diff options
Diffstat (limited to 'libs/hwui/SpotShadow.cpp')
-rw-r--r-- | libs/hwui/SpotShadow.cpp | 247 |
1 files changed, 129 insertions, 118 deletions
diff --git a/libs/hwui/SpotShadow.cpp b/libs/hwui/SpotShadow.cpp index 22d735b..54039c01 100644 --- a/libs/hwui/SpotShadow.cpp +++ b/libs/hwui/SpotShadow.cpp @@ -29,45 +29,46 @@ namespace android { namespace uirenderer { +static const double EPSILON = 1e-7; + +/** + * Calculate the angle between and x and a y coordinate. + * The atan2 range from -PI to PI. + */ +float angle(const Vector2& point, const Vector2& center) { + return atan2(point.y - center.y, point.x - center.x); +} + /** - * Calculate the intersection of a ray with a polygon. - * It assumes the ray originates inside the polygon. + * Calculate the intersection of a ray with the line segment defined by two points. * - * @param poly The polygon, which is represented in a Vector2 array. - * @param polyLength The length of caster's polygon in terms of number of - * vertices. - * @param point the start of the ray - * @param dx the x vector of the ray - * @param dy the y vector of the ray - * @return the distance along the ray if it intersects with the polygon FP_NAN if otherwise + * Returns a negative value in error conditions. + + * @param rayOrigin The start of the ray + * @param dx The x vector of the ray + * @param dy The y vector of the ray + * @param p1 The first point defining the line segment + * @param p2 The second point defining the line segment + * @return The distance along the ray if it intersects with the line segment, negative if otherwise */ -float SpotShadow::rayIntersectPoly(const Vector2* poly, int polyLength, - const Vector2& point, float dx, float dy) { - double px = point.x; - double py = point.y; - int p1 = polyLength - 1; - for (int p2 = 0; p2 < polyLength; p2++) { - double p1x = poly[p1].x; - double p1y = poly[p1].y; - double p2x = poly[p2].x; - double p2y = poly[p2].y; - // The math below is derived from solving this formula, basically the - // intersection point should stay on both the ray and the edge of (p1, p2). - // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]); - double div = (dx * (p1y - p2y) + dy * p2x - dy * p1x); - if (div != 0) { - double t = (dx * (p1y - py) + dy * px - dy * p1x) / (div); - if (t >= 0 && t <= 1) { - double t2 = (p1x * (py - p2y) + p2x * (p1y - py) + - px * (p2y - p1y)) / div; - if (t2 > 0) { - return (float)t2; - } - } - } - p1 = p2; - } - return FP_NAN; +float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy, + const Vector2& p1, const Vector2& p2) { + // The math below is derived from solving this formula, basically the + // intersection point should stay on both the ray and the edge of (p1, p2). + // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]); + + double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x); + if (divisor == 0) return -1.0f; // error, invalid divisor + +#if DEBUG_SHADOW + double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor; + if (interpVal < 0 || interpVal > 1) return -1.0f; // error, doesn't intersect between points +#endif + + double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) + + rayOrigin.x * (p2.y - p1.y)) / divisor; + + return distance; // may be negative in error cases } /** @@ -131,30 +132,26 @@ int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) { lLowerSize--; } } - int count = 0; + // output points in CW ordering + const int total = lUpperSize + lLowerSize - 2; + int outIndex = total - 1; for (int i = 0; i < lUpperSize; i++) { - retPoly[count] = lUpper[i]; - count++; + retPoly[outIndex] = lUpper[i]; + outIndex--; } for (int i = 1; i < lLowerSize - 1; i++) { - retPoly[count] = lLower[i]; - count++; + retPoly[outIndex] = lLower[i]; + outIndex--; } // TODO: Add test harness which verify that all the points are inside the hull. - return count; + return total; } /** * Test whether the 3 points form a counter clockwise turn. * - * @param ax the x coordinate of point a - * @param ay the y coordinate of point a - * @param bx the x coordinate of point b - * @param by the y coordinate of point b - * @param cx the x coordinate of point c - * @param cy the y coordinate of point c * @return true if a right hand turn */ bool SpotShadow::ccw(double ax, double ay, double bx, double by, @@ -303,15 +300,6 @@ void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) { } /** - * Calculate the angle between and x and a y coordinate. - * The atan2 range from -PI to PI, if we want to sort the vertices as clockwise, - * we just negate the return angle. - */ -float SpotShadow::angle(const Vector2& point, const Vector2& center) { - return -(float)atan2(point.y - center.y, point.x - center.x); -} - -/** * Swap points pointed to by i and j */ void SpotShadow::swap(Vector2* points, int i, int j) { @@ -329,10 +317,10 @@ void SpotShadow::quicksortCirc(Vector2* points, int low, int high, int p = low + (high - low) / 2; float pivot = angle(points[p], center); while (i <= j) { - while (angle(points[i], center) < pivot) { + while (angle(points[i], center) > pivot) { i++; } - while (angle(points[j], center) > pivot) { + while (angle(points[j], center) < pivot) { j--; } @@ -508,8 +496,8 @@ void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter, // TODO: Caching all the sin / cos values and store them in a look up table. for (int i = 0; i < points; i++) { double angle = 2 * i * M_PI / points; - ret[i].x = sinf(angle) * size + lightCenter.x; - ret[i].y = cosf(angle) * size + lightCenter.y; + ret[i].x = cosf(angle) * size + lightCenter.x; + ret[i].y = sinf(angle) * size + lightCenter.y; ret[i].z = lightCenter.z; } } @@ -657,6 +645,63 @@ void SpotShadow::computeSpotShadow(const Vector3* lightPoly, int lightPolyLength } /** + * Converts a polygon specified with CW vertices into an array of distance-from-centroid values. + * + * Returns false in error conditions + * + * @param poly Array of vertices. Note that these *must* be CW. + * @param polyLength The number of vertices in the polygon. + * @param polyCentroid The centroid of the polygon, from which rays will be cast + * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size + */ +bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid, + float* rayDist) { + const int rays = SHADOW_RAY_COUNT; + const float step = M_PI * 2 / rays; + + const Vector2* lastVertex = &(poly[polyLength - 1]); + float startAngle = angle(*lastVertex, polyCentroid); + + // Start with the ray that's closest to and less than startAngle + int rayIndex = floor((startAngle - EPSILON) / step); + rayIndex = (rayIndex + rays) % rays; // ensure positive + + for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) { + /* + * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that + * intersect these will be those that are between the two angles from the centroid that the + * vertices define. + * + * Because the polygon vertices are stored clockwise, the closest ray with an angle + * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does + * not intersect with poly[i-1], poly[i]. + */ + float currentAngle = angle(poly[polyIndex], polyCentroid); + + // find first ray that will not intersect the line segment poly[i-1] & poly[i] + int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step); + firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive + + // Iterate through all rays that intersect with poly[i-1], poly[i] line segment. + // This may be 0 rays. + while (rayIndex != firstRayIndexOnNextSegment) { + float distanceToIntersect = rayIntersectPoints(polyCentroid, + cos(rayIndex * step), + sin(rayIndex * step), + *lastVertex, poly[polyIndex]); + if (distanceToIntersect < 0) return false; // error case, abort + + rayDist[rayIndex] = distanceToIntersect; + + rayIndex = (rayIndex - 1 + rays) % rays; + } + lastVertex = &poly[polyIndex]; + } + + return true; +} + +/** * Generate a triangle strip given two convex polygons * * @param penumbra The outer polygon x,y vertexes @@ -669,10 +714,9 @@ void SpotShadow::computeSpotShadow(const Vector3* lightPoly, int lightPolyLength void SpotShadow::generateTriangleStrip(const Vector2* penumbra, int penumbraLength, const Vector2* umbra, int umbraLength, VertexBuffer& shadowTriangleStrip) { const int rays = SHADOW_RAY_COUNT; - const int layers = SHADOW_LAYER_COUNT; - int size = rays * (layers + 1); - float step = M_PI * 2 / rays; + const int size = 2 * rays; + const float step = M_PI * 2 / rays; // Centroid of the umbra. Vector2 centroid = ShadowTessellator::centroid2d(umbra, umbraLength); #if DEBUG_SHADOW @@ -683,48 +727,31 @@ void SpotShadow::generateTriangleStrip(const Vector2* penumbra, int penumbraLeng // Intersection to the umbra. float umbraDistPerRay[rays]; - for (int i = 0; i < rays; i++) { - // TODO: Setup a lookup table for all the sin/cos. - float dx = sinf(step * i); - float dy = cosf(step * i); - umbraDistPerRay[i] = rayIntersectPoly(umbra, umbraLength, centroid, - dx, dy); - if (isnan(umbraDistPerRay[i])) { - ALOGE("rayIntersectPoly returns NAN"); - return; - } - penumbraDistPerRay[i] = rayIntersectPoly(penumbra, penumbraLength, - centroid, dx, dy); - if (isnan(umbraDistPerRay[i])) { - ALOGE("rayIntersectPoly returns NAN"); - return; - } - } + // convert CW polygons to ray distance encoding, aborting on conversion failure + if (!convertPolyToRayDist(umbra, umbraLength, centroid, umbraDistPerRay)) return; + if (!convertPolyToRayDist(penumbra, penumbraLength, centroid, penumbraDistPerRay)) return; - int stripSize = getStripSize(rays, layers); - AlphaVertex* shadowVertices = shadowTriangleStrip.alloc<AlphaVertex>(stripSize); - int currentIndex = 0; + AlphaVertex* shadowVertices = shadowTriangleStrip.alloc<AlphaVertex>(getStripSize(rays)); // Calculate the vertices (x, y, alpha) in the shadow area. - for (int layerIndex = 0; layerIndex <= layers; layerIndex++) { - for (int rayIndex = 0; rayIndex < rays; rayIndex++) { - float dx = sinf(step * rayIndex); - float dy = cosf(step * rayIndex); - float layerRatio = layerIndex / (float) layers; - float deltaDist = layerRatio * - (umbraDistPerRay[rayIndex] - penumbraDistPerRay[rayIndex]); - float currentDist = penumbraDistPerRay[rayIndex] + deltaDist; - float op = calculateOpacity(layerRatio); - AlphaVertex::set(&shadowVertices[currentIndex++], - dx * currentDist + centroid.x, dy * currentDist + centroid.y, op); - } + for (int rayIndex = 0; rayIndex < rays; rayIndex++) { + float dx = cosf(step * rayIndex); + float dy = sinf(step * rayIndex); + + // outer ring + float currentDist = penumbraDistPerRay[rayIndex]; + AlphaVertex::set(&shadowVertices[rayIndex], + dx * currentDist + centroid.x, dy * currentDist + centroid.y, 0.0f); + + // inner ring + float deltaDist = umbraDistPerRay[rayIndex] - penumbraDistPerRay[rayIndex]; + currentDist += deltaDist; + AlphaVertex::set(&shadowVertices[rays + rayIndex], + dx * currentDist + centroid.x, dy * currentDist + centroid.y, 1.0f); } // The centroid is in the umbra area, so the opacity is considered as 1.0. - AlphaVertex::set(&shadowVertices[currentIndex++], centroid.x, centroid.y, 1.0); + AlphaVertex::set(&shadowVertices[SHADOW_VERTEX_COUNT - 1], centroid.x, centroid.y, 1.0f); #if DEBUG_SHADOW - if (currentIndex != SHADOW_VERTEX_COUNT) { - ALOGE("number of vertex generated for spot shadow is wrong!"); - } for (int i = 0; i < currentIndex; i++) { ALOGD("spot shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x, shadowVertices[i].y, shadowVertices[i].alpha); @@ -754,26 +781,14 @@ void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) { } /** - * Calculate the opacity according to the distance. Ideally, the opacity is 1.0 - * in the umbra area, and fall off to 0.0 till the edge of penumbra area. - * - * @param layerRatio The distance ratio of current sample between umbra and penumbra area. - * Penumbra edge is 0 and umbra edge is 1. - * @return The opacity according to the distance between umbra and penumbra. - */ -float SpotShadow::calculateOpacity(float layerRatio) { - return (layerRatio * layerRatio + layerRatio) / 2.0; -} - -/** * Calculate the number of vertex we will create given a number of rays and layers * * @param rays number of points around the polygons you want * @param layers number of layers of triangle strips you need * @return number of vertex (multiply by 3 for number of floats) */ -int SpotShadow::getStripSize(int rays, int layers) { - return (2 + rays + ((layers) * 2 * (rays + 1))); +int SpotShadow::getStripSize(int rays) { + return (2 + rays + (2 * (rays + 1))); } #if DEBUG_SHADOW @@ -898,7 +913,3 @@ void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length, }; // namespace uirenderer }; // namespace android - - - - |