summaryrefslogtreecommitdiffstats
path: root/cmds/keystore/keystore.cpp
blob: 05f77e5326d9059d5ad6387d383a16061f649990 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
/*
 * Copyright (C) 2009 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <errno.h>
#include <dirent.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <arpa/inet.h>

#include <openssl/aes.h>
#include <openssl/evp.h>
#include <openssl/md5.h>

#define LOG_TAG "keystore"
#include <cutils/log.h>
#include <cutils/sockets.h>
#include <private/android_filesystem_config.h>

#include "keystore.h"

/* KeyStore is a secured storage for key-value pairs. In this implementation,
 * each file stores one key-value pair. Keys are encoded in file names, and
 * values are encrypted with checksums. The encryption key is protected by a
 * user-defined password. To keep things simple, buffers are always larger than
 * the maximum space we needed, so boundary checks on buffers are omitted. */

#define KEY_SIZE        ((NAME_MAX - 15) / 2)
#define VALUE_SIZE      32768
#define PASSWORD_SIZE   VALUE_SIZE

struct Value {
    int length;
    uint8_t value[VALUE_SIZE];
};

/* Here is the encoding of keys. This is necessary in order to allow arbitrary
 * characters in keys. Characters in [0-~] are not encoded. Others are encoded
 * into two bytes. The first byte is one of [+-.] which represents the first
 * two bits of the character. The second byte encodes the rest of the bits into
 * [0-o]. Therefore in the worst case the length of a key gets doubled. Note
 * that Base64 cannot be used here due to the need of prefix match on keys. */

static int encode_key(char* out, uid_t uid, const Value* key) {
    int n = snprintf(out, NAME_MAX, "%u_", uid);
    out += n;
    const uint8_t* in = key->value;
    int length = key->length;
    for (int i = length; i > 0; --i, ++in, ++out) {
        if (*in >= '0' && *in <= '~') {
            *out = *in;
        } else {
            *out = '+' + (*in >> 6);
            *++out = '0' + (*in & 0x3F);
            ++length;
        }
    }
    *out = '\0';
    return n + length;
}

static int decode_key(uint8_t* out, char* in, int length) {
    for (int i = 0; i < length; ++i, ++in, ++out) {
        if (*in >= '0' && *in <= '~') {
            *out = *in;
        } else {
            *out = (*in - '+') << 6;
            *out |= (*++in - '0') & 0x3F;
            --length;
        }
    }
    *out = '\0';
    return length;
}

static size_t readFully(int fd, uint8_t* data, size_t size) {
    size_t remaining = size;
    while (remaining > 0) {
        ssize_t n = TEMP_FAILURE_RETRY(read(fd, data, size));
        if (n == -1 || n == 0) {
            return size-remaining;
        }
        data += n;
        remaining -= n;
    }
    return size;
}

static size_t writeFully(int fd, uint8_t* data, size_t size) {
    size_t remaining = size;
    while (remaining > 0) {
        ssize_t n = TEMP_FAILURE_RETRY(write(fd, data, size));
        if (n == -1 || n == 0) {
            return size-remaining;
        }
        data += n;
        remaining -= n;
    }
    return size;
}

class Entropy {
public:
    Entropy() : mRandom(-1) {}
    ~Entropy() {
        if (mRandom != -1) {
            close(mRandom);
        }
    }

    bool open() {
        const char* randomDevice = "/dev/urandom";
        mRandom = ::open(randomDevice, O_RDONLY);
        if (mRandom == -1) {
            ALOGE("open: %s: %s", randomDevice, strerror(errno));
            return false;
        }
        return true;
    }

    bool generate_random_data(uint8_t* data, size_t size) {
        return (readFully(mRandom, data, size) == size);
    }

private:
    int mRandom;
};

/* Here is the file format. There are two parts in blob.value, the secret and
 * the description. The secret is stored in ciphertext, and its original size
 * can be found in blob.length. The description is stored after the secret in
 * plaintext, and its size is specified in blob.info. The total size of the two
 * parts must be no more than VALUE_SIZE bytes. The first three bytes of the
 * file are reserved for future use and are always set to zero. Fields other
 * than blob.info, blob.length, and blob.value are modified by encryptBlob()
 * and decryptBlob(). Thus they should not be accessed from outside. */

struct __attribute__((packed)) blob {
    uint8_t reserved[3];
    uint8_t info;
    uint8_t vector[AES_BLOCK_SIZE];
    uint8_t encrypted[0];
    uint8_t digest[MD5_DIGEST_LENGTH];
    uint8_t digested[0];
    int32_t length; // in network byte order when encrypted
    uint8_t value[VALUE_SIZE + AES_BLOCK_SIZE];
};

class Blob {
public:
    Blob(uint8_t* value, int32_t valueLength, uint8_t* info, uint8_t infoLength) {
        mBlob.length = valueLength;
        memcpy(mBlob.value, value, valueLength);

        mBlob.info = infoLength;
        memcpy(mBlob.value + valueLength, info, infoLength);
    }

    Blob(blob b) {
        mBlob = b;
    }

    Blob() {}

    uint8_t* getValue() {
        return mBlob.value;
    }

    int32_t getLength() {
        return mBlob.length;
    }

    uint8_t getInfo() {
        return mBlob.info;
    }

    ResponseCode encryptBlob(const char* filename, AES_KEY *aes_key, Entropy* entropy) {
        if (!entropy->generate_random_data(mBlob.vector, AES_BLOCK_SIZE)) {
            return SYSTEM_ERROR;
        }

        // data includes the value and the value's length
        size_t dataLength = mBlob.length + sizeof(mBlob.length);
        // pad data to the AES_BLOCK_SIZE
        size_t digestedLength = ((dataLength + AES_BLOCK_SIZE - 1)
                                 / AES_BLOCK_SIZE * AES_BLOCK_SIZE);
        // encrypted data includes the digest value
        size_t encryptedLength = digestedLength + MD5_DIGEST_LENGTH;
        // move info after space for padding
        memmove(&mBlob.encrypted[encryptedLength], &mBlob.value[mBlob.length], mBlob.info);
        // zero padding area
        memset(mBlob.value + mBlob.length, 0, digestedLength - dataLength);

        mBlob.length = htonl(mBlob.length);
        MD5(mBlob.digested, digestedLength, mBlob.digest);

        uint8_t vector[AES_BLOCK_SIZE];
        memcpy(vector, mBlob.vector, AES_BLOCK_SIZE);
        AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength,
                        aes_key, vector, AES_ENCRYPT);

        memset(mBlob.reserved, 0, sizeof(mBlob.reserved));
        size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob);
        size_t fileLength = encryptedLength + headerLength + mBlob.info;

        const char* tmpFileName = ".tmp";
        int out = open(tmpFileName, O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR);
        if (out == -1) {
            return SYSTEM_ERROR;
        }
        size_t writtenBytes = writeFully(out, (uint8_t*) &mBlob, fileLength);
        if (close(out) != 0) {
            return SYSTEM_ERROR;
        }
        if (writtenBytes != fileLength) {
            unlink(tmpFileName);
            return SYSTEM_ERROR;
        }
        return (rename(tmpFileName, filename) == 0) ? NO_ERROR : SYSTEM_ERROR;
    }

    ResponseCode decryptBlob(const char* filename, AES_KEY *aes_key) {
        int in = open(filename, O_RDONLY);
        if (in == -1) {
            return (errno == ENOENT) ? KEY_NOT_FOUND : SYSTEM_ERROR;
        }
        // fileLength may be less than sizeof(mBlob) since the in
        // memory version has extra padding to tolerate rounding up to
        // the AES_BLOCK_SIZE
        size_t fileLength = readFully(in, (uint8_t*) &mBlob, sizeof(mBlob));
        if (close(in) != 0) {
            return SYSTEM_ERROR;
        }
        size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob);
        if (fileLength < headerLength) {
            return VALUE_CORRUPTED;
        }

        ssize_t encryptedLength = fileLength - (headerLength + mBlob.info);
        if (encryptedLength < 0 || encryptedLength % AES_BLOCK_SIZE != 0) {
            return VALUE_CORRUPTED;
        }
        AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength, aes_key,
                        mBlob.vector, AES_DECRYPT);
        size_t digestedLength = encryptedLength - MD5_DIGEST_LENGTH;
        uint8_t computedDigest[MD5_DIGEST_LENGTH];
        MD5(mBlob.digested, digestedLength, computedDigest);
        if (memcmp(mBlob.digest, computedDigest, MD5_DIGEST_LENGTH) != 0) {
            return VALUE_CORRUPTED;
        }

        ssize_t maxValueLength = digestedLength - sizeof(mBlob.length);
        mBlob.length = ntohl(mBlob.length);
        if (mBlob.length < 0 || mBlob.length > maxValueLength) {
            return VALUE_CORRUPTED;
        }
        if (mBlob.info != 0) {
            // move info from after padding to after data
            memmove(&mBlob.value[mBlob.length], &mBlob.value[maxValueLength], mBlob.info);
        }
        return NO_ERROR;
    }

private:
    struct blob mBlob;
};

class KeyStore {
public:
    KeyStore(Entropy* entropy) : mEntropy(entropy), mRetry(MAX_RETRY) {
        if (access(MASTER_KEY_FILE, R_OK) == 0) {
            setState(STATE_LOCKED);
        } else {
            setState(STATE_UNINITIALIZED);
        }
    }

    State getState() {
        return mState;
    }

    int8_t getRetry() {
        return mRetry;
    }

    ResponseCode initialize(Value* pw) {
        if (!generateMasterKey()) {
            return SYSTEM_ERROR;
        }
        ResponseCode response = writeMasterKey(pw);
        if (response != NO_ERROR) {
            return response;
        }
        setupMasterKeys();
        return NO_ERROR;
    }

    ResponseCode writeMasterKey(Value* pw) {
        uint8_t passwordKey[MASTER_KEY_SIZE_BYTES];
        generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, mSalt);
        AES_KEY passwordAesKey;
        AES_set_encrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey);
        Blob masterKeyBlob(mMasterKey, sizeof(mMasterKey), mSalt, sizeof(mSalt));
        return masterKeyBlob.encryptBlob(MASTER_KEY_FILE, &passwordAesKey, mEntropy);
    }

    ResponseCode readMasterKey(Value* pw) {
        int in = open(MASTER_KEY_FILE, O_RDONLY);
        if (in == -1) {
            return SYSTEM_ERROR;
        }

        // we read the raw blob to just to get the salt to generate
        // the AES key, then we create the Blob to use with decryptBlob
        blob rawBlob;
        size_t length = readFully(in, (uint8_t*) &rawBlob, sizeof(rawBlob));
        if (close(in) != 0) {
            return SYSTEM_ERROR;
        }
        // find salt at EOF if present, otherwise we have an old file
        uint8_t* salt;
        if (length > SALT_SIZE && rawBlob.info == SALT_SIZE) {
            salt = (uint8_t*) &rawBlob + length - SALT_SIZE;
        } else {
            salt = NULL;
        }
        uint8_t passwordKey[MASTER_KEY_SIZE_BYTES];
        generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, salt);
        AES_KEY passwordAesKey;
        AES_set_decrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey);
        Blob masterKeyBlob(rawBlob);
        ResponseCode response = masterKeyBlob.decryptBlob(MASTER_KEY_FILE, &passwordAesKey);
        if (response == SYSTEM_ERROR) {
            return SYSTEM_ERROR;
        }
        if (response == NO_ERROR && masterKeyBlob.getLength() == MASTER_KEY_SIZE_BYTES) {
            // if salt was missing, generate one and write a new master key file with the salt.
            if (salt == NULL) {
                if (!generateSalt()) {
                    return SYSTEM_ERROR;
                }
                response = writeMasterKey(pw);
            }
            if (response == NO_ERROR) {
                memcpy(mMasterKey, masterKeyBlob.getValue(), MASTER_KEY_SIZE_BYTES);
                setupMasterKeys();
            }
            return response;
        }
        if (mRetry <= 0) {
            reset();
            return UNINITIALIZED;
        }
        --mRetry;
        switch (mRetry) {
            case 0: return WRONG_PASSWORD_0;
            case 1: return WRONG_PASSWORD_1;
            case 2: return WRONG_PASSWORD_2;
            case 3: return WRONG_PASSWORD_3;
            default: return WRONG_PASSWORD_3;
        }
    }

    bool reset() {
        clearMasterKeys();
        setState(STATE_UNINITIALIZED);

        DIR* dir = opendir(".");
        struct dirent* file;

        if (!dir) {
            return false;
        }
        while ((file = readdir(dir)) != NULL) {
            unlink(file->d_name);
        }
        closedir(dir);
        return true;
    }

    bool isEmpty() {
        DIR* dir = opendir(".");
        struct dirent* file;
        if (!dir) {
            return true;
        }
        bool result = true;
        while ((file = readdir(dir)) != NULL) {
            if (isKeyFile(file->d_name)) {
                result = false;
                break;
            }
        }
        closedir(dir);
        return result;
    }

    void lock() {
        clearMasterKeys();
        setState(STATE_LOCKED);
    }

    ResponseCode get(const char* filename, Blob* keyBlob) {
        return keyBlob->decryptBlob(filename, &mMasterKeyDecryption);
    }

    ResponseCode put(const char* filename, Blob* keyBlob) {
        return keyBlob->encryptBlob(filename, &mMasterKeyEncryption, mEntropy);
    }

private:
    static const char* MASTER_KEY_FILE;
    static const int MASTER_KEY_SIZE_BYTES = 16;
    static const int MASTER_KEY_SIZE_BITS = MASTER_KEY_SIZE_BYTES * 8;

    static const int MAX_RETRY = 4;
    static const size_t SALT_SIZE = 16;

    Entropy* mEntropy;

    State mState;
    int8_t mRetry;

    uint8_t mMasterKey[MASTER_KEY_SIZE_BYTES];
    uint8_t mSalt[SALT_SIZE];

    AES_KEY mMasterKeyEncryption;
    AES_KEY mMasterKeyDecryption;

    void setState(State state) {
        mState = state;
        if (mState == STATE_NO_ERROR || mState == STATE_UNINITIALIZED) {
            mRetry = MAX_RETRY;
        }
    }

    bool generateSalt() {
        return mEntropy->generate_random_data(mSalt, sizeof(mSalt));
    }

    bool generateMasterKey() {
        if (!mEntropy->generate_random_data(mMasterKey, sizeof(mMasterKey))) {
            return false;
        }
        if (!generateSalt()) {
            return false;
        }
        return true;
    }

    void setupMasterKeys() {
        AES_set_encrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyEncryption);
        AES_set_decrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyDecryption);
        setState(STATE_NO_ERROR);
    }

    void clearMasterKeys() {
        memset(mMasterKey, 0, sizeof(mMasterKey));
        memset(mSalt, 0, sizeof(mSalt));
        memset(&mMasterKeyEncryption, 0, sizeof(mMasterKeyEncryption));
        memset(&mMasterKeyDecryption, 0, sizeof(mMasterKeyDecryption));
    }

    static void generateKeyFromPassword(uint8_t* key, ssize_t keySize, Value* pw, uint8_t* salt) {
        size_t saltSize;
        if (salt != NULL) {
            saltSize = SALT_SIZE;
        } else {
            // pre-gingerbread used this hardwired salt, readMasterKey will rewrite these when found
            salt = (uint8_t*) "keystore";
            // sizeof = 9, not strlen = 8
            saltSize = sizeof("keystore");
        }
        PKCS5_PBKDF2_HMAC_SHA1((char*) pw->value, pw->length, salt, saltSize, 8192, keySize, key);
    }

    static bool isKeyFile(const char* filename) {
        return ((strcmp(filename, MASTER_KEY_FILE) != 0)
                && (strcmp(filename, ".") != 0)
                && (strcmp(filename, "..") != 0));
    }
};

const char* KeyStore::MASTER_KEY_FILE = ".masterkey";

/* Here is the protocol used in both requests and responses:
 *     code [length_1 message_1 ... length_n message_n] end-of-file
 * where code is one byte long and lengths are unsigned 16-bit integers in
 * network order. Thus the maximum length of a message is 65535 bytes. */

static int recv_code(int sock, int8_t* code) {
    return recv(sock, code, 1, 0) == 1;
}

static int recv_message(int sock, uint8_t* message, int length) {
    uint8_t bytes[2];
    if (recv(sock, &bytes[0], 1, 0) != 1 ||
        recv(sock, &bytes[1], 1, 0) != 1) {
        return -1;
    } else {
        int offset = bytes[0] << 8 | bytes[1];
        if (length < offset) {
            return -1;
        }
        length = offset;
        offset = 0;
        while (offset < length) {
            int n = recv(sock, &message[offset], length - offset, 0);
            if (n <= 0) {
                return -1;
            }
            offset += n;
        }
    }
    return length;
}

static int recv_end_of_file(int sock) {
    uint8_t byte;
    return recv(sock, &byte, 1, 0) == 0;
}

static void send_code(int sock, int8_t code) {
    send(sock, &code, 1, 0);
}

static void send_message(int sock, uint8_t* message, int length) {
    uint16_t bytes = htons(length);
    send(sock, &bytes, 2, 0);
    send(sock, message, length, 0);
}

/* Here are the actions. Each of them is a function without arguments. All
 * information is defined in global variables, which are set properly before
 * performing an action. The number of parameters required by each action is
 * fixed and defined in a table. If the return value of an action is positive,
 * it will be treated as a response code and transmitted to the client. Note
 * that the lengths of parameters are checked when they are received, so
 * boundary checks on parameters are omitted. */

static const ResponseCode NO_ERROR_RESPONSE_CODE_SENT = (ResponseCode) 0;

static ResponseCode test(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
    return (ResponseCode) keyStore->getState();
}

static ResponseCode get(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) {
    char filename[NAME_MAX];
    encode_key(filename, uid, keyName);
    Blob keyBlob;
    ResponseCode responseCode = keyStore->get(filename, &keyBlob);
    if (responseCode != NO_ERROR) {
        return responseCode;
    }
    send_code(sock, NO_ERROR);
    send_message(sock, keyBlob.getValue(), keyBlob.getLength());
    return NO_ERROR_RESPONSE_CODE_SENT;
}

static ResponseCode insert(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value* val) {
    char filename[NAME_MAX];
    encode_key(filename, uid, keyName);
    Blob keyBlob(val->value, val->length, 0, NULL);
    return keyStore->put(filename, &keyBlob);
}

static ResponseCode del(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) {
    char filename[NAME_MAX];
    encode_key(filename, uid, keyName);
    return (unlink(filename) && errno != ENOENT) ? SYSTEM_ERROR : NO_ERROR;
}

static ResponseCode exist(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) {
    char filename[NAME_MAX];
    encode_key(filename, uid, keyName);
    if (access(filename, R_OK) == -1) {
        return (errno != ENOENT) ? SYSTEM_ERROR : KEY_NOT_FOUND;
    }
    return NO_ERROR;
}

static ResponseCode saw(KeyStore* keyStore, int sock, uid_t uid, Value* keyPrefix, Value*) {
    DIR* dir = opendir(".");
    if (!dir) {
        return SYSTEM_ERROR;
    }
    char filename[NAME_MAX];
    int n = encode_key(filename, uid, keyPrefix);
    send_code(sock, NO_ERROR);

    struct dirent* file;
    while ((file = readdir(dir)) != NULL) {
        if (!strncmp(filename, file->d_name, n)) {
            char* p = &file->d_name[n];
            keyPrefix->length = decode_key(keyPrefix->value, p, strlen(p));
            send_message(sock, keyPrefix->value, keyPrefix->length);
        }
    }
    closedir(dir);
    return NO_ERROR_RESPONSE_CODE_SENT;
}

static ResponseCode reset(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
    return keyStore->reset() ? NO_ERROR : SYSTEM_ERROR;
}

/* Here is the history. To improve the security, the parameters to generate the
 * master key has been changed. To make a seamless transition, we update the
 * file using the same password when the user unlock it for the first time. If
 * any thing goes wrong during the transition, the new file will not overwrite
 * the old one. This avoids permanent damages of the existing data. */

static ResponseCode password(KeyStore* keyStore, int sock, uid_t uid, Value* pw, Value*) {
    switch (keyStore->getState()) {
        case STATE_UNINITIALIZED: {
            // generate master key, encrypt with password, write to file, initialize mMasterKey*.
            return keyStore->initialize(pw);
        }
        case STATE_NO_ERROR: {
            // rewrite master key with new password.
            return keyStore->writeMasterKey(pw);
        }
        case STATE_LOCKED: {
            // read master key, decrypt with password, initialize mMasterKey*.
            return keyStore->readMasterKey(pw);
        }
    }
    return SYSTEM_ERROR;
}

static ResponseCode lock(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
    keyStore->lock();
    return NO_ERROR;
}

static ResponseCode unlock(KeyStore* keyStore, int sock, uid_t uid, Value* pw, Value* unused) {
    return password(keyStore, sock, uid, pw, unused);
}

static ResponseCode zero(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
    return keyStore->isEmpty() ? KEY_NOT_FOUND : NO_ERROR;
}

/* Here are the permissions, actions, users, and the main function. */

enum perm {
    TEST     =    1,
    GET      =    2,
    INSERT   =    4,
    DELETE   =    8,
    EXIST    =   16,
    SAW      =   32,
    RESET    =   64,
    PASSWORD =  128,
    LOCK     =  256,
    UNLOCK   =  512,
    ZERO     = 1024,
};

static const int MAX_PARAM = 2;

static const State STATE_ANY = (State) 0;

static struct action {
    ResponseCode (*run)(KeyStore* keyStore, int sock, uid_t uid, Value* param1, Value* param2);
    int8_t code;
    State state;
    uint32_t perm;
    int lengths[MAX_PARAM];
} actions[] = {
    {test,     't', STATE_ANY,      TEST,     {0, 0}},
    {get,      'g', STATE_NO_ERROR, GET,      {KEY_SIZE, 0}},
    {insert,   'i', STATE_NO_ERROR, INSERT,   {KEY_SIZE, VALUE_SIZE}},
    {del,      'd', STATE_ANY,      DELETE,   {KEY_SIZE, 0}},
    {exist,    'e', STATE_ANY,      EXIST,    {KEY_SIZE, 0}},
    {saw,      's', STATE_ANY,      SAW,      {KEY_SIZE, 0}},
    {reset,    'r', STATE_ANY,      RESET,    {0, 0}},
    {password, 'p', STATE_ANY,      PASSWORD, {PASSWORD_SIZE, 0}},
    {lock,     'l', STATE_NO_ERROR, LOCK,     {0, 0}},
    {unlock,   'u', STATE_LOCKED,   UNLOCK,   {PASSWORD_SIZE, 0}},
    {zero,     'z', STATE_ANY,      ZERO,     {0, 0}},
    {NULL,      0 , STATE_ANY,      0,        {0, 0}},
};

static struct user {
    uid_t uid;
    uid_t euid;
    uint32_t perms;
} users[] = {
    {AID_SYSTEM,   ~0,         ~0},
    {AID_VPN,      AID_SYSTEM, GET},
    {AID_WIFI,     AID_SYSTEM, GET},
    {AID_ROOT,     AID_SYSTEM, GET},
    {~0,           ~0,         TEST | GET | INSERT | DELETE | EXIST | SAW},
};

static ResponseCode process(KeyStore* keyStore, int sock, uid_t uid, int8_t code) {
    struct user* user = users;
    struct action* action = actions;
    int i;

    while (~user->uid && user->uid != uid) {
        ++user;
    }
    while (action->code && action->code != code) {
        ++action;
    }
    if (!action->code) {
        return UNDEFINED_ACTION;
    }
    if (!(action->perm & user->perms)) {
        return PERMISSION_DENIED;
    }
    if (action->state != STATE_ANY && action->state != keyStore->getState()) {
        return (ResponseCode) keyStore->getState();
    }
    if (~user->euid) {
        uid = user->euid;
    }
    Value params[MAX_PARAM];
    for (i = 0; i < MAX_PARAM && action->lengths[i] != 0; ++i) {
        params[i].length = recv_message(sock, params[i].value, action->lengths[i]);
        if (params[i].length < 0) {
            return PROTOCOL_ERROR;
        }
    }
    if (!recv_end_of_file(sock)) {
        return PROTOCOL_ERROR;
    }
    return action->run(keyStore, sock, uid, &params[0], &params[1]);
}

int main(int argc, char* argv[]) {
    int controlSocket = android_get_control_socket("keystore");
    if (argc < 2) {
        ALOGE("A directory must be specified!");
        return 1;
    }
    if (chdir(argv[1]) == -1) {
        ALOGE("chdir: %s: %s", argv[1], strerror(errno));
        return 1;
    }

    Entropy entropy;
    if (!entropy.open()) {
        return 1;
    }
    if (listen(controlSocket, 3) == -1) {
        ALOGE("listen: %s", strerror(errno));
        return 1;
    }

    signal(SIGPIPE, SIG_IGN);

    KeyStore keyStore(&entropy);
    int sock;
    while ((sock = accept(controlSocket, NULL, 0)) != -1) {
        struct timeval tv;
        tv.tv_sec = 3;
        setsockopt(sock, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv));
        setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO, &tv, sizeof(tv));

        struct ucred cred;
        socklen_t size = sizeof(cred);
        int credResult = getsockopt(sock, SOL_SOCKET, SO_PEERCRED, &cred, &size);
        if (credResult != 0) {
            ALOGW("getsockopt: %s", strerror(errno));
        } else {
            int8_t request;
            if (recv_code(sock, &request)) {
                State old_state = keyStore.getState();
                ResponseCode response = process(&keyStore, sock, cred.uid, request);
                if (response == NO_ERROR_RESPONSE_CODE_SENT) {
                    response = NO_ERROR;
                } else {
                    send_code(sock, response);
                }
                ALOGI("uid: %d action: %c -> %d state: %d -> %d retry: %d",
                     cred.uid,
                     request, response,
                     old_state, keyStore.getState(),
                     keyStore.getRetry());
            }
        }
        close(sock);
    }
    ALOGE("accept: %s", strerror(errno));
    return 1;
}