diff options
Diffstat (limited to 'core/java/android/util/PathParser.java')
| -rw-r--r-- | core/java/android/util/PathParser.java | 528 |
1 files changed, 528 insertions, 0 deletions
diff --git a/core/java/android/util/PathParser.java b/core/java/android/util/PathParser.java new file mode 100644 index 0000000..f90ce51 --- /dev/null +++ b/core/java/android/util/PathParser.java @@ -0,0 +1,528 @@ +/* + * Copyright (C) 2014 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except + * in compliance with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software distributed under the License + * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express + * or implied. See the License for the specific language governing permissions and limitations under + * the License. + */ + +package android.util; + +import android.graphics.Path; +import android.util.Log; + +import java.util.ArrayList; +import java.util.Arrays; + +/** + * @hide + */ +public class PathParser { + static final String LOGTAG = PathParser.class.getSimpleName(); + + /** + * @param pathData The string representing a path, the same as "d" string in svg file. + * @return the generated Path object. + */ + public static Path createPathFromPathData(String pathData) { + Path path = new Path(); + PathDataNode[] nodes = createNodesFromPathData(pathData); + if (nodes != null) { + PathDataNode.nodesToPath(nodes, path); + return path; + } + return null; + } + + /** + * @param pathData The string representing a path, the same as "d" string in svg file. + * @return an array of the PathDataNode. + */ + public static PathDataNode[] createNodesFromPathData(String pathData) { + int start = 0; + int end = 1; + + ArrayList<PathDataNode> list = new ArrayList<PathDataNode>(); + while (end < pathData.length()) { + end = nextStart(pathData, end); + String s = pathData.substring(start, end); + float[] val = getFloats(s); + addNode(list, s.charAt(0), val); + + start = end; + end++; + } + if ((end - start) == 1 && start < pathData.length()) { + addNode(list, pathData.charAt(start), new float[0]); + } + return list.toArray(new PathDataNode[list.size()]); + } + + private static int nextStart(String s, int end) { + char c; + + while (end < s.length()) { + c = s.charAt(end); + if (((c - 'A') * (c - 'Z') <= 0) || (((c - 'a') * (c - 'z') <= 0))) { + return end; + } + end++; + } + return end; + } + + private static void addNode(ArrayList<PathDataNode> list, char cmd, float[] val) { + list.add(new PathDataNode(cmd, val)); + } + + + /** + * Parse the floats in the string. + * This is an optimized version of parseFloat(s.split(",|\\s")); + * + * @param s the string containing a command and list of floats + * @return array of floats + */ + private static float[] getFloats(String s) { + if (s.charAt(0) == 'z' | s.charAt(0) == 'Z') { + return new float[0]; + } + try { + float[] tmp = new float[s.length()]; + int count = 0; + int pos = 1, end; + while ((end = extract(s, pos)) >= 0) { + if (pos < end) { + tmp[count++] = Float.parseFloat(s.substring(pos, end)); + } + pos = end + 1; + } + // handle the final float if there is one + if (pos < s.length()) { + tmp[count++] = Float.parseFloat(s.substring(pos, s.length())); + } + return Arrays.copyOf(tmp, count); + } catch (NumberFormatException e){ + Log.e(LOGTAG,"error in parsing \""+s+"\""); + throw e; + } + } + + /** + * Calculate the position of the next comma or space + * @param s the string to search + * @param start the position to start searching + * @return the position of the next comma or space or -1 if none found + */ + private static int extract(String s, int start) { + int space = s.indexOf(' ', start); + int comma = s.indexOf(',', start); + if (space == -1) { + return comma; + } + if (comma == -1) { + return space; + } + return (comma > space) ? space : comma; + } + + public static class PathDataNode { + private char mType; + private float[] mParams; + + private PathDataNode(char type, float[] params) { + mType = type; + mParams = params; + } + + private PathDataNode(PathDataNode n) { + mType = n.mType; + mParams = Arrays.copyOf(n.mParams, n.mParams.length); + } + + public static void nodesToPath(PathDataNode[] node, Path path) { + float[] current = new float[4]; + char previousCommand = 'm'; + for (int i = 0; i < node.length; i++) { + addCommand(path, current, previousCommand, node[i].mType, node[i].mParams); + previousCommand = node[i].mType; + } + } + + private static void addCommand(Path path, float[] current, + char previousCmd, char cmd, float[] val) { + + int incr = 2; + float currentX = current[0]; + float currentY = current[1]; + float ctrlPointX = current[2]; + float ctrlPointY = current[3]; + float reflectiveCtrlPointX; + float reflectiveCtrlPointY; + + switch (cmd) { + case 'z': + case 'Z': + path.close(); + return; + case 'm': + case 'M': + case 'l': + case 'L': + case 't': + case 'T': + incr = 2; + break; + case 'h': + case 'H': + case 'v': + case 'V': + incr = 1; + break; + case 'c': + case 'C': + incr = 6; + break; + case 's': + case 'S': + case 'q': + case 'Q': + incr = 4; + break; + case 'a': + case 'A': + incr = 7; + break; + } + for (int k = 0; k < val.length; k += incr) { + switch (cmd) { + case 'm': // moveto - Start a new sub-path (relative) + path.rMoveTo(val[k + 0], val[k + 1]); + currentX += val[k + 0]; + currentY += val[k + 1]; + break; + case 'M': // moveto - Start a new sub-path + path.moveTo(val[k + 0], val[k + 1]); + currentX = val[k + 0]; + currentY = val[k + 1]; + break; + case 'l': // lineto - Draw a line from the current point (relative) + path.rLineTo(val[k + 0], val[k + 1]); + currentX += val[k + 0]; + currentY += val[k + 1]; + break; + case 'L': // lineto - Draw a line from the current point + path.lineTo(val[k + 0], val[k + 1]); + currentX = val[k + 0]; + currentY = val[k + 1]; + break; + case 'z': // closepath - Close the current subpath + case 'Z': // closepath - Close the current subpath + path.close(); + break; + case 'h': // horizontal lineto - Draws a horizontal line (relative) + path.rLineTo(val[k + 0], 0); + currentX += val[k + 0]; + break; + case 'H': // horizontal lineto - Draws a horizontal line + path.lineTo(val[k + 0], currentY); + currentX = val[k + 0]; + break; + case 'v': // vertical lineto - Draws a vertical line from the current point (r) + path.rLineTo(0, val[k + 0]); + currentY += val[k + 0]; + break; + case 'V': // vertical lineto - Draws a vertical line from the current point + path.lineTo(currentX, val[k + 0]); + currentY = val[k + 0]; + break; + case 'c': // curveto - Draws a cubic Bézier curve (relative) + path.rCubicTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3], + val[k + 4], val[k + 5]); + + ctrlPointX = currentX + val[k + 2]; + ctrlPointY = currentY + val[k + 3]; + currentX += val[k + 4]; + currentY += val[k + 5]; + + break; + case 'C': // curveto - Draws a cubic Bézier curve + path.cubicTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3], + val[k + 4], val[k + 5]); + currentX = val[k + 4]; + currentY = val[k + 5]; + ctrlPointX = val[k + 2]; + ctrlPointY = val[k + 3]; + break; + case 's': // smooth curveto - Draws a cubic Bézier curve (reflective cp) + reflectiveCtrlPointX = 0; + reflectiveCtrlPointY = 0; + if (previousCmd == 'c' || previousCmd == 's' + || previousCmd == 'C' || previousCmd == 'S') { + reflectiveCtrlPointX = currentX - ctrlPointX; + reflectiveCtrlPointY = currentY - ctrlPointY; + } + path.rCubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY, + val[k + 0], val[k + 1], + val[k + 2], val[k + 3]); + + ctrlPointX = currentX + val[k + 0]; + ctrlPointY = currentY + val[k + 1]; + currentX += val[k + 2]; + currentY += val[k + 3]; + break; + case 'S': // shorthand/smooth curveto Draws a cubic Bézier curve(reflective cp) + reflectiveCtrlPointX = currentX; + reflectiveCtrlPointY = currentY; + if (previousCmd == 'c' || previousCmd == 's' + || previousCmd == 'C' || previousCmd == 'S') { + reflectiveCtrlPointX = 2 * currentX - ctrlPointX; + reflectiveCtrlPointY = 2 * currentY - ctrlPointY; + } + path.cubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY, + val[k + 0], val[k + 1], val[k + 2], val[k + 3]); + ctrlPointX = val[k + 0]; + ctrlPointY = val[k + 1]; + currentX = val[k + 2]; + currentY = val[k + 3]; + break; + case 'q': // Draws a quadratic Bézier (relative) + path.rQuadTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3]); + ctrlPointX = currentX + val[k + 0]; + ctrlPointY = currentY + val[k + 1]; + currentX += val[k + 2]; + currentY += val[k + 3]; + break; + case 'Q': // Draws a quadratic Bézier + path.quadTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3]); + ctrlPointX = val[k + 0]; + ctrlPointY = val[k + 1]; + currentX = val[k + 2]; + currentY = val[k + 3]; + break; + case 't': // Draws a quadratic Bézier curve(reflective control point)(relative) + reflectiveCtrlPointX = 0; + reflectiveCtrlPointY = 0; + if (previousCmd == 'q' || previousCmd == 't' + || previousCmd == 'Q' || previousCmd == 'T') { + reflectiveCtrlPointX = currentX - ctrlPointX; + reflectiveCtrlPointY = currentY - ctrlPointY; + } + path.rQuadTo(reflectiveCtrlPointX, reflectiveCtrlPointY, + val[k + 0], val[k + 1]); + ctrlPointX = currentX + reflectiveCtrlPointX; + ctrlPointY = currentY + reflectiveCtrlPointY; + currentX += val[k + 0]; + currentY += val[k + 1]; + break; + case 'T': // Draws a quadratic Bézier curve (reflective control point) + reflectiveCtrlPointX = currentX; + reflectiveCtrlPointY = currentY; + if (previousCmd == 'q' || previousCmd == 't' + || previousCmd == 'Q' || previousCmd == 'T') { + reflectiveCtrlPointX = 2 * currentX - ctrlPointX; + reflectiveCtrlPointY = 2 * currentY - ctrlPointY; + } + path.quadTo(reflectiveCtrlPointX, reflectiveCtrlPointY, + val[k + 0], val[k + 1]); + ctrlPointX = reflectiveCtrlPointX; + ctrlPointY = reflectiveCtrlPointY; + currentX = val[k + 0]; + currentY = val[k + 1]; + break; + case 'a': // Draws an elliptical arc + // (rx ry x-axis-rotation large-arc-flag sweep-flag x y) + drawArc(path, + currentX, + currentY, + val[k + 5] + currentX, + val[k + 6] + currentY, + val[k + 0], + val[k + 1], + val[k + 2], + val[k + 3] != 0, + val[k + 4] != 0); + currentX += val[k + 5]; + currentY += val[k + 6]; + ctrlPointX = currentX; + ctrlPointY = currentY; + break; + case 'A': // Draws an elliptical arc + drawArc(path, + currentX, + currentY, + val[k + 5], + val[k + 6], + val[k + 0], + val[k + 1], + val[k + 2], + val[k + 3] != 0, + val[k + 4] != 0); + currentX = val[k + 5]; + currentY = val[k + 6]; + ctrlPointX = currentX; + ctrlPointY = currentY; + break; + } + previousCmd = cmd; + } + current[0] = currentX; + current[1] = currentY; + current[2] = ctrlPointX; + current[3] = ctrlPointY; + } + + private static void drawArc(Path p, + float x0, + float y0, + float x1, + float y1, + float a, + float b, + float theta, + boolean isMoreThanHalf, + boolean isPositiveArc) { + + /* Convert rotation angle from degrees to radians */ + double thetaD = Math.toRadians(theta); + /* Pre-compute rotation matrix entries */ + double cosTheta = Math.cos(thetaD); + double sinTheta = Math.sin(thetaD); + /* Transform (x0, y0) and (x1, y1) into unit space */ + /* using (inverse) rotation, followed by (inverse) scale */ + double x0p = (x0 * cosTheta + y0 * sinTheta) / a; + double y0p = (-x0 * sinTheta + y0 * cosTheta) / b; + double x1p = (x1 * cosTheta + y1 * sinTheta) / a; + double y1p = (-x1 * sinTheta + y1 * cosTheta) / b; + + /* Compute differences and averages */ + double dx = x0p - x1p; + double dy = y0p - y1p; + double xm = (x0p + x1p) / 2; + double ym = (y0p + y1p) / 2; + /* Solve for intersecting unit circles */ + double dsq = dx * dx + dy * dy; + if (dsq == 0.0) { + Log.w(LOGTAG, " Points are coincident"); + return; /* Points are coincident */ + } + double disc = 1.0 / dsq - 1.0 / 4.0; + if (disc < 0.0) { + Log.w(LOGTAG, "Points are too far apart " + dsq); + float adjust = (float) (Math.sqrt(dsq) / 1.99999); + drawArc(p, x0, y0, x1, y1, a * adjust, + b * adjust, theta, isMoreThanHalf, isPositiveArc); + return; /* Points are too far apart */ + } + double s = Math.sqrt(disc); + double sdx = s * dx; + double sdy = s * dy; + double cx; + double cy; + if (isMoreThanHalf == isPositiveArc) { + cx = xm - sdy; + cy = ym + sdx; + } else { + cx = xm + sdy; + cy = ym - sdx; + } + + double eta0 = Math.atan2((y0p - cy), (x0p - cx)); + + double eta1 = Math.atan2((y1p - cy), (x1p - cx)); + + double sweep = (eta1 - eta0); + if (isPositiveArc != (sweep >= 0)) { + if (sweep > 0) { + sweep -= 2 * Math.PI; + } else { + sweep += 2 * Math.PI; + } + } + + cx *= a; + cy *= b; + double tcx = cx; + cx = cx * cosTheta - cy * sinTheta; + cy = tcx * sinTheta + cy * cosTheta; + + arcToBezier(p, cx, cy, a, b, x0, y0, thetaD, eta0, sweep); + } + + /** + * Converts an arc to cubic Bezier segments and records them in p. + * + * @param p The target for the cubic Bezier segments + * @param cx The x coordinate center of the ellipse + * @param cy The y coordinate center of the ellipse + * @param a The radius of the ellipse in the horizontal direction + * @param b The radius of the ellipse in the vertical direction + * @param e1x E(eta1) x coordinate of the starting point of the arc + * @param e1y E(eta2) y coordinate of the starting point of the arc + * @param theta The angle that the ellipse bounding rectangle makes with horizontal plane + * @param start The start angle of the arc on the ellipse + * @param sweep The angle (positive or negative) of the sweep of the arc on the ellipse + */ + private static void arcToBezier(Path p, + double cx, + double cy, + double a, + double b, + double e1x, + double e1y, + double theta, + double start, + double sweep) { + // Taken from equations at: http://spaceroots.org/documents/ellipse/node8.html + // and http://www.spaceroots.org/documents/ellipse/node22.html + + // Maximum of 45 degrees per cubic Bezier segment + int numSegments = Math.abs((int) Math.ceil(sweep * 4 / Math.PI)); + + double eta1 = start; + double cosTheta = Math.cos(theta); + double sinTheta = Math.sin(theta); + double cosEta1 = Math.cos(eta1); + double sinEta1 = Math.sin(eta1); + double ep1x = (-a * cosTheta * sinEta1) - (b * sinTheta * cosEta1); + double ep1y = (-a * sinTheta * sinEta1) + (b * cosTheta * cosEta1); + + double anglePerSegment = sweep / numSegments; + for (int i = 0; i < numSegments; i++) { + double eta2 = eta1 + anglePerSegment; + double sinEta2 = Math.sin(eta2); + double cosEta2 = Math.cos(eta2); + double e2x = cx + (a * cosTheta * cosEta2) - (b * sinTheta * sinEta2); + double e2y = cy + (a * sinTheta * cosEta2) + (b * cosTheta * sinEta2); + double ep2x = -a * cosTheta * sinEta2 - b * sinTheta * cosEta2; + double ep2y = -a * sinTheta * sinEta2 + b * cosTheta * cosEta2; + double tanDiff2 = Math.tan((eta2 - eta1) / 2); + double alpha = + Math.sin(eta2 - eta1) * (Math.sqrt(4 + (3 * tanDiff2 * tanDiff2)) - 1) / 3; + double q1x = e1x + alpha * ep1x; + double q1y = e1y + alpha * ep1y; + double q2x = e2x - alpha * ep2x; + double q2y = e2y - alpha * ep2y; + + p.cubicTo((float) q1x, + (float) q1y, + (float) q2x, + (float) q2y, + (float) e2x, + (float) e2y); + eta1 = eta2; + e1x = e2x; + e1y = e2y; + ep1x = ep2x; + ep1y = ep2y; + } + } + + } +} |
