1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
|
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware;
import java.util.GregorianCalendar;
/**
* Estimates magnetic field at a given point on
* Earth, and in particular, to compute the magnetic declination from true
* north.
*
* <p>This uses the World Magnetic Model produced by the United States National
* Geospatial-Intelligence Agency. More details about the model can be found at
* <a href="http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml">http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml</a>.
* This class currently uses WMM-2010 which is valid until 2015, but should
* produce acceptable results for several years after that. Future versions of
* Android may use a newer version of the model.
*/
public class GeomagneticField {
// The magnetic field at a given point, in nonoteslas in geodetic
// coordinates.
private float mX;
private float mY;
private float mZ;
// Geocentric coordinates -- set by computeGeocentricCoordinates.
private float mGcLatitudeRad;
private float mGcLongitudeRad;
private float mGcRadiusKm;
// Constants from WGS84 (the coordinate system used by GPS)
static private final float EARTH_SEMI_MAJOR_AXIS_KM = 6378.137f;
static private final float EARTH_SEMI_MINOR_AXIS_KM = 6356.7523142f;
static private final float EARTH_REFERENCE_RADIUS_KM = 6371.2f;
// These coefficients and the formulae used below are from:
// NOAA Technical Report: The US/UK World Magnetic Model for 2010-2015
static private final float[][] G_COEFF = new float[][] {
{ 0.0f },
{ -29496.6f, -1586.3f },
{ -2396.6f, 3026.1f, 1668.6f },
{ 1340.1f, -2326.2f, 1231.9f, 634.0f },
{ 912.6f, 808.9f, 166.7f, -357.1f, 89.4f },
{ -230.9f, 357.2f, 200.3f, -141.1f, -163.0f, -7.8f },
{ 72.8f, 68.6f, 76.0f, -141.4f, -22.8f, 13.2f, -77.9f },
{ 80.5f, -75.1f, -4.7f, 45.3f, 13.9f, 10.4f, 1.7f, 4.9f },
{ 24.4f, 8.1f, -14.5f, -5.6f, -19.3f, 11.5f, 10.9f, -14.1f, -3.7f },
{ 5.4f, 9.4f, 3.4f, -5.2f, 3.1f, -12.4f, -0.7f, 8.4f, -8.5f, -10.1f },
{ -2.0f, -6.3f, 0.9f, -1.1f, -0.2f, 2.5f, -0.3f, 2.2f, 3.1f, -1.0f, -2.8f },
{ 3.0f, -1.5f, -2.1f, 1.7f, -0.5f, 0.5f, -0.8f, 0.4f, 1.8f, 0.1f, 0.7f, 3.8f },
{ -2.2f, -0.2f, 0.3f, 1.0f, -0.6f, 0.9f, -0.1f, 0.5f, -0.4f, -0.4f, 0.2f, -0.8f, 0.0f } };
static private final float[][] H_COEFF = new float[][] {
{ 0.0f },
{ 0.0f, 4944.4f },
{ 0.0f, -2707.7f, -576.1f },
{ 0.0f, -160.2f, 251.9f, -536.6f },
{ 0.0f, 286.4f, -211.2f, 164.3f, -309.1f },
{ 0.0f, 44.6f, 188.9f, -118.2f, 0.0f, 100.9f },
{ 0.0f, -20.8f, 44.1f, 61.5f, -66.3f, 3.1f, 55.0f },
{ 0.0f, -57.9f, -21.1f, 6.5f, 24.9f, 7.0f, -27.7f, -3.3f },
{ 0.0f, 11.0f, -20.0f, 11.9f, -17.4f, 16.7f, 7.0f, -10.8f, 1.7f },
{ 0.0f, -20.5f, 11.5f, 12.8f, -7.2f, -7.4f, 8.0f, 2.1f, -6.1f, 7.0f },
{ 0.0f, 2.8f, -0.1f, 4.7f, 4.4f, -7.2f, -1.0f, -3.9f, -2.0f, -2.0f, -8.3f },
{ 0.0f, 0.2f, 1.7f, -0.6f, -1.8f, 0.9f, -0.4f, -2.5f, -1.3f, -2.1f, -1.9f, -1.8f },
{ 0.0f, -0.9f, 0.3f, 2.1f, -2.5f, 0.5f, 0.6f, 0.0f, 0.1f, 0.3f, -0.9f, -0.2f, 0.9f } };
static private final float[][] DELTA_G = new float[][] {
{ 0.0f },
{ 11.6f, 16.5f },
{ -12.1f, -4.4f, 1.9f },
{ 0.4f, -4.1f, -2.9f, -7.7f },
{ -1.8f, 2.3f, -8.7f, 4.6f, -2.1f },
{ -1.0f, 0.6f, -1.8f, -1.0f, 0.9f, 1.0f },
{ -0.2f, -0.2f, -0.1f, 2.0f, -1.7f, -0.3f, 1.7f },
{ 0.1f, -0.1f, -0.6f, 1.3f, 0.4f, 0.3f, -0.7f, 0.6f },
{ -0.1f, 0.1f, -0.6f, 0.2f, -0.2f, 0.3f, 0.3f, -0.6f, 0.2f },
{ 0.0f, -0.1f, 0.0f, 0.3f, -0.4f, -0.3f, 0.1f, -0.1f, -0.4f, -0.2f },
{ 0.0f, 0.0f, -0.1f, 0.2f, 0.0f, -0.1f, -0.2f, 0.0f, -0.1f, -0.2f, -0.2f },
{ 0.0f, 0.0f, 0.0f, 0.1f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.1f, 0.0f },
{ 0.0f, 0.0f, 0.1f, 0.1f, -0.1f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.1f, 0.1f } };
static private final float[][] DELTA_H = new float[][] {
{ 0.0f },
{ 0.0f, -25.9f },
{ 0.0f, -22.5f, -11.8f },
{ 0.0f, 7.3f, -3.9f, -2.6f },
{ 0.0f, 1.1f, 2.7f, 3.9f, -0.8f },
{ 0.0f, 0.4f, 1.8f, 1.2f, 4.0f, -0.6f },
{ 0.0f, -0.2f, -2.1f, -0.4f, -0.6f, 0.5f, 0.9f },
{ 0.0f, 0.7f, 0.3f, -0.1f, -0.1f, -0.8f, -0.3f, 0.3f },
{ 0.0f, -0.1f, 0.2f, 0.4f, 0.4f, 0.1f, -0.1f, 0.4f, 0.3f },
{ 0.0f, 0.0f, -0.2f, 0.0f, -0.1f, 0.1f, 0.0f, -0.2f, 0.3f, 0.2f },
{ 0.0f, 0.1f, -0.1f, 0.0f, -0.1f, -0.1f, 0.0f, -0.1f, -0.2f, 0.0f, -0.1f },
{ 0.0f, 0.0f, 0.1f, 0.0f, 0.1f, 0.0f, 0.1f, 0.0f, -0.1f, -0.1f, 0.0f, -0.1f },
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.1f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } };
static private final long BASE_TIME =
new GregorianCalendar(2010, 1, 1).getTimeInMillis();
// The ratio between the Gauss-normalized associated Legendre functions and
// the Schmid quasi-normalized ones. Compute these once staticly since they
// don't depend on input variables at all.
static private final float[][] SCHMIDT_QUASI_NORM_FACTORS =
computeSchmidtQuasiNormFactors(G_COEFF.length);
/**
* Estimate the magnetic field at a given point and time.
*
* @param gdLatitudeDeg
* Latitude in WGS84 geodetic coordinates -- positive is east.
* @param gdLongitudeDeg
* Longitude in WGS84 geodetic coordinates -- positive is north.
* @param altitudeMeters
* Altitude in WGS84 geodetic coordinates, in meters.
* @param timeMillis
* Time at which to evaluate the declination, in milliseconds
* since January 1, 1970. (approximate is fine -- the declination
* changes very slowly).
*/
public GeomagneticField(float gdLatitudeDeg,
float gdLongitudeDeg,
float altitudeMeters,
long timeMillis) {
final int MAX_N = G_COEFF.length; // Maximum degree of the coefficients.
// We don't handle the north and south poles correctly -- pretend that
// we're not quite at them to avoid crashing.
gdLatitudeDeg = Math.min(90.0f - 1e-5f,
Math.max(-90.0f + 1e-5f, gdLatitudeDeg));
computeGeocentricCoordinates(gdLatitudeDeg,
gdLongitudeDeg,
altitudeMeters);
assert G_COEFF.length == H_COEFF.length;
// Note: LegendreTable computes associated Legendre functions for
// cos(theta). We want the associated Legendre functions for
// sin(latitude), which is the same as cos(PI/2 - latitude), except the
// derivate will be negated.
LegendreTable legendre =
new LegendreTable(MAX_N - 1,
(float) (Math.PI / 2.0 - mGcLatitudeRad));
// Compute a table of (EARTH_REFERENCE_RADIUS_KM / radius)^n for i in
// 0..MAX_N-2 (this is much faster than calling Math.pow MAX_N+1 times).
float[] relativeRadiusPower = new float[MAX_N + 2];
relativeRadiusPower[0] = 1.0f;
relativeRadiusPower[1] = EARTH_REFERENCE_RADIUS_KM / mGcRadiusKm;
for (int i = 2; i < relativeRadiusPower.length; ++i) {
relativeRadiusPower[i] = relativeRadiusPower[i - 1] *
relativeRadiusPower[1];
}
// Compute tables of sin(lon * m) and cos(lon * m) for m = 0..MAX_N --
// this is much faster than calling Math.sin and Math.com MAX_N+1 times.
float[] sinMLon = new float[MAX_N];
float[] cosMLon = new float[MAX_N];
sinMLon[0] = 0.0f;
cosMLon[0] = 1.0f;
sinMLon[1] = (float) Math.sin(mGcLongitudeRad);
cosMLon[1] = (float) Math.cos(mGcLongitudeRad);
for (int m = 2; m < MAX_N; ++m) {
// Standard expansions for sin((m-x)*theta + x*theta) and
// cos((m-x)*theta + x*theta).
int x = m >> 1;
sinMLon[m] = sinMLon[m-x] * cosMLon[x] + cosMLon[m-x] * sinMLon[x];
cosMLon[m] = cosMLon[m-x] * cosMLon[x] - sinMLon[m-x] * sinMLon[x];
}
float inverseCosLatitude = 1.0f / (float) Math.cos(mGcLatitudeRad);
float yearsSinceBase =
(timeMillis - BASE_TIME) / (365f * 24f * 60f * 60f * 1000f);
// We now compute the magnetic field strength given the geocentric
// location. The magnetic field is the derivative of the potential
// function defined by the model. See NOAA Technical Report: The US/UK
// World Magnetic Model for 2010-2015 for the derivation.
float gcX = 0.0f; // Geocentric northwards component.
float gcY = 0.0f; // Geocentric eastwards component.
float gcZ = 0.0f; // Geocentric downwards component.
for (int n = 1; n < MAX_N; n++) {
for (int m = 0; m <= n; m++) {
// Adjust the coefficients for the current date.
float g = G_COEFF[n][m] + yearsSinceBase * DELTA_G[n][m];
float h = H_COEFF[n][m] + yearsSinceBase * DELTA_H[n][m];
// Negative derivative with respect to latitude, divided by
// radius. This looks like the negation of the version in the
// NOAA Techincal report because that report used
// P_n^m(sin(theta)) and we use P_n^m(cos(90 - theta)), so the
// derivative with respect to theta is negated.
gcX += relativeRadiusPower[n+2]
* (g * cosMLon[m] + h * sinMLon[m])
* legendre.mPDeriv[n][m]
* SCHMIDT_QUASI_NORM_FACTORS[n][m];
// Negative derivative with respect to longitude, divided by
// radius.
gcY += relativeRadiusPower[n+2] * m
* (g * sinMLon[m] - h * cosMLon[m])
* legendre.mP[n][m]
* SCHMIDT_QUASI_NORM_FACTORS[n][m]
* inverseCosLatitude;
// Negative derivative with respect to radius.
gcZ -= (n + 1) * relativeRadiusPower[n+2]
* (g * cosMLon[m] + h * sinMLon[m])
* legendre.mP[n][m]
* SCHMIDT_QUASI_NORM_FACTORS[n][m];
}
}
// Convert back to geodetic coordinates. This is basically just a
// rotation around the Y-axis by the difference in latitudes between the
// geocentric frame and the geodetic frame.
double latDiffRad = Math.toRadians(gdLatitudeDeg) - mGcLatitudeRad;
mX = (float) (gcX * Math.cos(latDiffRad)
+ gcZ * Math.sin(latDiffRad));
mY = gcY;
mZ = (float) (- gcX * Math.sin(latDiffRad)
+ gcZ * Math.cos(latDiffRad));
}
/**
* @return The X (northward) component of the magnetic field in nanoteslas.
*/
public float getX() {
return mX;
}
/**
* @return The Y (eastward) component of the magnetic field in nanoteslas.
*/
public float getY() {
return mY;
}
/**
* @return The Z (downward) component of the magnetic field in nanoteslas.
*/
public float getZ() {
return mZ;
}
/**
* @return The declination of the horizontal component of the magnetic
* field from true north, in degrees (i.e. positive means the
* magnetic field is rotated east that much from true north).
*/
public float getDeclination() {
return (float) Math.toDegrees(Math.atan2(mY, mX));
}
/**
* @return The inclination of the magnetic field in degrees -- positive
* means the magnetic field is rotated downwards.
*/
public float getInclination() {
return (float) Math.toDegrees(Math.atan2(mZ,
getHorizontalStrength()));
}
/**
* @return Horizontal component of the field strength in nonoteslas.
*/
public float getHorizontalStrength() {
return (float) Math.hypot(mX, mY);
}
/**
* @return Total field strength in nanoteslas.
*/
public float getFieldStrength() {
return (float) Math.sqrt(mX * mX + mY * mY + mZ * mZ);
}
/**
* @param gdLatitudeDeg
* Latitude in WGS84 geodetic coordinates.
* @param gdLongitudeDeg
* Longitude in WGS84 geodetic coordinates.
* @param altitudeMeters
* Altitude above sea level in WGS84 geodetic coordinates.
* @return Geocentric latitude (i.e. angle between closest point on the
* equator and this point, at the center of the earth.
*/
private void computeGeocentricCoordinates(float gdLatitudeDeg,
float gdLongitudeDeg,
float altitudeMeters) {
float altitudeKm = altitudeMeters / 1000.0f;
float a2 = EARTH_SEMI_MAJOR_AXIS_KM * EARTH_SEMI_MAJOR_AXIS_KM;
float b2 = EARTH_SEMI_MINOR_AXIS_KM * EARTH_SEMI_MINOR_AXIS_KM;
double gdLatRad = Math.toRadians(gdLatitudeDeg);
float clat = (float) Math.cos(gdLatRad);
float slat = (float) Math.sin(gdLatRad);
float tlat = slat / clat;
float latRad =
(float) Math.sqrt(a2 * clat * clat + b2 * slat * slat);
mGcLatitudeRad = (float) Math.atan(tlat * (latRad * altitudeKm + b2)
/ (latRad * altitudeKm + a2));
mGcLongitudeRad = (float) Math.toRadians(gdLongitudeDeg);
float radSq = altitudeKm * altitudeKm
+ 2 * altitudeKm * (float) Math.sqrt(a2 * clat * clat +
b2 * slat * slat)
+ (a2 * a2 * clat * clat + b2 * b2 * slat * slat)
/ (a2 * clat * clat + b2 * slat * slat);
mGcRadiusKm = (float) Math.sqrt(radSq);
}
/**
* Utility class to compute a table of Gauss-normalized associated Legendre
* functions P_n^m(cos(theta))
*/
static private class LegendreTable {
// These are the Gauss-normalized associated Legendre functions -- that
// is, they are normal Legendre functions multiplied by
// (n-m)!/(2n-1)!! (where (2n-1)!! = 1*3*5*...*2n-1)
public final float[][] mP;
// Derivative of mP, with respect to theta.
public final float[][] mPDeriv;
/**
* @param maxN
* The maximum n- and m-values to support
* @param thetaRad
* Returned functions will be Gauss-normalized
* P_n^m(cos(thetaRad)), with thetaRad in radians.
*/
public LegendreTable(int maxN, float thetaRad) {
// Compute the table of Gauss-normalized associated Legendre
// functions using standard recursion relations. Also compute the
// table of derivatives using the derivative of the recursion
// relations.
float cos = (float) Math.cos(thetaRad);
float sin = (float) Math.sin(thetaRad);
mP = new float[maxN + 1][];
mPDeriv = new float[maxN + 1][];
mP[0] = new float[] { 1.0f };
mPDeriv[0] = new float[] { 0.0f };
for (int n = 1; n <= maxN; n++) {
mP[n] = new float[n + 1];
mPDeriv[n] = new float[n + 1];
for (int m = 0; m <= n; m++) {
if (n == m) {
mP[n][m] = sin * mP[n - 1][m - 1];
mPDeriv[n][m] = cos * mP[n - 1][m - 1]
+ sin * mPDeriv[n - 1][m - 1];
} else if (n == 1 || m == n - 1) {
mP[n][m] = cos * mP[n - 1][m];
mPDeriv[n][m] = -sin * mP[n - 1][m]
+ cos * mPDeriv[n - 1][m];
} else {
assert n > 1 && m < n - 1;
float k = ((n - 1) * (n - 1) - m * m)
/ (float) ((2 * n - 1) * (2 * n - 3));
mP[n][m] = cos * mP[n - 1][m] - k * mP[n - 2][m];
mPDeriv[n][m] = -sin * mP[n - 1][m]
+ cos * mPDeriv[n - 1][m] - k * mPDeriv[n - 2][m];
}
}
}
}
}
/**
* Compute the ration between the Gauss-normalized associated Legendre
* functions and the Schmidt quasi-normalized version. This is equivalent to
* sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)!
*/
private static float[][] computeSchmidtQuasiNormFactors(int maxN) {
float[][] schmidtQuasiNorm = new float[maxN + 1][];
schmidtQuasiNorm[0] = new float[] { 1.0f };
for (int n = 1; n <= maxN; n++) {
schmidtQuasiNorm[n] = new float[n + 1];
schmidtQuasiNorm[n][0] =
schmidtQuasiNorm[n - 1][0] * (2 * n - 1) / (float) n;
for (int m = 1; m <= n; m++) {
schmidtQuasiNorm[n][m] = schmidtQuasiNorm[n][m - 1]
* (float) Math.sqrt((n - m + 1) * (m == 1 ? 2 : 1)
/ (float) (n + m));
}
}
return schmidtQuasiNorm;
}
}
|