1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
/*
* Copyright (C) 2006 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.os;
import android.app.IAlarmManager;
import android.content.Context;
import android.util.Slog;
/**
* Core timekeeping facilities.
*
* <p> Three different clocks are available, and they should not be confused:
*
* <ul>
* <li> <p> {@link System#currentTimeMillis System.currentTimeMillis()}
* is the standard "wall" clock (time and date) expressing milliseconds
* since the epoch. The wall clock can be set by the user or the phone
* network (see {@link #setCurrentTimeMillis}), so the time may jump
* backwards or forwards unpredictably. This clock should only be used
* when correspondence with real-world dates and times is important, such
* as in a calendar or alarm clock application. Interval or elapsed
* time measurements should use a different clock. If you are using
* System.currentTimeMillis(), consider listening to the
* {@link android.content.Intent#ACTION_TIME_TICK ACTION_TIME_TICK},
* {@link android.content.Intent#ACTION_TIME_CHANGED ACTION_TIME_CHANGED}
* and {@link android.content.Intent#ACTION_TIMEZONE_CHANGED
* ACTION_TIMEZONE_CHANGED} {@link android.content.Intent Intent}
* broadcasts to find out when the time changes.
*
* <li> <p> {@link #uptimeMillis} is counted in milliseconds since the
* system was booted. This clock stops when the system enters deep
* sleep (CPU off, display dark, device waiting for external input),
* but is not affected by clock scaling, idle, or other power saving
* mechanisms. This is the basis for most interval timing
* such as {@link Thread#sleep(long) Thread.sleep(millls)},
* {@link Object#wait(long) Object.wait(millis)}, and
* {@link System#nanoTime System.nanoTime()}. This clock is guaranteed
* to be monotonic, and is suitable for interval timing when the
* interval does not span device sleep. Most methods that accept a
* timestamp value currently expect the {@link #uptimeMillis} clock.
*
* <li> <p> {@link #elapsedRealtime} and {@link #elapsedRealtimeNanos}
* return the time since the system was booted, and include deep sleep.
* This clock is guaranteed to be monotonic, and continues to tick even
* when the CPU is in power saving modes, so is the recommend basis
* for general purpose interval timing.
*
* </ul>
*
* There are several mechanisms for controlling the timing of events:
*
* <ul>
* <li> <p> Standard functions like {@link Thread#sleep(long)
* Thread.sleep(millis)} and {@link Object#wait(long) Object.wait(millis)}
* are always available. These functions use the {@link #uptimeMillis}
* clock; if the device enters sleep, the remainder of the time will be
* postponed until the device wakes up. These synchronous functions may
* be interrupted with {@link Thread#interrupt Thread.interrupt()}, and
* you must handle {@link InterruptedException}.
*
* <li> <p> {@link #sleep SystemClock.sleep(millis)} is a utility function
* very similar to {@link Thread#sleep(long) Thread.sleep(millis)}, but it
* ignores {@link InterruptedException}. Use this function for delays if
* you do not use {@link Thread#interrupt Thread.interrupt()}, as it will
* preserve the interrupted state of the thread.
*
* <li> <p> The {@link android.os.Handler} class can schedule asynchronous
* callbacks at an absolute or relative time. Handler objects also use the
* {@link #uptimeMillis} clock, and require an {@link android.os.Looper
* event loop} (normally present in any GUI application).
*
* <li> <p> The {@link android.app.AlarmManager} can trigger one-time or
* recurring events which occur even when the device is in deep sleep
* or your application is not running. Events may be scheduled with your
* choice of {@link java.lang.System#currentTimeMillis} (RTC) or
* {@link #elapsedRealtime} (ELAPSED_REALTIME), and cause an
* {@link android.content.Intent} broadcast when they occur.
* </ul>
*/
public final class SystemClock {
private static final String TAG = "SystemClock";
/**
* This class is uninstantiable.
*/
private SystemClock() {
// This space intentionally left blank.
}
/**
* Waits a given number of milliseconds (of uptimeMillis) before returning.
* Similar to {@link java.lang.Thread#sleep(long)}, but does not throw
* {@link InterruptedException}; {@link Thread#interrupt()} events are
* deferred until the next interruptible operation. Does not return until
* at least the specified number of milliseconds has elapsed.
*
* @param ms to sleep before returning, in milliseconds of uptime.
*/
public static void sleep(long ms)
{
long start = uptimeMillis();
long duration = ms;
boolean interrupted = false;
do {
try {
Thread.sleep(duration);
}
catch (InterruptedException e) {
interrupted = true;
}
duration = start + ms - uptimeMillis();
} while (duration > 0);
if (interrupted) {
// Important: we don't want to quietly eat an interrupt() event,
// so we make sure to re-interrupt the thread so that the next
// call to Thread.sleep() or Object.wait() will be interrupted.
Thread.currentThread().interrupt();
}
}
/**
* Sets the current wall time, in milliseconds. Requires the calling
* process to have appropriate permissions.
*
* @return if the clock was successfully set to the specified time.
*/
public static boolean setCurrentTimeMillis(long millis) {
IBinder b = ServiceManager.getService(Context.ALARM_SERVICE);
IAlarmManager mgr = IAlarmManager.Stub.asInterface(b);
if (mgr == null) {
return false;
}
try {
return mgr.setTime(millis);
} catch (RemoteException e) {
Slog.e(TAG, "Unable to set RTC", e);
} catch (SecurityException e) {
Slog.e(TAG, "Unable to set RTC", e);
}
return false;
}
/**
* Returns milliseconds since boot, not counting time spent in deep sleep.
*
* @return milliseconds of non-sleep uptime since boot.
*/
native public static long uptimeMillis();
/**
* Returns milliseconds since boot, including time spent in sleep.
*
* @return elapsed milliseconds since boot.
*/
native public static long elapsedRealtime();
/**
* Returns nanoseconds since boot, including time spent in sleep.
*
* @return elapsed nanoseconds since boot.
*/
public static native long elapsedRealtimeNanos();
/**
* Returns milliseconds running in the current thread.
*
* @return elapsed milliseconds in the thread
*/
public static native long currentThreadTimeMillis();
/**
* Returns microseconds running in the current thread.
*
* @return elapsed microseconds in the thread
*
* @hide
*/
public static native long currentThreadTimeMicro();
/**
* Returns current wall time in microseconds.
*
* @return elapsed microseconds in wall time
*
* @hide
*/
public static native long currentTimeMicro();
}
|