summaryrefslogtreecommitdiffstats
path: root/docs/html/guide/topics/security/permissions.jd
blob: cfab3c9afb2dec616738cb2004f488015a18ae9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
page.title=System Permissions
@jd:body

<div id="qv-wrapper">
<div id="qv">

<h2>In this document</h2>
<ol>
<li><a href="#arch">Security Architecture</a></li>
<li><a href="#signing">Application Signing</a></li>
<li><a href="#userid">User IDs and File Access</a></li>
<li><a href="#permissions">Using Permissions</a></li>
<li><a href="#declaring">Declaring and Enforcing Permissions</a>
	<ol>
	<li><a href="#manifest">...in AndroidManifest.xml</a></li>
	<li><a href="#broadcasts">...when Sending Broadcasts</a></li>
	<li><a href="#enforcement">Other Permission Enforcement</a></li>
	</ol></li>
<li><a href="#uri">URI Permissions</a></li>
</ol>
</div>
</div>

<p>Android is a privilege-separated operating system, in which each
application runs with a distinct system identity (Linux user ID and group
ID).  Parts of the system are also separated into distinct identities.
Linux thereby isolates applications from each other and from the system.</p>

<p>Additional finer-grained security features are provided through a
"permission" mechanism that enforces restrictions on the specific operations
that a particular process can perform, and per-URI permissions for granting
ad hoc access to specific pieces of data.</p>

<p>This document describes how application developers can use the
security features provided by Android.  A more general <a
href="http://source.android.com/tech/security/index.html"> Android Security
Overview</a> is provided in the Android Open Source Project.</p>


<a name="arch"></a>
<h2>Security Architecture</h2>

<p>A central design point of the Android security architecture is that no
application, by default, has permission to perform any operations that would
adversely impact other applications, the operating system, or the user.  This
includes reading or writing the user's private data (such as contacts or
emails), reading or writing another application's files, performing
network access, keeping the device awake, and so on.</p>

<p>Because each Android application operates in a process sandbox, applications
must explicitly share resources and data. They do this by declaring the
<em>permissions</em> they need for additional capabilities not provided by
the basic sandbox. Applications statically declare the permissions they
require, and the Android system prompts the user for consent at the time the
application is installed.</p>

<p>The application sandbox does not depend on the technology used to build
an application. In particular the Dalvik VM is not a security boundary, and
any app can run native code (see <a href="/sdk/ndk/index.html">the Android
NDK</a>). All types of applications &mdash; Java, native, and hybrid &mdash;
are sandboxed in the same way and have the same degree of security from each
other.</p>


<a name="signing"></a>
<h2>Application Signing</h2>

<p>All APKs ({@code .apk} files) must be signed with a certificate
whose private key is held by their developer.  This certificate identifies
the author of the application.  The certificate does <em>not</em> need to be
signed by a certificate authority; it is perfectly allowable, and typical,
for Android applications to use self-signed certificates. The purpose of
certificates in Android is to distinguish application authors. This allows
the system to grant or deny applications access to <a
href="/guide/topics/manifest/permission-element.html#plevel">signature-level
permissions</a> and to grant or deny an application's <a
href="/guide/topics/manifest/manifest-element.html#uid">request to be given
the same Linux identity</a> as another application.</p>

<a name="userid"></a>
<h2>User IDs and File Access</h2>

<p>At install time, Android gives each package a distinct Linux user ID. The
identity remains constant for the duration of the package's life on that
device. On a different device, the same package may have a different UID;
what matters is that each package has a distinct UID on a given device.</p>

<p>Because security enforcement happens at the
process level, the code of any two packages cannot normally
run in the same process, since they need to run as different Linux users.
You can use the {@link android.R.attr#sharedUserId} attribute in the
<code>AndroidManifest.xml</code>'s
{@link android.R.styleable#AndroidManifest manifest} tag of each package to
have them assigned the same user ID.  By doing this, for purposes of security
the two packages are then treated as being the same application, with the same
user ID and file permissions.  Note that in order to retain security, only two applications
signed with the same signature (and requesting the same sharedUserId) will
be given the same user ID.</p>

<p>Any data stored by an application will be assigned that application's user
ID, and not normally accessible to other packages.  When creating a new file
with {@link android.content.Context#getSharedPreferences},
{@link android.content.Context#openFileOutput}, or
{@link android.content.Context#openOrCreateDatabase},
you can use the
{@link android.content.Context#MODE_WORLD_READABLE} and/or
{@link android.content.Context#MODE_WORLD_WRITEABLE} flags to allow any other
package to read/write the file.  When setting these flags, the file is still
owned by your application, but its global read and/or write permissions have
been set appropriately so any other application can see it.</p>


<a name="permissions"></a>
<h2>Using Permissions</h2>

<p>A basic Android application has no permissions associated with it by default,
meaning it cannot do anything that would adversely impact the user experience
or any data on the device.  To make use of protected features of the device,
you must include in your <code>AndroidManifest.xml</code> one or more
<code>{@link android.R.styleable#AndroidManifestUsesPermission &lt;uses-permission&gt;}</code>
tags declaring the permissions that your application needs.</p>

<p>For example, an application that needs to monitor incoming SMS messages would
specify:</p>

<pre>&lt;manifest xmlns:android=&quot;http://schemas.android.com/apk/res/android&quot;
    package=&quot;com.android.app.myapp&quot; &gt;
    &lt;uses-permission android:name=&quot;android.permission.RECEIVE_SMS&quot; /&gt;
    ...
&lt;/manifest&gt;</pre>

<p>At application install time, permissions requested by the application are
granted to it by the package installer, based on checks against the
signatures of the applications declaring those permissions and/or interaction
with the user. <em>No</em> checks with the user
are done while an application is running; the app is either granted a particular
permission when installed, and can use that feature as desired, or the
permission is not granted and any attempt to use the feature fails
without prompting the user.</p>

<p>Often times a permission failure will result in a {@link
java.lang.SecurityException} being thrown back to the application. However,
this is not guaranteed to occur everywhere. For example, the {@link
android.content.Context#sendBroadcast} method checks permissions as data is
being delivered to each receiver, after the method call has returned, so you
will not receive an exception if there are permission failures. In almost all
cases, however, a permission failure will be printed to the system log.</p>

<p>However, in a normal user situation (such as when the app is installed
from Google Play Store), an app cannot be installed if the user does not grant the app
each of the requested permissions. So you generally don't need to worry about runtime failures
caused by missing permissions because the mere fact that the app is installed at all
means that your app has been granted its desired permissions.</p>

<p>The permissions provided by the Android system can be found at {@link
android.Manifest.permission}. Any application may also define and enforce its
own permissions, so this is not a comprehensive list of all possible
permissions.</p>

<p>A particular permission may be enforced at a number of places during your
program's operation:</p>

<ul>
<li>At the time of a call into the system, to prevent an application from
executing certain functions.</li>
<li>When starting an activity, to prevent applications from launching
activities of other applications.</li>
<li>Both sending and receiving broadcasts, to control who can receive
your broadcast or who can send a broadcast to you.</li>
<li>When accessing and operating on a content provider.</li>
<li>Binding to or starting a service.</li>
</ul>



<div class="caution">
<p><strong>Caution:</strong> Over time,
new restrictions may be added to the platform such that, in order
to use certain APIs, your app must request a permission that it previously did not need.
Because existing apps assume access to those APIs is freely available,
Android may apply the new permission request to the app's manifest to avoid
breaking the app on the new platform version.
Android makes the decision as to whether an app might need the permission based on
the value provided for the <a
href="{@docRoot}guide/topics/manifest/uses-sdk-element.html#target">{@code targetSdkVersion}</a>
attribute. If the value is lower than the version in which the permission was added, then
Android adds the permission.</p>
<p>For example, the {@link android.Manifest.permission#WRITE_EXTERNAL_STORAGE} permission was
added in API level 4 to restrict access to the shared storage space. If your <a
href="{@docRoot}guide/topics/manifest/uses-sdk-element.html#target">{@code targetSdkVersion}</a>
is 3 or lower, this permission is added to your app on newer versions of Android.</p>
<p>Beware that if this happens to your app, your app listing on Google Play will show these
required permissions even though your app might not actually require them.</p>
<p>To avoid this and remove the default permissions you don't need, always update your <a
href="{@docRoot}guide/topics/manifest/uses-sdk-element.html#target">{@code targetSdkVersion}</a>
to be as high as possible. You can see which permissions were added with each release in the
{@link android.os.Build.VERSION_CODES} documentation.</p>
</div>



<a name="declaring"></a>
<h2>Declaring and Enforcing Permissions</h2>

<p>To enforce your own permissions, you must first declare them in your
<code>AndroidManifest.xml</code> using one or more
<code>{@link android.R.styleable#AndroidManifestPermission &lt;permission&gt;}</code>
tags.</p>

<p>For example, an application that wants to control who can start one
of its activities could declare a permission for this operation as follows:</p>

<pre>&lt;manifest xmlns:android=&quot;http://schemas.android.com/apk/res/android&quot;
    package=&quot;com.me.app.myapp&quot; &gt;
    &lt;permission android:name=&quot;com.me.app.myapp.permission.DEADLY_ACTIVITY&quot;
        android:label=&quot;&#64;string/permlab_deadlyActivity&quot;
        android:description=&quot;&#64;string/permdesc_deadlyActivity&quot;
        android:permissionGroup=&quot;android.permission-group.COST_MONEY&quot;
        android:protectionLevel=&quot;dangerous&quot; /&gt;
    ...
&lt;/manifest&gt;</pre>

<p>The {@link android.R.styleable#AndroidManifestPermission_protectionLevel
&lt;protectionLevel&gt;} attribute is required, telling the system how the
user is to be informed of applications requiring the permission, or who is
allowed to hold that permission, as described in the linked documentation.</p>

<p>The {@link android.R.styleable#AndroidManifestPermission_permissionGroup
&lt;permissionGroup&gt;} attribute is optional, and only used to help the system display
permissions to the user.  You will usually want to set this to either a standard
system group (listed in {@link android.Manifest.permission_group
android.Manifest.permission_group}) or in more rare cases to one defined by
yourself.  It is preferred to use an existing group, as this simplifies the
permission UI shown to the user.</p>

<p>Note that both a label and description should be supplied for the
permission. These are string resources that can be displayed to the user when
they are viewing a list of permissions
(<code>{@link android.R.styleable#AndroidManifestPermission_label android:label}</code>)
or details on a single permission (
<code>{@link android.R.styleable#AndroidManifestPermission_description android:description}</code>).
The label should be short, a few words
describing the key piece of functionality the permission is protecting. The
description should be a couple sentences describing what the permission allows
a holder to do. Our convention for the description is two sentences, the first
describing the permission, the second warning the user of what bad things
can happen if an application is granted the permission.</p>

<p>Here is an example of a label and description for the CALL_PHONE
permission:</p>

<pre>
    &lt;string name=&quot;permlab_callPhone&quot;&gt;directly call phone numbers&lt;/string&gt;
    &lt;string name=&quot;permdesc_callPhone&quot;&gt;Allows the application to call
        phone numbers without your intervention. Malicious applications may
        cause unexpected calls on your phone bill. Note that this does not
        allow the application to call emergency numbers.&lt;/string&gt;
</pre>

<p>You can look at the permissions currently defined in the system with the
Settings app and the shell command <code>adb shell pm list permissions</code>.
To use the Settings app, go to Settings &gt; Applications.  Pick an app and
scroll down to see the permissions that the app uses. For developers, the adb '-s'
option displays the permissions in a form similar to how the user will see them:</p>

<pre>
$ adb shell pm list permissions -s
All Permissions:

Network communication: view Wi-Fi state, create Bluetooth connections, full
Internet access, view network state

Your location: access extra location provider commands, fine (GPS) location,
mock location sources for testing, coarse (network-based) location

Services that cost you money: send SMS messages, directly call phone numbers

...</pre>

<a name="manifest"></a>
<h3>Enforcing Permissions in AndroidManifest.xml</h3>

<p>High-level permissions restricting access to entire components of the
system or application can be applied through your
<code>AndroidManifest.xml</code>. All that this requires is including an {@link
android.R.attr#permission android:permission} attribute on the desired
component, naming the permission that will be used to control access to
it.</p>

<p><strong>{@link android.app.Activity}</strong> permissions
(applied to the
{@link android.R.styleable#AndroidManifestActivity &lt;activity&gt;} tag)
restrict who can start the associated
activity.  The permission is checked during
{@link android.content.Context#startActivity Context.startActivity()} and
{@link android.app.Activity#startActivityForResult Activity.startActivityForResult()};
if the caller does not have
the required permission then {@link java.lang.SecurityException} is thrown
from the call.</p>

<p><strong>{@link android.app.Service}</strong> permissions
(applied to the
{@link android.R.styleable#AndroidManifestService &lt;service&gt;} tag)
restrict who can start or bind to the
associated service.  The permission is checked during
{@link android.content.Context#startService Context.startService()},
{@link android.content.Context#stopService Context.stopService()} and
{@link android.content.Context#bindService Context.bindService()};
if the caller does not have
the required permission then {@link java.lang.SecurityException} is thrown
from the call.</p>

<p><strong>{@link android.content.BroadcastReceiver}</strong> permissions
(applied to the
{@link android.R.styleable#AndroidManifestReceiver &lt;receiver&gt;} tag)
restrict who can send broadcasts to the associated receiver.
The permission is checked <em>after</em>
{@link android.content.Context#sendBroadcast Context.sendBroadcast()} returns,
as the system tries
to deliver the submitted broadcast to the given receiver.  As a result, a
permission failure will not result in an exception being thrown back to the
caller; it will just not deliver the intent.  In the same way, a permission
can be supplied to
{@link android.content.Context#registerReceiver(android.content.BroadcastReceiver, android.content.IntentFilter, String, android.os.Handler)
Context.registerReceiver()}
to control who can broadcast to a programmatically registered receiver.
Going the other way, a permission can be supplied when calling
{@link android.content.Context#sendBroadcast(Intent, String) Context.sendBroadcast()}
to restrict which BroadcastReceiver objects are allowed to receive the broadcast (see
below).</p>

<p><strong>{@link android.content.ContentProvider}</strong> permissions
(applied to the
{@link android.R.styleable#AndroidManifestProvider &lt;provider&gt;} tag)
restrict who can access the data in
a {@link android.content.ContentProvider}.  (Content providers have an important
additional security facility available to them called
<a href="#uri">URI permissions</a> which is described later.)
Unlike the other components,
there are two separate permission attributes you can set:
{@link android.R.attr#readPermission android:readPermission} restricts who
can read from the provider, and
{@link android.R.attr#writePermission android:writePermission} restricts
who can write to it.  Note that if a provider is protected with both a read
and write permission, holding only the write permission does not mean
you can read from a provider.  The permissions are checked when you first
retrieve a provider (if you don't have either permission, a SecurityException
will be thrown), and as you perform operations on the provider.  Using
{@link android.content.ContentResolver#query ContentResolver.query()} requires
holding the read permission; using
{@link android.content.ContentResolver#insert ContentResolver.insert()},
{@link android.content.ContentResolver#update ContentResolver.update()},
{@link android.content.ContentResolver#delete ContentResolver.delete()}
requires the write permission.
In all of these cases, not holding the required permission results in a
{@link java.lang.SecurityException} being thrown from the call.</p>


<a name="broadcasts"></a>
<h3>Enforcing Permissions when Sending Broadcasts</h3>

<p>In addition to the permission enforcing who can send Intents to a
registered {@link android.content.BroadcastReceiver} (as described above), you
can also specify a required permission when sending a broadcast. By calling {@link
android.content.Context#sendBroadcast(android.content.Intent,String)
Context.sendBroadcast()} with a
permission string, you require that a receiver's application must hold that
permission in order to receive your broadcast.</p>

<p>Note that both a receiver and a broadcaster can require a permission. When
this happens, both permission checks must pass for the Intent to be delivered
to the associated target.</p>


<a name="enforcement"></a>
<h3>Other Permission Enforcement</h3>

<p>Arbitrarily fine-grained permissions can be enforced at any call into a
service. This is accomplished with the {@link
android.content.Context#checkCallingPermission Context.checkCallingPermission()}
method. Call with a desired
permission string and it will return an integer indicating whether that
permission has been granted to the current calling process. Note that this can
only be used when you are executing a call coming in from another process,
usually through an IDL interface published from a service or in some other way
given to another process.</p>

<p>There are a number of other useful ways to check permissions. If you have
the pid of another process, you can use the Context method {@link
android.content.Context#checkPermission(String, int, int) Context.checkPermission(String, int, int)}
to check a permission against that pid. If you have the package name of another
application, you can use the direct PackageManager method {@link
android.content.pm.PackageManager#checkPermission(String, String)
PackageManager.checkPermission(String, String)}
to find out whether that particular package has been granted a specific permission.</p>


<a name="uri"></a>
<h2>URI Permissions</h2>

<p>The standard permission system described so far is often not sufficient
when used with content providers.  A content provider may want to
protect itself with read and write permissions, while its direct clients
also need to hand specific URIs to other applications for them to operate on.
A typical example is attachments in a mail application.  Access to the mail
should be protected by permissions, since this is sensitive user data.  However,
if a URI to an image attachment is given to an image viewer, that image viewer
will not have permission to open the attachment since it has no reason to hold
a permission to access all e-mail.</p>

<p>The solution to this problem is per-URI permissions: when starting an
activity or returning a result to an activity, the caller can set
{@link android.content.Intent#FLAG_GRANT_READ_URI_PERMISSION
Intent.FLAG_GRANT_READ_URI_PERMISSION} and/or
{@link android.content.Intent#FLAG_GRANT_WRITE_URI_PERMISSION
Intent.FLAG_GRANT_WRITE_URI_PERMISSION}.  This grants the receiving activity
permission access the specific data URI in the Intent, regardless of whether
it has any permission to access data in the content provider corresponding
to the Intent.</p>

<p>This mechanism allows a common capability-style model where user interaction
(opening an attachment, selecting a contact from a list, etc) drives ad-hoc
granting of fine-grained permission.  This can be a key facility for reducing
the permissions needed by applications to only those directly related to their
behavior.</p>

<p>The granting of fine-grained URI permissions does, however, require some
cooperation with the content provider holding those URIs.  It is strongly
recommended that content providers implement this facility, and declare that
they support it through the
{@link android.R.styleable#AndroidManifestProvider_grantUriPermissions
android:grantUriPermissions} attribute or
{@link android.R.styleable#AndroidManifestGrantUriPermission
&lt;grant-uri-permissions&gt;} tag.</p>

<p>More information can be found in the
{@link android.content.Context#grantUriPermission Context.grantUriPermission()},
{@link android.content.Context#revokeUriPermission Context.revokeUriPermission()}, and
{@link android.content.Context#checkUriPermission Context.checkUriPermission()}
methods.</p>





<div class="next-docs">
<div class="col-6">
  <h2 class="norule">Continue reading about:</h2>
  <dl>
    <dt><a href="{@docRoot}guide/topics/manifest/uses-feature-element.html#permissions"
        >Permissions that Imply Feature Requirements</a></dt>
    <dd>Information about how requesting some permissions will implicitly restrict your app
    to devices that include the corresponding hardware or software feature.</dd>
    <dt><a href="{@docRoot}guide/topics/manifest/uses-permission-element.html">{@code
    &lt;uses-permission>}</a></dt>
    <dd>API reference for the manifest tag that declare's your app's required system permissions.
    </dd>
    <dt>{@link android.Manifest.permission}</dt>
    <dd>API reference for all system permissions.</dd>
  </dl>
</div>
<div class="col-6">
  <h2 class="norule">You might also be interested in:</h2>
  <dl>
    <dt><a href="{@docRoot}guide/practices/compatibility.html"
        >Device Compatibility</a></dt>
    <dd>Information about Android works on different types of devices and an introduction
    to how you can optimize your app for each device or restrict your app's availability
    to different devices.</dd>
    <dt><a href="{@docRoot}http://source.android.com/devices/tech/security/index.html"
        class="external-link">Android Security Overview</a></dt>
    <dd>A detailed discussion about the Android platform's security model.</dd>
  </dl>
</div>
</div>