diff options
Diffstat (limited to 'libs/androidfw/Input.cpp')
-rw-r--r-- | libs/androidfw/Input.cpp | 510 |
1 files changed, 2 insertions, 508 deletions
diff --git a/libs/androidfw/Input.cpp b/libs/androidfw/Input.cpp index fbe1926..40a6c47 100644 --- a/libs/androidfw/Input.cpp +++ b/libs/androidfw/Input.cpp @@ -15,31 +15,13 @@ */ #define LOG_TAG "Input" - //#define LOG_NDEBUG 0 -// Log debug messages about keymap probing. -#define DEBUG_PROBE 0 - -// Log debug messages about velocity tracking. -#define DEBUG_VELOCITY 0 - -// Log debug messages about least squares fitting. -#define DEBUG_LEAST_SQUARES 0 - -// Log debug messages about acceleration. -#define DEBUG_ACCELERATION 0 - - -#include <stdlib.h> -#include <unistd.h> -#include <ctype.h> - -#include <androidfw/Input.h> - #include <math.h> #include <limits.h> +#include <androidfw/Input.h> + #ifdef HAVE_ANDROID_OS #include <binder/Parcel.h> @@ -665,492 +647,4 @@ void PooledInputEventFactory::recycle(InputEvent* event) { delete event; } - -// --- VelocityTracker --- - -const uint32_t VelocityTracker::DEFAULT_DEGREE; -const nsecs_t VelocityTracker::DEFAULT_HORIZON; -const uint32_t VelocityTracker::HISTORY_SIZE; - -static inline float vectorDot(const float* a, const float* b, uint32_t m) { - float r = 0; - while (m--) { - r += *(a++) * *(b++); - } - return r; -} - -static inline float vectorNorm(const float* a, uint32_t m) { - float r = 0; - while (m--) { - float t = *(a++); - r += t * t; - } - return sqrtf(r); -} - -#if DEBUG_LEAST_SQUARES || DEBUG_VELOCITY -static String8 vectorToString(const float* a, uint32_t m) { - String8 str; - str.append("["); - while (m--) { - str.appendFormat(" %f", *(a++)); - if (m) { - str.append(","); - } - } - str.append(" ]"); - return str; -} - -static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) { - String8 str; - str.append("["); - for (size_t i = 0; i < m; i++) { - if (i) { - str.append(","); - } - str.append(" ["); - for (size_t j = 0; j < n; j++) { - if (j) { - str.append(","); - } - str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]); - } - str.append(" ]"); - } - str.append(" ]"); - return str; -} -#endif - -VelocityTracker::VelocityTracker() { - clear(); -} - -void VelocityTracker::clear() { - mIndex = 0; - mMovements[0].idBits.clear(); - mActivePointerId = -1; -} - -void VelocityTracker::clearPointers(BitSet32 idBits) { - BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value); - mMovements[mIndex].idBits = remainingIdBits; - - if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) { - mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1; - } -} - -void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) { - if (++mIndex == HISTORY_SIZE) { - mIndex = 0; - } - - while (idBits.count() > MAX_POINTERS) { - idBits.clearLastMarkedBit(); - } - - Movement& movement = mMovements[mIndex]; - movement.eventTime = eventTime; - movement.idBits = idBits; - uint32_t count = idBits.count(); - for (uint32_t i = 0; i < count; i++) { - movement.positions[i] = positions[i]; - } - - if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) { - mActivePointerId = count != 0 ? idBits.firstMarkedBit() : -1; - } - -#if DEBUG_VELOCITY - ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d", - eventTime, idBits.value, mActivePointerId); - for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) { - uint32_t id = iterBits.firstMarkedBit(); - uint32_t index = idBits.getIndexOfBit(id); - iterBits.clearBit(id); - Estimator estimator; - getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator); - ALOGD(" %d: position (%0.3f, %0.3f), " - "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)", - id, positions[index].x, positions[index].y, - int(estimator.degree), - vectorToString(estimator.xCoeff, estimator.degree).string(), - vectorToString(estimator.yCoeff, estimator.degree).string(), - estimator.confidence); - } -#endif -} - -void VelocityTracker::addMovement(const MotionEvent* event) { - int32_t actionMasked = event->getActionMasked(); - - switch (actionMasked) { - case AMOTION_EVENT_ACTION_DOWN: - case AMOTION_EVENT_ACTION_HOVER_ENTER: - // Clear all pointers on down before adding the new movement. - clear(); - break; - case AMOTION_EVENT_ACTION_POINTER_DOWN: { - // Start a new movement trace for a pointer that just went down. - // We do this on down instead of on up because the client may want to query the - // final velocity for a pointer that just went up. - BitSet32 downIdBits; - downIdBits.markBit(event->getPointerId(event->getActionIndex())); - clearPointers(downIdBits); - break; - } - case AMOTION_EVENT_ACTION_MOVE: - case AMOTION_EVENT_ACTION_HOVER_MOVE: - break; - default: - // Ignore all other actions because they do not convey any new information about - // pointer movement. We also want to preserve the last known velocity of the pointers. - // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position - // of the pointers that went up. ACTION_POINTER_UP does include the new position of - // pointers that remained down but we will also receive an ACTION_MOVE with this - // information if any of them actually moved. Since we don't know how many pointers - // will be going up at once it makes sense to just wait for the following ACTION_MOVE - // before adding the movement. - return; - } - - size_t pointerCount = event->getPointerCount(); - if (pointerCount > MAX_POINTERS) { - pointerCount = MAX_POINTERS; - } - - BitSet32 idBits; - for (size_t i = 0; i < pointerCount; i++) { - idBits.markBit(event->getPointerId(i)); - } - - nsecs_t eventTime; - Position positions[pointerCount]; - - size_t historySize = event->getHistorySize(); - for (size_t h = 0; h < historySize; h++) { - eventTime = event->getHistoricalEventTime(h); - for (size_t i = 0; i < pointerCount; i++) { - positions[i].x = event->getHistoricalX(i, h); - positions[i].y = event->getHistoricalY(i, h); - } - addMovement(eventTime, idBits, positions); - } - - eventTime = event->getEventTime(); - for (size_t i = 0; i < pointerCount; i++) { - positions[i].x = event->getX(i); - positions[i].y = event->getY(i); - } - addMovement(eventTime, idBits, positions); -} - -/** - * Solves a linear least squares problem to obtain a N degree polynomial that fits - * the specified input data as nearly as possible. - * - * Returns true if a solution is found, false otherwise. - * - * The input consists of two vectors of data points X and Y with indices 0..m-1. - * The output is a vector B with indices 0..n-1 that describes a polynomial - * that fits the data, such the sum of abs(Y[i] - (B[0] + B[1] X[i] + B[2] X[i]^2 ... B[n] X[i]^n)) - * for all i between 0 and m-1 is minimized. - * - * That is to say, the function that generated the input data can be approximated - * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n. - * - * The coefficient of determination (R^2) is also returned to describe the goodness - * of fit of the model for the given data. It is a value between 0 and 1, where 1 - * indicates perfect correspondence. - * - * This function first expands the X vector to a m by n matrix A such that - * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n. - * - * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q - * and an m by n upper triangular matrix R. Because R is upper triangular (lower - * part is all zeroes), we can simplify the decomposition into an m by n matrix - * Q1 and a n by n matrix R1 such that A = Q1 R1. - * - * Finally we solve the system of linear equations given by R1 B = (Qtranspose Y) - * to find B. - * - * For efficiency, we lay out A and Q column-wise in memory because we frequently - * operate on the column vectors. Conversely, we lay out R row-wise. - * - * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares - * http://en.wikipedia.org/wiki/Gram-Schmidt - */ -static bool solveLeastSquares(const float* x, const float* y, uint32_t m, uint32_t n, - float* outB, float* outDet) { -#if DEBUG_LEAST_SQUARES - ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s", int(m), int(n), - vectorToString(x, m).string(), vectorToString(y, m).string()); -#endif - - // Expand the X vector to a matrix A. - float a[n][m]; // column-major order - for (uint32_t h = 0; h < m; h++) { - a[0][h] = 1; - for (uint32_t i = 1; i < n; i++) { - a[i][h] = a[i - 1][h] * x[h]; - } - } -#if DEBUG_LEAST_SQUARES - ALOGD(" - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string()); -#endif - - // Apply the Gram-Schmidt process to A to obtain its QR decomposition. - float q[n][m]; // orthonormal basis, column-major order - float r[n][n]; // upper triangular matrix, row-major order - for (uint32_t j = 0; j < n; j++) { - for (uint32_t h = 0; h < m; h++) { - q[j][h] = a[j][h]; - } - for (uint32_t i = 0; i < j; i++) { - float dot = vectorDot(&q[j][0], &q[i][0], m); - for (uint32_t h = 0; h < m; h++) { - q[j][h] -= dot * q[i][h]; - } - } - - float norm = vectorNorm(&q[j][0], m); - if (norm < 0.000001f) { - // vectors are linearly dependent or zero so no solution -#if DEBUG_LEAST_SQUARES - ALOGD(" - no solution, norm=%f", norm); -#endif - return false; - } - - float invNorm = 1.0f / norm; - for (uint32_t h = 0; h < m; h++) { - q[j][h] *= invNorm; - } - for (uint32_t i = 0; i < n; i++) { - r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m); - } - } -#if DEBUG_LEAST_SQUARES - ALOGD(" - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string()); - ALOGD(" - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string()); - - // calculate QR, if we factored A correctly then QR should equal A - float qr[n][m]; - for (uint32_t h = 0; h < m; h++) { - for (uint32_t i = 0; i < n; i++) { - qr[i][h] = 0; - for (uint32_t j = 0; j < n; j++) { - qr[i][h] += q[j][h] * r[j][i]; - } - } - } - ALOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string()); -#endif - - // Solve R B = Qt Y to find B. This is easy because R is upper triangular. - // We just work from bottom-right to top-left calculating B's coefficients. - for (uint32_t i = n; i-- != 0; ) { - outB[i] = vectorDot(&q[i][0], y, m); - for (uint32_t j = n - 1; j > i; j--) { - outB[i] -= r[i][j] * outB[j]; - } - outB[i] /= r[i][i]; - } -#if DEBUG_LEAST_SQUARES - ALOGD(" - b=%s", vectorToString(outB, n).string()); -#endif - - // Calculate the coefficient of determination as 1 - (SSerr / SStot) where - // SSerr is the residual sum of squares (squared variance of the error), - // and SStot is the total sum of squares (squared variance of the data). - float ymean = 0; - for (uint32_t h = 0; h < m; h++) { - ymean += y[h]; - } - ymean /= m; - - float sserr = 0; - float sstot = 0; - for (uint32_t h = 0; h < m; h++) { - float err = y[h] - outB[0]; - float term = 1; - for (uint32_t i = 1; i < n; i++) { - term *= x[h]; - err -= term * outB[i]; - } - sserr += err * err; - float var = y[h] - ymean; - sstot += var * var; - } - *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1; -#if DEBUG_LEAST_SQUARES - ALOGD(" - sserr=%f", sserr); - ALOGD(" - sstot=%f", sstot); - ALOGD(" - det=%f", *outDet); -#endif - return true; -} - -bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const { - Estimator estimator; - if (getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator)) { - if (estimator.degree >= 1) { - *outVx = estimator.xCoeff[1]; - *outVy = estimator.yCoeff[1]; - return true; - } - } - *outVx = 0; - *outVy = 0; - return false; -} - -bool VelocityTracker::getEstimator(uint32_t id, uint32_t degree, nsecs_t horizon, - Estimator* outEstimator) const { - outEstimator->clear(); - - // Iterate over movement samples in reverse time order and collect samples. - float x[HISTORY_SIZE]; - float y[HISTORY_SIZE]; - float time[HISTORY_SIZE]; - uint32_t m = 0; - uint32_t index = mIndex; - const Movement& newestMovement = mMovements[mIndex]; - do { - const Movement& movement = mMovements[index]; - if (!movement.idBits.hasBit(id)) { - break; - } - - nsecs_t age = newestMovement.eventTime - movement.eventTime; - if (age > horizon) { - break; - } - - const Position& position = movement.getPosition(id); - x[m] = position.x; - y[m] = position.y; - time[m] = -age * 0.000000001f; - index = (index == 0 ? HISTORY_SIZE : index) - 1; - } while (++m < HISTORY_SIZE); - - if (m == 0) { - return false; // no data - } - - // Calculate a least squares polynomial fit. - if (degree > Estimator::MAX_DEGREE) { - degree = Estimator::MAX_DEGREE; - } - if (degree > m - 1) { - degree = m - 1; - } - if (degree >= 1) { - float xdet, ydet; - uint32_t n = degree + 1; - if (solveLeastSquares(time, x, m, n, outEstimator->xCoeff, &xdet) - && solveLeastSquares(time, y, m, n, outEstimator->yCoeff, &ydet)) { - outEstimator->degree = degree; - outEstimator->confidence = xdet * ydet; -#if DEBUG_LEAST_SQUARES - ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f", - int(outEstimator->degree), - vectorToString(outEstimator->xCoeff, n).string(), - vectorToString(outEstimator->yCoeff, n).string(), - outEstimator->confidence); -#endif - return true; - } - } - - // No velocity data available for this pointer, but we do have its current position. - outEstimator->xCoeff[0] = x[0]; - outEstimator->yCoeff[0] = y[0]; - outEstimator->degree = 0; - outEstimator->confidence = 1; - return true; -} - - -// --- VelocityControl --- - -const nsecs_t VelocityControl::STOP_TIME; - -VelocityControl::VelocityControl() { - reset(); -} - -void VelocityControl::setParameters(const VelocityControlParameters& parameters) { - mParameters = parameters; - reset(); -} - -void VelocityControl::reset() { - mLastMovementTime = LLONG_MIN; - mRawPosition.x = 0; - mRawPosition.y = 0; - mVelocityTracker.clear(); -} - -void VelocityControl::move(nsecs_t eventTime, float* deltaX, float* deltaY) { - if ((deltaX && *deltaX) || (deltaY && *deltaY)) { - if (eventTime >= mLastMovementTime + STOP_TIME) { -#if DEBUG_ACCELERATION - ALOGD("VelocityControl: stopped, last movement was %0.3fms ago", - (eventTime - mLastMovementTime) * 0.000001f); -#endif - reset(); - } - - mLastMovementTime = eventTime; - if (deltaX) { - mRawPosition.x += *deltaX; - } - if (deltaY) { - mRawPosition.y += *deltaY; - } - mVelocityTracker.addMovement(eventTime, BitSet32(BitSet32::valueForBit(0)), &mRawPosition); - - float vx, vy; - float scale = mParameters.scale; - if (mVelocityTracker.getVelocity(0, &vx, &vy)) { - float speed = hypotf(vx, vy) * scale; - if (speed >= mParameters.highThreshold) { - // Apply full acceleration above the high speed threshold. - scale *= mParameters.acceleration; - } else if (speed > mParameters.lowThreshold) { - // Linearly interpolate the acceleration to apply between the low and high - // speed thresholds. - scale *= 1 + (speed - mParameters.lowThreshold) - / (mParameters.highThreshold - mParameters.lowThreshold) - * (mParameters.acceleration - 1); - } - -#if DEBUG_ACCELERATION - ALOGD("VelocityControl(%0.3f, %0.3f, %0.3f, %0.3f): " - "vx=%0.3f, vy=%0.3f, speed=%0.3f, accel=%0.3f", - mParameters.scale, mParameters.lowThreshold, mParameters.highThreshold, - mParameters.acceleration, - vx, vy, speed, scale / mParameters.scale); -#endif - } else { -#if DEBUG_ACCELERATION - ALOGD("VelocityControl(%0.3f, %0.3f, %0.3f, %0.3f): unknown velocity", - mParameters.scale, mParameters.lowThreshold, mParameters.highThreshold, - mParameters.acceleration); -#endif - } - - if (deltaX) { - *deltaX *= scale; - } - if (deltaY) { - *deltaY *= scale; - } - } -} - } // namespace android |