summaryrefslogtreecommitdiffstats
path: root/docs/html/guide/topics/renderscript/index.jd
blob: b2d9f8461be356975525adf5362229076fae63bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
page.title=Renderscript
@jd:body

  <div id="qv-wrapper">
    <div id="qv">
      <h2>In this document</h2>

      <ol>
        <li><a href="#overview">Renderscript Overview</a></li>
        <li><a href="#native">Renderscript Runtime Layer</a></li>
        <li><a href="#reflected">Reflected Layer</a>
          <ol>
            <li><a href="#func">Functions</a></li>
            <li><a href="#var">Variables</a></li>
            <li><a href="#pointer">Pointers</a></li>
            <li><a href="#struct">Structs</a></li>
          </ol>
        </li>

        <li>
          <a href="#mem-allocation">Memory Allocation APIs</a>
        </li>
        <li>
          <a href="#memory">Working with Memory</a>
          <ol>
            <li><a href="#allocating-mem">Allocating and binding memory to the Renderscript</a></li>

            <li><a href="#read-write">Reading and writing to memory</a></li>

          </ol>
        </li>
      </ol>
    </div>
  </div>

  <p>Renderscript offers a high performance 3D graphics rendering and compute API at the native
  level that you write in C (C99 standard). The main advantages of Renderscript are:</p>
  <ul>
    <li>Portability: Renderscript is designed to run on many types of devices with different
    processor (CPU, GPU, and DSP for instance) architectures. It supports all of these architectures without
    having to target each device, because the code is compiled and cached on the device
    at runtime.</li>

    <li>Performance: Renderscript provides similar performance to OpenGL with the NDK and also
    provides a high performance compute API that is not offered by OpenGL.</li>

    <li>Usability: Renderscript simplifies development when possible, such as eliminating JNI glue code
    and simplifying mesh setup.</li>
  </ul>

  <p>The main disadvantages are:</p>

  <ul>
    <li>Development complexity: Renderscript introduces a new set of APIs that you have to learn.
    Renderscript also allocates memory differently compared to OpenGL with the Android framework APIs.
    However, these issues are not hard to understand and Renderscript offers many features that
    make it easier than OpenGL to initialize rendering.</li>

    <li>Debugging visibility: Renderscript can potentially execute (planned feature for later releases)
    on processors other than the main CPU (such as the GPU), so if this occurs, debugging becomes more difficult.
    </li>
  </ul>


  <p>For an example of Renderscript in action, install the Renderscript sample applications that
  are shipped with the SDK in <code>&lt;sdk_root&gt;/samples/android-11/RenderScript</code>.
  You can also see a typical use of Renderscript with the 3D carousel view in the Android 3.x
  versions of Google Books and YouTube.</p>

  <h2 id="overview">Renderscript Overview</h2>
  <p>The Renderscript runtime operates at the native level and still needs to communicate
with the Android VM, so the way a Renderscript application is setup is different from a pure VM
application. An application that uses Renderscript is still a traditional Android application that
runs in the VM, but you write Renderscript code for the parts of your program that require
it. Using Renderscript can be as simple as offloading a few math calculations or as complicated as
rendering an entire 3D game. No matter what you use it for, Renderscript remains platform
independent, so you do not have to target multiple architectures (for example,
ARM v5, ARM v7, x86).</p>

  <p>The Renderscript system adopts a control and slave architecture where the low-level Renderscript runtime
  code is controlled by the higher level Android system that runs in a virtual machine (VM). The
  Android VM still retains all control of memory management and binds memory that it allocates to
  the Renderscript runtime, so the Renderscript code can access it. The Android framework makes
asynchronous calls to Renderscript, and the calls are placed in a message queue and processed
as soon as possible. Figure 1 shows how the Renderscript system is structured.</p>

   <img id="figure1" src="{@docRoot}images/rs_overview.png" />
  <p class="img-caption"><strong>Figure 1.</strong> Renderscript system overview</p>

  <p>When using Renderscript, there are three layers of APIs that enable communication between the
  Renderscript runtime and Android framework code:</p>

  <ul>
    <li>The Renderscript runtime APIs allow you to do the computation or graphics rendering
    that is required by your application.</li>

    <li>The reflected layer APIs are a set of classes that are reflected from your Renderscript
runtime code. It is basically a wrapper around the Renderscript code that allows the Android
framework to interact with the Renderscript runtime. The Android build tools automatically generate the
classes for this layer during the build process. These classes eliminate the need to write JNI glue
code, like with the NDK.</li>

    <li>The Android framework APIs, which include the {@link android.renderscript} package, allow you to
    build your application using traditional Android components such as activities and views. When
    using Renderscript, this layer calls the reflected layer to access the Renderscript
    runtime.</li>
  </ul>

 <p></p>

  <h2 id="native">Renderscript Runtime Layer</h2>

  <p>Your Renderscript code is compiled and
  executed in a compact and well-defined runtime layer. The Renderscript runtime APIs offer support for
intensive computation and graphics rendering that is portable and automatically scalable to the
amount of cores available on a processor.
</p>
<p class="note"><strong>Note:</strong> The standard C functions in the NDK must be
  guaranteed to run on a CPU, so Renderscript cannot access these libraries,
  because Renderscript is designed to run on different types of processors.</p>

<p>You define your Renderscript code in <code>.rs</code>
  and <code>.rsh</code> files in the <code>src/</code> directory of your Android project. The code
  is compiled to intermediate bytecode by the
  <code>llvm</code> compiler that runs as part of an Android build. When your application
  runs on a device, the bytecode is then compiled (just-in-time) to machine code by another
  <code>llvm</code> compiler that resides on the device. The machine code is optimized for the
  device and also cached, so subsequent uses of the Renderscript enabled application does not
  recompile the bytecode.</p>

  <p>Some key features of the Renderscript runtime libraries include:</p>

  <ul>

    <li>Graphics rendering functions</li>

    <li>Memory allocation request features</li>

    <li>A large collection of math functions with both scalar and vector typed overloaded versions
    of many common routines. Operations such as adding, multiplying, dot product, and cross product
    are available as well as atomic arithmetic and comparison functions.</li>

    <li>Conversion routines for primitive data types and vectors, matrix routines, date and time
    routines, and graphics routines.</li>

    <li>Data types and structures to support the Renderscript system such as Vector types for
    defining two-, three-, or four-vectors.</li>

    <li>Logging functions</li>
  </ul>

  <p>See the Renderscript runtime API reference for more information on the available functions. The
  Renderscript header files are automatically included for you, except for the Renderscript graphics header file, which
  you can include as follows:</p>

<pre>#include "rs_graphics.rsh"</pre>

  <h2 id="reflected">Reflected Layer</h2>

  <p>The reflected layer is a set of classes that the Android build tools generate to allow access
  to the Renderscript runtime from the Android framework. This layer also provides methods
and constructors that allow you to allocate and work with memory for pointers that are defined in
your Renderscript code. The following list describes the major
  components that are reflected:</p>

  <ul>
    <li>Every <code>.rs</code> file that you create is generated into a class named
    <code>project_root/gen/package/name/ScriptC_<em>renderscript_filename</em></code> of
type {@link android.renderscript.ScriptC}. This file is the <code>.java</code> version of your
<code>.rs</code> file, which you can call from the Android framework. This class contains the
following items reflected from the <code>.rs</code> file:

      <ul>
        <li>Non-static functions</li>

        <li>Non-static, global Renderscript variables. Accessor methods are generated for each
        variable, so you can read and write the Renderscript variables from the Android
        framework. If a global variable is initialized at the Renderscript runtime layer, those
values are used to initialize the corresponding values in the Android framework layer. If global
variables are marked as <code>const</code>, then a <code>set</code> method is not
generated.</p></li>

        <li>Global pointers</li>
      </ul>
    </li>

    <li>A <code>struct</code> is reflected into its own class named

    <code>project_root/gen/package/name/ScriptField_struct_name</em></code>, which extends {@link
    android.renderscript.Script.FieldBase}. This class represents an array of the
    <code>struct</code>, which allows you to allocate memory for one or more instances of this
    <code>struct</code>.</li>
  </ul>


<h3 id="func">Functions</h3>
<p>Functions are reflected into the script class itself, located in
<code>project_root/gen/package/name/ScriptC_renderscript_filename</code>. For
example, if you declare the following function in your Renderscript code:</p>

<pre>
void touch(float x, float y, float pressure, int id) {
    if (id >= 10) {
        return;
    }

    touchPos[id].x = x;
    touchPos[id].y = y;
    touchPressure[id] = pressure;
}
</pre>

<p>then the following code is generated:</p>

<pre>
public void invoke_touch(float x, float y, float pressure, int id) {
    FieldPacker touch_fp = new FieldPacker(16);
    touch_fp.addF32(x);
    touch_fp.addF32(y);
    touch_fp.addF32(pressure);
    touch_fp.addI32(id);
    invoke(mExportFuncIdx_touch, touch_fp);
}
</pre>
<p>
Functions cannot have a return value, because the Renderscript system is designed to be
asynchronous. When your Android framework code calls into Renderscript, the call is queued and is
executed when possible. This restriction allows the Renderscript system to function without constant
interruption and increases efficiency. If functions were allowed to have return values, the call
would block until the value was returned.</p>

<p>
If you want the Renderscript code to send a value back to the Android framework, use the
<a href="{@docRoot}reference/renderscript/rs__core_8rsh.html"><code>rsSendToClient()</code></a>
function.
</p>

<h3 id="var">Variables</h3>

  <p>Variables of supported types are reflected into the script class itself, located in
<code>project_root/gen/package/name/ScriptC_renderscript_filename</code>. A set of accessor
methods are generated for each variable. For example, if you declare the following variable in
your Renderscript code:</p>
  <pre>uint32_t unsignedInteger = 1;</pre>

  <p>then the following code is generated:</p>

<pre>
private long mExportVar_unsignedInteger;
public void set_unsignedInteger(long v){
    mExportVar_unsignedInteger = v;
    setVar(mExportVarIdx_unsignedInteger, v);
}

public long get_unsignedInteger(){
    return mExportVar_unsignedInteger;
}
  </pre>


  <h3 id="struct">Structs</h3>
  <p>Structs are reflected into their own classes, located in
    <code>&lt;project_root&gt;/gen/com/example/renderscript/ScriptField_struct_name</code>. This
    class represents an array of the <code>struct</code> and allows you to allocate memory for a
    specified number of <code>struct</code>s. For example, if you declare the following struct:</p>
<pre>
typedef struct Point {
    float2 position;
    float size;
} Point_t;
</pre>

<p>then the following code is generated in <code>ScriptField_Point.java</code>:
<pre>
package com.example.android.rs.hellocompute;

import android.renderscript.*;
import android.content.res.Resources;

  /**
  * @hide
  */
public class ScriptField_Point extends android.renderscript.Script.FieldBase {

    static public class Item {
        public static final int sizeof = 12;

        Float2 position;
        float size;

        Item() {
            position = new Float2();
        }
    }

    private Item mItemArray[];
    private FieldPacker mIOBuffer;
    public static Element createElement(RenderScript rs) {
        Element.Builder eb = new Element.Builder(rs);
        eb.add(Element.F32_2(rs), "position");
        eb.add(Element.F32(rs), "size");
        return eb.create();
    }

    public  ScriptField_Point(RenderScript rs, int count) {
        mItemArray = null;
        mIOBuffer = null;
        mElement = createElement(rs);
        init(rs, count);
    }

    public  ScriptField_Point(RenderScript rs, int count, int usages) {
        mItemArray = null;
        mIOBuffer = null;
        mElement = createElement(rs);
        init(rs, count, usages);
    }

    private void copyToArray(Item i, int index) {
        if (mIOBuffer == null) mIOBuffer = new FieldPacker(Item.sizeof * getType().getX()/* count
        */);
        mIOBuffer.reset(index * Item.sizeof);
        mIOBuffer.addF32(i.position);
        mIOBuffer.addF32(i.size);
    }

    public void set(Item i, int index, boolean copyNow) {
        if (mItemArray == null) mItemArray = new Item[getType().getX() /* count */];
        mItemArray[index] = i;
        if (copyNow)  {
            copyToArray(i, index);
            mAllocation.setFromFieldPacker(index, mIOBuffer);
        }
    }

    public Item get(int index) {
        if (mItemArray == null) return null;
        return mItemArray[index];
    }

    public void set_position(int index, Float2 v, boolean copyNow) {
        if (mIOBuffer == null) mIOBuffer = new FieldPacker(Item.sizeof * getType().getX()/* count */);
        if (mItemArray == null) mItemArray = new Item[getType().getX() /* count */];
        if (mItemArray[index] == null) mItemArray[index] = new Item();
        mItemArray[index].position = v;
        if (copyNow) {
            mIOBuffer.reset(index * Item.sizeof);
            mIOBuffer.addF32(v);
            FieldPacker fp = new FieldPacker(8);
            fp.addF32(v);
            mAllocation.setFromFieldPacker(index, 0, fp);
        }
    }

    public void set_size(int index, float v, boolean copyNow) {
        if (mIOBuffer == null) mIOBuffer = new FieldPacker(Item.sizeof * getType().getX()/* count */);
        if (mItemArray == null) mItemArray = new Item[getType().getX() /* count */];
        if (mItemArray[index] == null) mItemArray[index] = new Item();
        mItemArray[index].size = v;
        if (copyNow)  {
            mIOBuffer.reset(index * Item.sizeof + 8);
            mIOBuffer.addF32(v);
            FieldPacker fp = new FieldPacker(4);
            fp.addF32(v);
            mAllocation.setFromFieldPacker(index, 1, fp);
        }
    }

    public Float2 get_position(int index) {
        if (mItemArray == null) return null;
        return mItemArray[index].position;
    }

    public float get_size(int index) {
        if (mItemArray == null) return 0;
        return mItemArray[index].size;
    }

    public void copyAll() {
        for (int ct = 0; ct &lt; mItemArray.length; ct++) copyToArray(mItemArray[ct], ct);
        mAllocation.setFromFieldPacker(0, mIOBuffer);
    }

    public void resize(int newSize) {
        if (mItemArray != null)  {
            int oldSize = mItemArray.length;
            int copySize = Math.min(oldSize, newSize);
            if (newSize == oldSize) return;
            Item ni[] = new Item[newSize];
            System.arraycopy(mItemArray, 0, ni, 0, copySize);
            mItemArray = ni;
        }
        mAllocation.resize(newSize);
        if (mIOBuffer != null) mIOBuffer = new FieldPacker(Item.sizeof * getType().getX()/* count */);
    }
}
</pre>

<p>The generated code is provided to you as a convenience to allocate memory for structs requested
by the Renderscript runtime and to interact with <code>struct</code>s
in memory. Each <code>struct</code>'s class defines the following methods and constructors:</p>

  <ul>
    <li>Overloaded constructors that allow you to allocate memory. The
      <code>ScriptField_<em>struct_name</em>(RenderScript rs, int count)</code> constructor allows
      you to define the number of structures that you want to allocate memory for with the
      <code>count</code> parameter. The <code>ScriptField_<em>struct_name</em>(RenderScript rs, int
        count, int usages)</code> constructor defines an extra parameter, <code>usages</code>, that
      lets you specify the memory space of this memory allocation. There are four memory space
      possibilities:

      <ul>
        <li>{@link android.renderscript.Allocation#USAGE_SCRIPT}: Allocates in the script memory
          space. This is the default memory space if you do not specify a memory space.</li>

        <li>{@link android.renderscript.Allocation#USAGE_GRAPHICS_TEXTURE}: Allocates in the
          texture memory space of the GPU.</li>

        <li>{@link android.renderscript.Allocation#USAGE_GRAPHICS_VERTEX}: Allocates in the vertex
          memory space of the GPU.</li>

        <li>{@link android.renderscript.Allocation#USAGE_GRAPHICS_CONSTANTS}: Allocates in the
          constants memory space of the GPU that is used by the various program objects.</li>
      </ul>

      <p>You can specify multiple memory spaces by using the bitwise <code>OR</code> operator. Doing so
        notifies the Renderscript runtime that you intend on accessing the data in the
        specified memory spaces. The following example allocates memory for a custom data type
        in both the script and vertex memory spaces:</p>
      <pre>
        ScriptField_Point touchPoints = new ScriptField_Point(glRenderer, 2,
        Allocation.USAGE_SCRIPT | Allocation.USAGE_GRAPHICS_VERTEX);
      </pre>

      <p>If you modify the memory in one memory space and want to push the updates to the rest of
        the memory spaces, call <a href="{@docRoot}reference/renderscript/rs__graphics_8rsh.html">
        <code>rsgAllocationSyncAll()</code></a> in your Renderscript code to
        synchronize the memory.</p>
    </li>

    <li>A static nested class, <code>Item</code>, allows you to create an instance of the
      <code>struct</code>, in the form of an object. This nested class is useful if it makes more sense to work
      with the <code>struct</code> in your Android code. When you are done manipulating the object,
      you can push the object to the allocated memory by calling <code>set(Item i, int index,
        boolean copyNow)</code> and setting the <code>Item</code> to the desired position in
the array. The Renderscript runtime automatically has access to the newly written memory.

      <li>Accessor methods to get and set the values of each field in a struct. Each of these
        accessor methods have an <code>index</code> parameter to specify the <code>struct</code> in
        the array that you want to read or write to. Each setter method also has a
<code>copyNow</code> parameter that specifies whether or not to immediately sync this memory
to the Renderscript runtime. To sync any memory that has not been synced, call
        <code>copyAll()</code>.</li>

      <li>The <code>createElement()</code> method creates a description of the struct in memory. This
      description is used to allocate memory consisting of one or many elements.</li>

      <li><code>resize()</code> works much like a <code>realloc()</code> in C, allowing you to
expand previously allocated memory, maintaining the current values that were previously
created.</li>

      <li><code>copyAll()</code> synchronizes memory that was set on the framework level to the
Renderscript runtime. When you call a set accessor method on a member, there is an optional
<code>copyNow</code> boolean parameter that you can specify. Specifying
        <code>true</code> synchronizes the memory when you call the method. If you specify false,
        you can call <code>copyAll()</code> once, and it synchronizes memory for all the
properties that are not yet synchronized.</li>
    </ul>

  <h3 id="pointer">Pointers</h3>
  <p>Pointers are reflected into the script class itself, located in
<code>project_root/gen/package/name/ScriptC_renderscript_filename</code>. You
can declare pointers to a <code>struct</code> or any of the supported Renderscript types, but a
<code>struct</code> cannot contain pointers or nested arrays. For example, if you declare the
following pointers to a <code>struct</code> and <code>int32_t</code></p>

<pre>
typedef struct Point {
    float2 position;
    float size;
} Point_t;

Point_t *touchPoints;
int32_t *intPointer;
</pre>
  <p>then the following code is generated in:</p>

<pre>
private ScriptField_Point mExportVar_touchPoints;
public void bind_touchPoints(ScriptField_Point v) {
    mExportVar_touchPoints = v;
    if (v == null) bindAllocation(null, mExportVarIdx_touchPoints);
    else bindAllocation(v.getAllocation(), mExportVarIdx_touchPoints);
}

public ScriptField_Point get_touchPoints() {
    return mExportVar_touchPoints;
}

private Allocation mExportVar_intPointer;
public void bind_intPointer(Allocation v) {
    mExportVar_intPointer = v;
    if (v == null) bindAllocation(null, mExportVarIdx_intPointer);
    else bindAllocation(v, mExportVarIdx_intPointer);
}

public Allocation get_intPointer() {
    return mExportVar_intPointer;
}
  </pre>

<p>A <code>get</code> method and a special method named <code>bind_<em>pointer_name</em></code>
(instead of a <code>set()</code> method) is generated. This method allows you to bind the memory
that is allocated in the Android VM to the Renderscript runtime (you cannot allocate
memory in your <code>.rs</code> file). For more information, see <a href="#memory">Working
with Allocated Memory</a>.
</p>


  <h2 id="mem-allocation">Memory Allocation APIs</h2>

 <p>Applications that use Renderscript still run in the Android VM. The actual Renderscript code, however, runs natively and
  needs access to the memory allocated in the Android VM. To accomplish this, you must
  attach the memory that is allocated in the VM to the Renderscript runtime. This
process, called binding, allows the Renderscript runtime to seamlessly work with memory that it
requests but cannot explicitly allocate. The end result is essentially the same as if you had
called <code>malloc</code> in C. The added benefit is that the Android VM can carry out garbage collection as well as
share memory with the Renderscript runtime layer. Binding is only necessary for dynamically allocated memory. Statically
allocated memory is automatically created for your Renderscript code at compile time. See <a href="#figure1">Figure 1</a>
for more information on how memory allocation occurs.
</p>

  <p>To support this memory allocation system, there are a set of APIs that allow the Android VM to
allocate memory and offer similar functionality to a <code>malloc</code> call. These classes
essentially describe how memory should be allocated and also carry out the allocation. To better
understand how these classes work, it is useful to think of them in relation to a simple
<code>malloc</code> call that can look like this: </p>

  <pre>array = (int *)malloc(sizeof(int)*10);</pre>

  <p>The <code>malloc</code> call can be broken up into two parts: the size of the memory being allocated (<code>sizeof(int)</code>),
  along with how many units of that memory should be allocated (10). The Android framework provides classes for these two parts as
  well as a class to represent <code>malloc</code> itself.</p>

  <p>The {@link android.renderscript.Element} class represents the (<code>sizeof(int)</code>) portion
  of the <code>malloc</code> call and encapsulates one cell of a memory allocation, such as a single
  float value or a struct. The {@link android.renderscript.Type} class encapsulates the {@link android.renderscript.Element}
  and the amount of elements to allocate (10 in our example). You can think of a {@link android.renderscript.Type} as
  an array of {@link android.renderscript.Element}s. The {@link android.renderscript.Allocation} class does the actual
  memory allocation based on a given {@link android.renderscript.Type} and represents the actual allocated memory.</p>

  <p>In most situations, you do not need to call these memory allocation APIs directly. The reflected layer
  classes generate code to use these APIs automatically and all you need to do to allocate memory is call a
  constructor that is declared in one of the reflected layer classes and then bind
  the resulting memory {@link android.renderscript.Allocation} to the Renderscript.
  There are some situations where you would want to use these classes directly to allocate memory on your
  own, such as loading a bitmap from a resource or when you want to allocate memory for pointers to
  primitive types. You can see how to do this in the
  <a href="#allocating-mem">Allocating and binding memory to the Renderscript</a> section.
  The following table describes the three memory management classes in more detail:</p>

  <table id="mem-mgmt-table">
    <tr>
      <th>Android Object Type</th>

      <th>Description</th>
    </tr>

    <tr>
      <td>{@link android.renderscript.Element}</td>

      <td>
        <p>An element describes one cell of a memory allocation and can have two forms: basic or
        complex.</p>

        <p>A basic element contains a single component of data of any valid Renderscript data type.
        Examples of basic element data types include a single <code>float</code> value, a <code>float4</code> vector, or a
        single RGB-565 color.</p>

        <p>Complex elements contain a list of basic elements and are created from
        <code>struct</code>s that you declare in your Renderscript code. For instance an allocation
        can contain multiple <code>struct</code>s arranged in order in memory. Each struct is considered as its
        own element, rather than each data type within that struct.</p>
      </td>
    </tr>

    <tr>
      <td>{@link android.renderscript.Type}</td>

      <td>
        <p>A type is a memory allocation template and consists of an element and one or more
        dimensions. It describes the layout of the memory (basically an array of {@link
        android.renderscript.Element}s) but does not allocate the memory for the data that it
        describes.</p>

        <p>A type consists of five dimensions: X, Y, Z, LOD (level of detail), and Faces (of a cube
        map). You can assign the X,Y,Z dimensions to any positive integer value within the
        constraints of available memory. A single dimension allocation has an X dimension of
        greater than zero while the Y and Z dimensions are zero to indicate not present. For
        example, an allocation of x=10, y=1 is considered two dimensional and x=10, y=0 is
        considered one dimensional. The LOD and Faces dimensions are booleans to indicate present
        or not present.</p>
      </td>
    </tr>

    <tr>
      <td>{@link android.renderscript.Allocation}</td>

      <td>
        <p>An allocation provides the memory for applications based on a description of the memory
        that is represented by a {@link android.renderscript.Type}. Allocated memory can exist in
        many memory spaces concurrently. If memory is modified in one space, you must explicitly
        synchronize the memory, so that it is updated in all the other spaces in which it exists.
        </p>

        <p>Allocation data is uploaded in one of two primary ways: type checked and type unchecked.
        For simple arrays there are <code>copyFrom()</code> functions that take an array from the
        Android system and copy it to the native layer memory store. The unchecked variants allow
        the Android system to copy over arrays of structures because it does not support
        structures. For example, if there is an allocation that is an array of n floats, the data
        contained in a float[n] array or a <code>byte[n*4]</code> array can be copied.</p>
      </td>
    </tr>
  </table>

  <h2 id="memory">Working with Memory</h2>

<p>Non-static, global variables that you declare in your Renderscript are allocated memory at compile time.
You can work with these variables directly in your Renderscript code without having to allocate
memory for them at the Android framework level. The Android framework layer also has access to these variables
with the provided accessor methods that are generated in the reflected layer classes. If these variables are
initialized at the Renderscript runtime layer, those values are used to initialize the corresponding
values in the Android framework layer. If global variables are marked as const, then a <code>set</code> method is
not generated.</p>


<p class="note"><strong>Note:</strong> If you are using certain Renderscript structures that contain pointers, such as
<code>rs_program_fragment</code> and <code>rs_allocation</code>, you have to obtain an object of the
corresponding Android framework class first and then call the <code>set</code> method for that
structure to bind the memory to the Renderscript runtime. You cannot directly manipulate these structures
at the Renderscript runtime layer. This restriction is not applicable to user-defined structures
that contain pointers, because they cannot be exported to a reflected layer class
in the first place. A compiler error is generated if you try to declare a non-static, global
struct that contains a pointer.
</p>

<p>Renderscript also has support for pointers, but you must explicitly allocate the memory in your
Android framework code. When you declare a global pointer in your <code>.rs</code> file, you
allocate memory through the appropriate reflected layer class and bind that memory to the native
Renderscript layer. You can interact with this memory from the Android framework layer as well as
the Renderscript layer, which offers you the flexibility to modify variables in the most
appropriate layer.</p>



  <h3 id="allocating-mem">Allocating and binding dynamic memory to the Renderscript</h3>

  <p>To allocate dynamic memory, you need to call the constructor of a
  {@link android.renderscript.Script.FieldBase} class, which is the most common way. An alternative is to create an
  {@link android.renderscript.Allocation} manually, which is required for things such as primitive type pointers. You should
  use a {@link android.renderscript.Script.FieldBase} class constructor whenever available for simplicity.
  After obtaining a memory allocation, call the reflected <code>bind</code> method of the pointer to bind the allocated memory to the
  Renderscript runtime.</p>
  <p>The example below allocates memory for both a primitive type pointer,
   <code>intPointer</code>, and a pointer to a struct, <code>touchPoints</code>. It also binds the memory to the
  Renderscript:</p>
  <pre>
private RenderScriptGL glRenderer;
private ScriptC_example script;
private Resources resources;

public void init(RenderScriptGL rs, Resources res) {
    //get the rendering context and resources from the calling method
    glRenderer = rs;
    resources = res;

    //allocate memory for the struct pointer, calling the constructor
    ScriptField_Point touchPoints = new ScriptField_Point(glRenderer, 2);

    //Create an element manually and allocate memory for the int pointer
    intPointer = Allocation.createSized(glRenderer, Element.I32(glRenderer), 2);

    //create an instance of the Renderscript, pointing it to the bytecode resource
    mScript = new ScriptC_example(glRenderer, resources, R.raw.example);

    //bind the struct and int pointers to the Renderscript
    mScript.bind_touchPoints(touchPoints);
    script.bind_intPointer(intPointer);

   ...
}
</pre>

  <h3>Reading and writing to memory</h3>
  <p>You can read and write to statically and dynamically allocated memory both at the Renderscript runtime
  and Android framework layer.</p>

<p>Statically allocated memory comes with a one-way communication restriction
at the Renderscript runtime level. When Renderscript code changes the value of a variable, it is not
communicated back to the Android framework layer for efficiency purposes. The last value
that is set from the Android framework is always returned during a call to a <code>get</code>
method. However, when Android framework code modifies a variable, that change can be communicated to
the Renderscript runtime automatically or synchronized at a later time. If you need to send data
from the Renderscript runtime to the Android framework layer, you can use the
<a href="{@docRoot}reference/renderscript/rs__core_8rsh.html"><code>rsSendToClient()</code></a> function
to overcome this limitation.
</p>
<p>When working with dynamically allocated memory, any changes at the Renderscript runtime layer are propagated
back to the Android framework layer if you modified the memory allocation using its associated pointer.
Modifying an object at the Android framework layer immediately propagates that change back to the Renderscript
runtime layer.</p>

  <h4>Reading and writing to global variables</h4>

  <p>Reading and writing to global variables is a straightforward process. You can use the accessor methods
  at the Android framework level or set them directly in the Renderscript code. Keep in mind that any
  changes that you make in your Renderscript code are not propagated back to the Android framework layer.</p>

  <p>For example, given the following struct declared in a file named <code>rsfile.rs</code>:</p>
<pre>
typedef struct Point {
    int x;
    int y;
} Point_t;

Point_t point;

</pre>
<p>You can assign values to the struct like this directly in <code>rsfile.rs</code>. These values are not
propagated back to the Android framework level:</p>
<pre>
point.x = 1;
point.y = 1;
</pre>

<p>You can assign values to the struct at the Android framework layer like this. These values are 
propagated back to the Renderscript runtime level:</p>
<pre>
ScriptC_rsfile mScript;

...

Item i = new ScriptField_Point.Item();
i.x = 1;
i.y = 1;
mScript.set_point(i);
</pre>

<p>You can read the values in your Renderscript code like this:</p>

<pre>
rsDebug("Printing out a Point", point.x, point.y);
</pre>

<p>You can read the values in the Android framework layer with the following code. Keep in mind that this
code only returns a value if one was set at the Android framework level. You will get a null pointer
exception if you only set the value at the Renderscript runtime level:</p>

<pre>
Log.i("TAGNAME", "Printing out a Point: " + mScript.get_point().x + " " + mScript.get_point().y);
System.out.println(point.get_x() + " " + point.get_y());
</pre>

<h4>Reading and writing global pointers</h4>

<p>Assuming that memory has been allocated in the Android framework level and bound to the Renderscript runtime,
you can read and write memory from the Android framework level by using the <code>get</code> and <code>set</code> methods for that pointer.
In the Renderscript runtime layer, you can read and write to memory with pointers as normal and the changes are propagated
back to the Android framework layer, unlike with statically allocated memory.</p>

<p>For example, given the following pointer to a <code>struct</code> in a file named <code>rsfile.rs</code>:</p>
<pre>
typedef struct Point {
    int x;
    int y;
} Point_t;

Point_t *point;
</pre>

<p>Assuming you already allocated memory at the Android framework layer, you can access values in
the <code>struct</code> as normal. Any changes you make to the struct via its pointer variable
are automatically available to the Android framework layer:</p>

<pre>
point[index].x = 1;
point[index].y = 1;
</pre>

<p>You can read and write values to the pointer at the Android framework layer as well:
<pre>
ScriptField_Point p = new ScriptField_Point(mRS, 1);
    Item i = new ScriptField_Point.Item();
    i.x=100;
    i.y = 100;
    p.set(i, 0, true);
    mScript.bind_point(p);

    points.get_x(0);            //read x and y from index 0
    points.get_x(0);
</pre>

<p>Once memory is already bound, you do not have to rebind the memory to the Renderscript
runtime every time you make a change to a value.</p>