUmbraCW = checkClockwise(maxUmbraAngleIndex, umbraLength, - umbraAngleList, "umbra"); - bool isPenumbraCW = checkClockwise(maxPenumbraAngleIndex, penumbraLength, - penumbraAngleList, "penumbra"); - - if (!isUmbraCW || !isPenumbraCW || !isPolyCW) { -#if DEBUG_SHADOW - ALOGE("One polygon is not CW isUmbraCW %d isPenumbraCW %d isPolyCW %d", - isUmbraCW, isPenumbraCW, isPolyCW); -#endif - return false; +// For one umbra vertex, shoot an ray from centroid to it. +// If the ray hit the polygon first, then return the intersection point as the +// closer vertex. +inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid, + const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid, + bool isPositiveCross, int& previousPolyIndex) { + Vector2 umbraToCentroid = umbraVertex - centroid; + float distanceToUmbra = umbraToCentroid.length(); + umbraToCentroid = umbraToCentroid / distanceToUmbra; + + // previousPolyIndex is updated for each item such that we can minimize the + // looping inside findPolyIndex(); + previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex, + umbraToCentroid, polyToCentroid, polyLength); + + float dx = umbraToCentroid.x; + float dy = umbraToCentroid.y; + float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy, + poly2d[previousPolyIndex], poly2d[(previousPolyIndex + 1) % polyLength]); + if (distanceToIntersectPoly < 0) { + distanceToIntersectPoly = 0; } - mergeAngleList(maxUmbraAngleIndex, maxPenumbraAngleIndex, - umbraAngleList, umbraLength, penumbraAngleList, penumbraLength, - allVerticesAngleData); - - // Calculate the offset to the left most Inner vertex for each outerVertex. - // Then the offset to the left most Outer vertex for each innerVertex. - int offsetToInner[totalRayNumber]; - int offsetToOuter[totalRayNumber]; - calculateDistanceCounter(true, totalRayNumber, allVerticesAngleData, offsetToInner); - calculateDistanceCounter(false, totalRayNumber, allVerticesAngleData, offsetToOuter); - - // Generate both umbraVerticesPerRay and penumbraVerticesPerRay - for (int i = 0; i < totalRayNumber; i++) { - float rayAngle = allVerticesAngleData[i].mAngle; - bool isUmbraVertex = !allVerticesAngleData[i].mIsPenumbra; - - float dx = cosf(rayAngle); - float dy = sinf(rayAngle); - float distanceToIntersectUmbra = -1; - - if (isUmbraVertex) { - // We can just copy umbra easily, and calculate the distance for the - // occluded umbra computation. - int startUmbraIndex = allVerticesAngleData[i].mVertexIndex; - umbraVerticesPerRay[i] = umbra[startUmbraIndex]; - if (hasOccludedUmbraArea) { - distanceToIntersectUmbra = (umbraVerticesPerRay[i] - centroid).length(); - } - - //shoot ray to penumbra only - int startPenumbraIndex = getEdgeStartIndex(offsetToOuter, i, totalRayNumber, - allVerticesAngleData); - float distanceToIntersectPenumbra = rayIntersectPoints(centroid, dx, dy, - penumbra[startPenumbraIndex], - penumbra[(startPenumbraIndex + 1) % penumbraLength]); - if (distanceToIntersectPenumbra < 0) { -#if DEBUG_SHADOW - ALOGW("convertPolyToRayDist for penumbra failed rayAngle %f dx %f dy %f", - rayAngle, dx, dy); -#endif - distanceToIntersectPenumbra = 0; - } - penumbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPenumbra; - penumbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPenumbra; - } else { - // We can just copy the penumbra - int startPenumbraIndex = allVerticesAngleData[i].mVertexIndex; - penumbraVerticesPerRay[i] = penumbra[startPenumbraIndex]; - - // And shoot ray to umbra only - int startUmbraIndex = getEdgeStartIndex(offsetToInner, i, totalRayNumber, - allVerticesAngleData); - - distanceToIntersectUmbra = rayIntersectPoints(centroid, dx, dy, - umbra[startUmbraIndex], umbra[(startUmbraIndex + 1) % umbraLength]); - if (distanceToIntersectUmbra < 0) { -#if DEBUG_SHADOW - ALOGW("convertPolyToRayDist for umbra failed rayAngle %f dx %f dy %f", - rayAngle, dx, dy); -#endif - distanceToIntersectUmbra = 0; - } - umbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectUmbra; - umbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectUmbra; - } - - if (hasOccludedUmbraArea) { - // Shoot the same ray to the poly2d, and get the distance. - int startPolyIndex = getPolyEdgeStartIndex(maxPolyAngleIndex, polyLength, - polyAngleList, rayAngle); - - float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy, - poly2d[startPolyIndex], poly2d[(startPolyIndex + 1) % polyLength]); - if (distanceToIntersectPoly < 0) { - distanceToIntersectPoly = 0; - } - distanceToIntersectPoly = MathUtils::min(distanceToIntersectUmbra, distanceToIntersectPoly); - occludedUmbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPoly; - occludedUmbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPoly; - } + // Pick the closer one as the occluded area vertex. + Vector2 closerVertex; + if (distanceToIntersectPoly < distanceToUmbra) { + closerVertex.x = centroid.x + dx * distanceToIntersectPoly; + closerVertex.y = centroid.y + dy * distanceToIntersectPoly; + } else { + closerVertex = umbraVertex; } -#if DEBUG_SHADOW - verifyAngleData(totalRayNumber, allVerticesAngleData, offsetToInner, - offsetToOuter, umbraAngleList, maxUmbraAngleIndex, umbraLength, - penumbraAngleList, maxPenumbraAngleIndex, penumbraLength); -#endif - return true; // success - + return closerVertex; } /** @@ -1193,7 +864,6 @@ void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrength Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength, const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip, const Vector2& centroid) { - bool hasOccludedUmbraArea = false; Vector2 poly2d[polyLength]; @@ -1209,128 +879,140 @@ void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrength } } - int totalRayNum = umbraLength + penumbraLength; - Vector2 umbraVertices[totalRayNum]; - Vector2 penumbraVertices[totalRayNum]; - Vector2 occludedUmbraVertices[totalRayNum]; - bool convertSuccess = convertPolysToVerticesPerRay(hasOccludedUmbraArea, poly2d, - polyLength, umbra, umbraLength, penumbra, penumbraLength, - centroid, umbraVertices, penumbraVertices, occludedUmbraVertices); - if (!convertSuccess) { - return; + // For each penumbra vertex, find its corresponding closest umbra vertex index. + // + // Penumbra Vertices marked as Pi + // Umbra Vertices marked as Ui + // (P3) + // (P2) | ' (P4) + // (P1)' | | ' + // ' | | ' + // (P0) ------------------------------------------------(P5) + // | (U0) |(U1) + // | | + // | |(U2) (P5.1) + // | | + // | | + // | | + // | | + // | | + // | | + // (U4)-----------------------------------(U3) (P6) + // + // At least, like P0, P1, P2, they will find the matching umbra as U0. + // If we jump over some umbra vertex without matching penumbra vertex, then + // we will generate some new penumbra vertex by interpolation. Like P6 is + // matching U3, but U2 is not matched with any penumbra vertex. + // So interpolate P5.1 out and match U2. + // In this way, every umbra vertex will have a matching penumbra vertex. + // + // The total pair number can be as high as umbraLength + penumbraLength. + const int maxNewPenumbraLength = umbraLength + penumbraLength; + IndexPair verticesPair[maxNewPenumbraLength]; + int verticesPairIndex = 0; + + // Cache all the existing penumbra vertices and newly interpolated vertices into a + // a new array. + Vector2 newPenumbra[maxNewPenumbraLength]; + int newPenumbraIndex = 0; + + // For each penumbra vertex, find its closet umbra vertex by comparing the + // neighbor umbra vertices. + genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra, + newPenumbraIndex, verticesPair, verticesPairIndex); + ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair"); + ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra"); +#if DEBUG_SHADOW + for (int i = 0; i < umbraLength; i++) { + ALOGD("umbra i %d, [%f, %f]", i, umbra[i].x, umbra[i].y); + } + for (int i = 0; i < newPenumbraIndex; i++) { + ALOGD("new penumbra i %d, [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y); + } + for (int i = 0; i < verticesPairIndex; i++) { + ALOGD("index i %d, [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex); } +#endif - // Minimal value is 1, for each vertex show up once. - // The bigger this value is , the smoother the look is, but more memory - // is consumed. - // When the ray number is high, that means the polygon has been fine - // tessellated, we don't need this extra slice, just keep it as 1. - int sliceNumberPerEdge = (totalRayNum > FINE_TESSELLATED_POLYGON_RAY_NUMBER) ? 1 : 2; - - // For each polygon, we at most add (totalRayNum * sliceNumberPerEdge) vertices. - int slicedVertexCountPerPolygon = totalRayNum * sliceNumberPerEdge; - int totalVertexCount = slicedVertexCountPerPolygon * 2 + totalRayNum; - int totalIndexCount = 2 * (slicedVertexCountPerPolygon * 2 + 2); + // For the size of vertex buffer, we need 3 rings, one has newPenumbraSize, + // one has umbraLength, the last one has at most umbraLength. + // + // For the size of index buffer, the umbra area needs (2 * umbraLength + 2). + // The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2). + // And 2 more for jumping between penumbra to umbra. + const int newPenumbraLength = newPenumbraIndex; + const int totalVertexCount = newPenumbraLength + umbraLength * 2; + const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6; AlphaVertex* shadowVertices = shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount); uint16_t* indexBuffer = shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount); - - int indexBufferIndex = 0; int vertexBufferIndex = 0; + int indexBufferIndex = 0; - uint16_t slicedUmbraVertexIndex[totalRayNum * sliceNumberPerEdge]; - // Should be something like 0 0 0 1 1 1 2 3 3 3... - int rayNumberPerSlicedUmbra[totalRayNum * sliceNumberPerEdge]; - int realUmbraVertexCount = 0; - for (int i = 0; i < totalRayNum; i++) { - Vector2 currentPenumbra = penumbraVertices[i]; - Vector2 currentUmbra = umbraVertices[i]; - - Vector2 nextPenumbra = penumbraVertices[(i + 1) % totalRayNum]; - Vector2 nextUmbra = umbraVertices[(i + 1) % totalRayNum]; - // NextUmbra/Penumbra will be done in the next loop!! - for (int weight = 0; weight < sliceNumberPerEdge; weight++) { - const Vector2& slicedPenumbra = (currentPenumbra * (sliceNumberPerEdge - weight) - + nextPenumbra * weight) / sliceNumberPerEdge; - - const Vector2& slicedUmbra = (currentUmbra * (sliceNumberPerEdge - weight) - + nextUmbra * weight) / sliceNumberPerEdge; - - // In the vertex buffer, we fill the Penumbra first, then umbra. - indexBuffer[indexBufferIndex++] = vertexBufferIndex; - AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedPenumbra.x, - slicedPenumbra.y, 0.0f); - - // When we add umbra vertex, we need to remember its current ray number. - // And its own vertexBufferIndex. This is for occluded umbra usage. - indexBuffer[indexBufferIndex++] = vertexBufferIndex; - rayNumberPerSlicedUmbra[realUmbraVertexCount] = i; - slicedUmbraVertexIndex[realUmbraVertexCount] = vertexBufferIndex; - realUmbraVertexCount++; - AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedUmbra.x, - slicedUmbra.y, M_PI); - } + // Fill the IB and VB for the penumbra area. + for (int i = 0; i < newPenumbraLength; i++) { + AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x, + newPenumbra[i].y, 0.0f); + } + for (int i = 0; i < umbraLength; i++) { + AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y, + M_PI); } - indexBuffer[indexBufferIndex++] = 0; - //RealUmbraVertexIndex[0] must be 1, so we connect back well at the - //beginning of occluded area. - indexBuffer[indexBufferIndex++] = 1; + for (int i = 0; i < verticesPairIndex; i++) { + indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex; + // All umbra index need to be offseted by newPenumbraSize. + indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength; + } + indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex; + indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength; + + // Now fill the IB and VB for the umbra area. + // First duplicated the index from previous strip and the first one for the + // degenerated triangles. + indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1]; + indexBufferIndex++; + indexBuffer[indexBufferIndex++] = newPenumbraLength + 0; + // Save the first VB index for umbra area in order to close the loop. + int savedStartIndex = vertexBufferIndex; - float occludedUmbraAlpha = M_PI; if (hasOccludedUmbraArea) { - // Now the occludedUmbra area; - int currentRayNumber = -1; - int firstOccludedUmbraIndex = -1; - for (int i = 0; i < realUmbraVertexCount; i++) { - indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i]; - - // If the occludedUmbra vertex has not been added yet, then add it. - // Otherwise, just use the previously added occludedUmbra vertices. - if (rayNumberPerSlicedUmbra[i] != currentRayNumber) { - currentRayNumber++; - indexBuffer[indexBufferIndex++] = vertexBufferIndex; - // We need to remember the begining of the occludedUmbra vertices - // to close this loop. - if (currentRayNumber == 0) { - firstOccludedUmbraIndex = vertexBufferIndex; - } - AlphaVertex::set(&shadowVertices[vertexBufferIndex++], - occludedUmbraVertices[currentRayNumber].x, - occludedUmbraVertices[currentRayNumber].y, - occludedUmbraAlpha); - } else { - indexBuffer[indexBufferIndex++] = (vertexBufferIndex - 1); - } + // Precompute all the polygon's vector, and the reference cross product, + // in order to find the right polygon edge for the ray to intersect. + Vector2 polyToCentroid[polyLength]; + bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid); + + // Because both the umbra and polygon are going in the same direction, + // we can save the previous polygon index to make sure we have less polygon + // vertex to compute for each ray. + int previousPolyIndex = 0; + for (int i = 0; i < umbraLength; i++) { + // Shoot a ray from centroid to each umbra vertices and pick the one with + // shorter distance to the centroid, b/t the umbra vertex or the intersection point. + Vector2 closerVertex = getCloserVertex(umbra[i], centroid, poly2d, polyLength, + polyToCentroid, isPositiveCross, previousPolyIndex); + + // We already stored the umbra vertices, just need to add the occlued umbra's ones. + indexBuffer[indexBufferIndex++] = newPenumbraLength + i; + indexBuffer[indexBufferIndex++] = vertexBufferIndex; + AlphaVertex::set(&shadowVertices[vertexBufferIndex++], + closerVertex.x, closerVertex.y, M_PI); } - // Close the loop here! - indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0]; - indexBuffer[indexBufferIndex++] = firstOccludedUmbraIndex; } else { + // If there is no occluded umbra at all, then draw the triangle fan + // starting from the centroid to all umbra vertices. int lastCentroidIndex = vertexBufferIndex; AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x, - centroid.y, occludedUmbraAlpha); - for (int i = 0; i < realUmbraVertexCount; i++) { - indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i]; + centroid.y, M_PI); + for (int i = 0; i < umbraLength; i++) { + indexBuffer[indexBufferIndex++] = newPenumbraLength + i; indexBuffer[indexBufferIndex++] = lastCentroidIndex; } - // Close the loop here! - indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0]; - indexBuffer[indexBufferIndex++] = lastCentroidIndex; } - -#if DEBUG_SHADOW - ALOGD("allocated IB %d allocated VB is %d", totalIndexCount, totalVertexCount); - ALOGD("IB index %d VB index is %d", indexBufferIndex, vertexBufferIndex); - for (int i = 0; i < vertexBufferIndex; i++) { - ALOGD("vertexBuffer i %d, (%f, %f %f)", i, shadowVertices[i].x, shadowVertices[i].y, - shadowVertices[i].alpha); - } - for (int i = 0; i < indexBufferIndex; i++) { - ALOGD("indexBuffer i %d, indexBuffer[i] %d", i, indexBuffer[i]); - } -#endif + // Closing the umbra area triangle's loop here. + indexBuffer[indexBufferIndex++] = newPenumbraLength; + indexBuffer[indexBufferIndex++] = savedStartIndex; // At the end, update the real index and vertex buffer size. shadowTriangleStrip.updateVertexCount(vertexBufferIndex); diff --git a/libs/hwui/SpotShadow.h b/libs/hwui/SpotShadow.h index 6fa2028..e2d94f7 100644 --- a/libs/hwui/SpotShadow.h +++ b/libs/hwui/SpotShadow.h @@ -36,40 +36,6 @@ private: static float projectCasterToOutline(Vector2& outline, const Vector3& lightCenter, const Vector3& polyVertex); - static int setupAngleList(VertexAngleData* angleDataList, - int polyLength, const Vector2* polygon, const Vector2& centroid, - bool isPenumbra, const char* name); - - static int convertPolysToVerticesPerRay( - bool hasOccludedUmbraArea, const Vector2* poly2d, int polyLength, - const Vector2* umbra, int umbraLength, const Vector2* penumbra, - int penumbraLength, const Vector2& centroid, - Vector2* umbraVerticesPerRay, Vector2* penumbraVerticesPerRay, - Vector2* occludedUmbraVerticesPerRay); - - static bool checkClockwise(int maxIndex, int listLength, - VertexAngleData* angleList, const char* name); - - static void calculateDistanceCounter(bool needsOffsetToUmbra, int angleLength, - const VertexAngleData* allVerticesAngleData, int* distances); - - static void mergeAngleList(int maxUmbraAngleIndex, int maxPenumbraAngleIndex, - const VertexAngleData* umbraAngleList, int umbraLength, - const VertexAngleData* penumbraAngleList, int penumbraLength, - VertexAngleData* allVerticesAngleData); - - static int setupPolyAngleList(float* polyAngleList, int polyAngleLength, - const Vector2* poly2d, const Vector2& centroid); - - static bool checkPolyClockwise(int polyAngleLength, int maxPolyAngleIndex, - const float* polyAngleList); - - static int getEdgeStartIndex(const int* offsets, int rayIndex, int totalRayNumber, - const VertexAngleData* allVerticesAngleData); - - static int getPolyEdgeStartIndex(int maxPolyAngleIndex, int polyLength, - const float* polyAngleList, float rayAngle); - static void computeLightPolygon(int points, const Vector3& lightCenter, float size, Vector3* ret); diff --git a/libs/hwui/Vector.h b/libs/hwui/Vector.h index d033ed9..aa6acc9 100644 --- a/libs/hwui/Vector.h +++ b/libs/hwui/Vector.h @@ -99,6 +99,10 @@ struct Vector2 { return x * v.x + y * v.y; } + float cross(const Vector2& v) const { + return x * v.y - y * v.x; + } + void dump() { ALOGD("Vector2[%.2f, %.2f]", x, y); } |