summaryrefslogtreecommitdiffstats
path: root/core/java/android/hardware/SensorEvent.java
blob: 906c2a1941d59e0b3f75c76a7809615c676caf66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.hardware;

/**
 * This class represents a {@link android.hardware.Sensor Sensor} event and
 * holds informations such as the sensor's type, the time-stamp, accuracy and of
 * course the sensor's {@link SensorEvent#values data}.
 *
 * <p>
 * <u>Definition of the coordinate system used by the SensorEvent API.</u>
 * </p>
 *
 * <p>
 * The coordinate-system is defined relative to the screen of the phone in its
 * default orientation. The axes are not swapped when the device's screen
 * orientation changes.
 * </p>
 *
 * <p>
 * The X axis is horizontal and points to the right, the Y axis is vertical and
 * points up and the Z axis points towards the outside of the front face of the
 * screen. In this system, coordinates behind the screen have negative Z values.
 * </p>
 *
 * <p>
 * <center><img src="../../../images/axis_device.png"
 * alt="Sensors coordinate-system diagram." border="0" /></center>
 * </p>
 *
 * <p>
 * <b>Note:</b> This coordinate system is different from the one used in the
 * Android 2D APIs where the origin is in the top-left corner.
 * </p>
 *
 * @see SensorManager
 * @see SensorEvent
 * @see Sensor
 *
 */

public class SensorEvent {
    /**
     * <p>
     * The length and contents of the {@link #values values} array depends on
     * which {@link android.hardware.Sensor sensor} type is being monitored (see
     * also {@link SensorEvent} for a definition of the coordinate system used).
     * </p>
     *
     * <h4>{@link android.hardware.Sensor#TYPE_ACCELEROMETER
     * Sensor.TYPE_ACCELEROMETER}:</h4> All values are in SI units (m/s^2)
     *
     * <ul>
     * <li> values[0]: Acceleration minus Gx on the x-axis </li>
     * <li> values[1]: Acceleration minus Gy on the y-axis </li>
     * <li> values[2]: Acceleration minus Gz on the z-axis </li>
     * </ul>
     *
     * <p>
     * A sensor of this type measures the acceleration applied to the device
     * (<b>Ad</b>). Conceptually, it does so by measuring forces applied to the
     * sensor itself (<b>Fs</b>) using the relation:
     * </p>
     *
     * <b><center>Ad = - &#8721;Fs / mass</center></b>
     *
     * <p>
     * In particular, the force of gravity is always influencing the measured
     * acceleration:
     * </p>
     *
     * <b><center>Ad = -g - &#8721;F / mass</center></b>
     *
     * <p>
     * For this reason, when the device is sitting on a table (and obviously not
     * accelerating), the accelerometer reads a magnitude of <b>g</b> = 9.81
     * m/s^2
     * </p>
     *
     * <p>
     * Similarly, when the device is in free-fall and therefore dangerously
     * accelerating towards to ground at 9.81 m/s^2, its accelerometer reads a
     * magnitude of 0 m/s^2.
     * </p>
     *
     * <p>
     * It should be apparent that in order to measure the real acceleration of
     * the device, the contribution of the force of gravity must be eliminated.
     * This can be achieved by applying a <i>high-pass</i> filter. Conversely, a
     * <i>low-pass</i> filter can be used to isolate the force of gravity.
     * </p>
     *
     * <pre class="prettyprint">
     *
     *     public void onSensorChanged(SensorEvent event)
     *     {
     *          // alpha is calculated as t / (t + dT)
     *          // with t, the low-pass filter's time-constant
     *          // and dT, the event delivery rate
     *
     *          final float alpha = 0.8;
     *
     *          gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0];
     *          gravity[1] = alpha * gravity[1] + (1 - alpha) * event.values[1];
     *          gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2];
     *
     *          linear_acceleration[0] = event.values[0] - gravity[0];
     *          linear_acceleration[1] = event.values[1] - gravity[1];
     *          linear_acceleration[2] = event.values[2] - gravity[2];
     *     }
     * </pre>
     *
     * <p>
     * <u>Examples</u>:
     * <ul>
     * <li>When the device lies flat on a table and is pushed on its left side
     * toward the right, the x acceleration value is positive.</li>
     *
     * <li>When the device lies flat on a table, the acceleration value is
     * +9.81, which correspond to the acceleration of the device (0 m/s^2) minus
     * the force of gravity (-9.81 m/s^2).</li>
     *
     * <li>When the device lies flat on a table and is pushed toward the sky
     * with an acceleration of A m/s^2, the acceleration value is equal to
     * A+9.81 which correspond to the acceleration of the device (+A m/s^2)
     * minus the force of gravity (-9.81 m/s^2).</li>
     * </ul>
     *
     *
     * <h4>{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
     * Sensor.TYPE_MAGNETIC_FIELD}:</h4>
     * All values are in micro-Tesla (uT) and measure the ambient magnetic field
     * in the X, Y and Z axis.
     *
     * <h4>{@link android.hardware.Sensor#TYPE_GYROSCOPE Sensor.TYPE_GYROSCOPE}:
     * </h4> All values are in radians/second and measure the rate of rotation
     * around the device's local X, Y and Z axis. The coordinate system is the
     * same as is used for the acceleration sensor. Rotation is positive in the
     * counter-clockwise direction. That is, an observer looking from some
     * positive location on the x, y or z axis at a device positioned on the
     * origin would report positive rotation if the device appeared to be
     * rotating counter clockwise. Note that this is the standard mathematical
     * definition of positive rotation and does not agree with the definition of
     * roll given earlier.
     * <ul>
     * <li> values[0]: Angular speed around the x-axis </li>
     * <li> values[1]: Angular speed around the y-axis </li>
     * <li> values[2]: Angular speed around the z-axis </li>
     * </ul>
     * <p>
     * Typically the output of the gyroscope is integrated over time to
     * calculate a rotation describing the change of angles over the timestep,
     * for example:
     * </p>
     *
     * <pre class="prettyprint">
     *     private static final float NS2S = 1.0f / 1000000000.0f;
     *     private final float[] deltaRotationVector = new float[4]();
     *     private float timestamp;
     *
     *     public void onSensorChanged(SensorEvent event) {
     *          // This timestep's delta rotation to be multiplied by the current rotation
     *          // after computing it from the gyro sample data.
     *          if (timestamp != 0) {
     *              final float dT = (event.timestamp - timestamp) * NS2S;
     *              // Axis of the rotation sample, not normalized yet.
     *              float axisX = event.values[0];
     *              float axisY = event.values[1];
     *              float axisZ = event.values[2];
     *
     *              // Calculate the angular speed of the sample
     *              float omegaMagnitude = sqrt(axisX*axisX + axisY*axisY + axisZ*axisZ);
     *
     *              // Normalize the rotation vector if it's big enough to get the axis
     *              if (omegaMagnitude > EPSILON) {
     *                  axisX /= omegaMagnitude;
     *                  axisY /= omegaMagnitude;
     *                  axisZ /= omegaMagnitude;
     *              }
     *
     *              // Integrate around this axis with the angular speed by the timestep
     *              // in order to get a delta rotation from this sample over the timestep
     *              // We will convert this axis-angle representation of the delta rotation
     *              // into a quaternion before turning it into the rotation matrix.
     *              float thetaOverTwo = omegaMagnitude * dT / 2.0f;
     *              float sinThetaOverTwo = sin(thetaOverTwo);
     *              float cosThetaOverTwo = cos(thetaOverTwo);
     *              deltaRotationVector[0] = sinThetaOverTwo * axisX;
     *              deltaRotationVector[1] = sinThetaOverTwo * axisY;
     *              deltaRotationVector[2] = sinThetaOverTwo * axisZ;
     *              deltaRotationVector[3] = cosThetaOverTwo;
     *          }
     *          timestamp = event.timestamp;
     *          float[] deltaRotationMatrix = new float[9];
     *          SensorManager.getRotationMatrixFromVector(deltaRotationMatrix, deltaRotationVector);
     *          // User code should concatenate the delta rotation we computed with the current rotation
     *          // in order to get the updated rotation.
     *          // rotationCurrent = rotationCurrent * deltaRotationMatrix;
     *     }
     * </pre>
     * <p>
     * In practice, the gyroscope noise and offset will introduce some errors
     * which need to be compensated for. This is usually done using the
     * information from other sensors, but is beyond the scope of this document.
     * </p>
     * <h4>{@link android.hardware.Sensor#TYPE_LIGHT Sensor.TYPE_LIGHT}:</h4>
     * <ul>
     * <li>values[0]: Ambient light level in SI lux units </li>
     * </ul>
     *
     * <h4>{@link android.hardware.Sensor#TYPE_PRESSURE Sensor.TYPE_PRESSURE}:</h4>
     * <ul>
     * <li>values[0]: Atmospheric pressure in hPa (millibar) </li>
     * </ul>
     *
     * <h4>{@link android.hardware.Sensor#TYPE_PROXIMITY Sensor.TYPE_PROXIMITY}:
     * </h4>
     *
     * <ul>
     * <li>values[0]: Proximity sensor distance measured in centimeters </li>
     * </ul>
     *
     * <p>
     * <b>Note:</b> Some proximity sensors only support a binary <i>near</i> or
     * <i>far</i> measurement. In this case, the sensor should report its
     * {@link android.hardware.Sensor#getMaximumRange() maximum range} value in
     * the <i>far</i> state and a lesser value in the <i>near</i> state.
     * </p>
     *
     *  <h4>{@link android.hardware.Sensor#TYPE_GRAVITY Sensor.TYPE_GRAVITY}:</h4>
     *  <p>A three dimensional vector indicating the direction and magnitude of gravity.  Units
     *  are m/s^2. The coordinate system is the same as is used by the acceleration sensor.</p>
     *  <p><b>Note:</b> When the device is at rest, the output of the gravity sensor should be identical
     *  to that of the accelerometer.</p>
     *
     *  <h4>{@link android.hardware.Sensor#TYPE_LINEAR_ACCELERATION Sensor.TYPE_LINEAR_ACCELERATION}:</h4>
     *  A three dimensional vector indicating acceleration along each device axis, not including
     *  gravity.  All values have units of m/s^2.  The coordinate system is the same as is used by the
     *  acceleration sensor.
     *  <p>The output of the accelerometer, gravity and  linear-acceleration sensors must obey the
     *  following relation:</p>
     *   <p><ul>acceleration = gravity + linear-acceleration</ul></p>
     *
     *  <h4>{@link android.hardware.Sensor#TYPE_ROTATION_VECTOR Sensor.TYPE_ROTATION_VECTOR}:</h4>
     *  <p>The rotation vector represents the orientation of the device as a combination of an <i>angle</i>
     *  and an <i>axis</i>, in which the device has rotated through an angle &#952 around an axis
     *  &lt;x, y, z>.</p>
     *  <p>The three elements of the rotation vector are
     *  &lt;x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>, such that the magnitude of the rotation
     *  vector is equal to sin(&#952/2), and the direction of the rotation vector is equal to the
     *  direction of the axis of rotation.</p>
     *  </p>The three elements of the rotation vector are equal to
     *  the last three components of a <b>unit</b> quaternion
     *  &lt;cos(&#952/2), x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>.</p>
     *  <p>Elements of the rotation vector are unitless.
     *  The x,y, and z axis are defined in the same way as the acceleration
     *  sensor.</p>
     *  The reference coordinate system is defined as a direct orthonormal basis,
     *  where:
     * </p>
     *
     * <ul>
     * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
     * the ground at the device's current location and roughly points East).</li>
     * <li>Y is tangential to the ground at the device's current location and
     * points towards magnetic north.</li>
     * <li>Z points towards the sky and is perpendicular to the ground.</li>
     * </ul>
     *
     * <p>
     * <center><img src="../../../images/axis_globe.png"
     * alt="World coordinate-system diagram." border="0" /></center>
     * </p>
     *
     * <ul>
     * <li> values[0]: x*sin(&#952/2) </li>
     * <li> values[1]: y*sin(&#952/2) </li>
     * <li> values[2]: z*sin(&#952/2) </li>
     * <li> values[3]: cos(&#952/2) </li>
     * <li> values[4]: estimated heading Accuracy (in radians) (-1 if unavailable)</li>
     * </ul>
     * <p> values[3], originally optional, will always be present from SDK Level 18 onwards.
     * values[4] is a new value that has been added in SDK Level 18.
     * </p>
     *
     * <h4>{@link android.hardware.Sensor#TYPE_ORIENTATION
     * Sensor.TYPE_ORIENTATION}:</h4> All values are angles in degrees.
     *
     * <ul>
     * <li> values[0]: Azimuth, angle between the magnetic north direction and the
     * y-axis, around the z-axis (0 to 359). 0=North, 90=East, 180=South,
     * 270=West
     * </p>
     *
     * <p>
     * values[1]: Pitch, rotation around x-axis (-180 to 180), with positive
     * values when the z-axis moves <b>toward</b> the y-axis.
     * </p>
     *
     * <p>
     * values[2]: Roll, rotation around the y-axis (-90 to 90)
     * increasing as the device moves clockwise.
     * </p>
     * </ul>
     *
     * <p>
     * <b>Note:</b> This definition is different from <b>yaw, pitch and roll</b>
     * used in aviation where the X axis is along the long side of the plane
     * (tail to nose).
     * </p>
     *
     * <p>
     * <b>Note:</b> This sensor type exists for legacy reasons, please use
     * {@link android.hardware.Sensor#TYPE_ROTATION_VECTOR
     * rotation vector sensor type} and
     * {@link android.hardware.SensorManager#getRotationMatrix
     * getRotationMatrix()} in conjunction with
     * {@link android.hardware.SensorManager#remapCoordinateSystem
     * remapCoordinateSystem()} and
     * {@link android.hardware.SensorManager#getOrientation getOrientation()} to
     * compute these values instead.
     * </p>
     *
     * <p>
     * <b>Important note:</b> For historical reasons the roll angle is positive
     * in the clockwise direction (mathematically speaking, it should be
     * positive in the counter-clockwise direction).
     * </p>
     *
     * <h4>{@link android.hardware.Sensor#TYPE_RELATIVE_HUMIDITY
     * Sensor.TYPE_RELATIVE_HUMIDITY}:</h4>
     * <ul>
     * <li> values[0]: Relative ambient air humidity in percent </li>
     * </ul>
     * <p>
     * When relative ambient air humidity and ambient temperature are
     * measured, the dew point and absolute humidity can be calculated.
     * </p>
     * <u>Dew Point</u>
     * <p>
     * The dew point is the temperature to which a given parcel of air must be
     * cooled, at constant barometric pressure, for water vapor to condense
     * into water.
     * </p>
     * <center><pre>
     *                    ln(RH/100%) + m&#183;t/(T<sub>n</sub>+t)
     * t<sub>d</sub>(t,RH) = T<sub>n</sub> &#183; ------------------------------
     *                 m - [ln(RH/100%) + m&#183;t/(T<sub>n</sub>+t)]
     * </pre></center>
     * <dl>
     * <dt>t<sub>d</sub></dt> <dd>dew point temperature in &deg;C</dd>
     * <dt>t</dt>             <dd>actual temperature in &deg;C</dd>
     * <dt>RH</dt>            <dd>actual relative humidity in %</dd>
     * <dt>m</dt>             <dd>17.62</dd>
     * <dt>T<sub>n</sub></dt> <dd>243.12 &deg;C</dd>
     * </dl>
     * <p>for example:</p>
     * <pre class="prettyprint">
     * h = Math.log(rh / 100.0) + (17.62 * t) / (243.12 + t);
     * td = 243.12 * h / (17.62 - h);
     * </pre>
     * <u>Absolute Humidity</u>
     * <p>
     * The absolute humidity is the mass of water vapor in a particular volume
     * of dry air. The unit is g/m<sup>3</sup>.
     * </p>
     * <center><pre>
     *                    RH/100%&#183;A&#183;exp(m&#183;t/(T<sub>n</sub>+t))
     * d<sub>v</sub>(t,RH) = 216.7 &#183; -------------------------
     *                           273.15 + t
     * </pre></center>
     * <dl>
     * <dt>d<sub>v</sub></dt> <dd>absolute humidity in g/m<sup>3</sup></dd>
     * <dt>t</dt>             <dd>actual temperature in &deg;C</dd>
     * <dt>RH</dt>            <dd>actual relative humidity in %</dd>
     * <dt>m</dt>             <dd>17.62</dd>
     * <dt>T<sub>n</sub></dt> <dd>243.12 &deg;C</dd>
     * <dt>A</dt>             <dd>6.112 hPa</dd>
     * </dl>
     * <p>for example:</p>
     * <pre class="prettyprint">
     * dv = 216.7 *
     * (rh / 100.0 * 6.112 * Math.exp(17.62 * t / (243.12 + t)) / (273.15 + t));
     * </pre>
     * 
     * <h4>{@link android.hardware.Sensor#TYPE_AMBIENT_TEMPERATURE Sensor.TYPE_AMBIENT_TEMPERATURE}:
     * </h4>
     *
     * <ul>
     * <li> values[0]: ambient (room) temperature in degree Celsius.</li>
     * </ul>
     *
     *
     * <h4>{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD_UNCALIBRATED
     * Sensor.TYPE_MAGNETIC_FIELD_UNCALIBRATED}:</h4>
     * Similar to {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD},
     * but the hard iron calibration is reported separately instead of being included
     * in the measurement. Factory calibration and temperature compensation will still
     * be applied to the "uncalibrated" measurement. Assumptions that the magnetic field
     * is due to the Earth's poles is avoided.
     * <p>
     * The values array is shown below:
     * <ul>
     * <li> values[0] = x_uncalib </li>
     * <li> values[1] = y_uncalib </li>
     * <li> values[2] = z_uncalib </li>
     * <li> values[3] = x_bias </li>
     * <li> values[4] = y_bias </li>
     * <li> values[5] = z_bias </li>
     * </ul>
     * </p>
     * <p>
     * x_uncalib, y_uncalib, z_uncalib are the measured magnetic field in X, Y, Z axes.
     * Soft iron and temperature calibrations are applied. But the hard iron
     * calibration is not applied. The values are in micro-Tesla (uT).
     * </p>
     * <p>
     * x_bias, y_bias, z_bias give the iron bias estimated in X, Y, Z axes.
     * Each field is a component of the estimated hard iron calibration.
     * The values are in micro-Tesla (uT).
     * </p>
     * <p> Hard iron - These distortions arise due to the magnetized iron, steel or permanenet
     * magnets on the device.
     * Soft iron - These distortions arise due to the interaction with the earth's magentic
     * field.
     * </p>
     * <h4> {@link android.hardware.Sensor#TYPE_GAME_ROTATION_VECTOR}:</h4>
     * Identical to {@link android.hardware.Sensor#TYPE_ROTATION_VECTOR} except that it
     * doesn't use the geomagnetic field. Therefore the Y axis doesn't
     * point north, but instead to some other reference, that reference is
     * allowed to drift by the same order of magnitude as the gyroscope
     * drift around the Z axis.
     * <p>
     * In the ideal case, a phone rotated and returning to the same real-world
     * orientation will report the same game rotation vector
     * (without using the earth's geomagnetic field). However, the orientation
     * may drift somewhat over time. See {@link android.hardware.Sensor#TYPE_ROTATION_VECTOR}
     * for a detailed description of the values. This sensor will not have
     * the estimated heading accuracy value.
     * </p>
     *
     * <h4> {@link android.hardware.Sensor#TYPE_GYROSCOPE_UNCALIBRATED
     * Sensor.TYPE_GYROSCOPE_UNCALIBRATED}:</h4>
     * All values are in radians/second and measure the rate of rotation
     * around the X, Y and Z axis. An estimation of the drift on each axis is
     * reported as well.
     * <p>
     * No gyro-drift compensation is performed. Factory calibration and temperature
     * compensation is still applied to the rate of rotation (angular speeds).
     * </p>
     * <p>
     * The coordinate system is the same as is used for the
     * {@link android.hardware.Sensor#TYPE_ACCELEROMETER}
     * Rotation is positive in the counter-clockwise direction (right-hand rule).
     * That is, an observer looking from some positive location on the x, y or z axis
     * at a device positioned on the origin would report positive rotation if the device
     * appeared to be rotating counter clockwise.
     * The range would at least be 17.45 rad/s (ie: ~1000 deg/s).
     * <ul>
     * <li> values[0] : angular speed (w/o drift compensation) around the X axis in rad/s </li>
     * <li> values[1] : angular speed (w/o drift compensation) around the Y axis in rad/s </li>
     * <li> values[2] : angular speed (w/o drift compensation) around the Z axis in rad/s </li>
     * <li> values[3] : estimated drift around X axis in rad/s </li>
     * <li> values[4] : estimated drift around Y axis in rad/s </li>
     * <li> values[5] : estimated drift around Z axis in rad/s </li>
     * </ul>
     * </p>
     * <p><b>Pro Tip:</b> Always use the length of the values array while performing operations
     * on it. In earlier versions, this used to be always 3 which has changed now. </p>
     *
     * @see GeomagneticField
     */
    public final float[] values;

    /**
     * The sensor that generated this event. See
     * {@link android.hardware.SensorManager SensorManager} for details.
     */
    public Sensor sensor;

    /**
     * The accuracy of this event. See {@link android.hardware.SensorManager
     * SensorManager} for details.
     */
    public int accuracy;

    /**
     * The time in nanosecond at which the event happened
     */
    public long timestamp;

    SensorEvent(int valueSize) {
        values = new float[valueSize];
    }
}