summaryrefslogtreecommitdiffstats
path: root/docs/html/training/cloudsave/conflict-res.jd
blob: 73e75dba13e1625246e5943f34c5c212f7490b52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
page.title=Resolving Cloud Save Conflicts
page.tags=cloud

page.article=true
@jd:body

<style type="text/css">
.new-value {
	color: #00F;
}
.conflict {
	color: #F00;
}
</style>

<div id="tb-wrapper">
  <div id="tb">
    <h2>In this document</h2>
    <ol class="nolist">
      <li><a href="#conflict">Get Notified of Conflicts</a></li>
      <li><a href="#simple">Handle the Simple Cases</a></li>
      <li><a href="#complicated">Design a Strategy for More Complex Cases</a>
      <ol class="nolist">
        <li><a href="#attempt-1">First Attempt: Store Only the Total</a></li>
        <li><a href="#attempt-2">Second Attempt: Store the Total and the Delta</a></li>
        <li><a href="#solution">Solution: Store the Sub-totals per Device</a></li>
      </ol>
      </li>
      <li><a href="#cleanup">Clean Up Your Data</a></li>
    </ol>
    <h2>You should also read</h2>
    <ul>
      <li><a href="http://developers.google.com/games/services/common/concepts/cloudsave">Cloud Save</a></li>
      <li><a href="https://developers.google.com/games/services/android/cloudsave">Cloud Save in Android</a></li>
    </ul>
  </div>
</div>

<p>This article describes how to design a robust conflict resolution strategy for
apps that save data to the cloud using the
<a href="http://developers.google.com/games/services/common/concepts/cloudsave">
Cloud Save service</a>. The Cloud Save service
allows you to store application data for each user of an application on Google's
servers. Your application can retrieve and update this user data from Android
devices, iOS devices, or web applications by using the Cloud Save APIs.</p>

<p>Saving and loading progress in Cloud Save is straightforward: it's just a matter
of serializing the player's data to and from byte arrays and storing those arrays
in the cloud. However, when your user has multiple devices and two or more of them attempt
to save data to the cloud, the saves might conflict, and you must decide how to
resolve it. The structure of your cloud save data largely dictates how robust
your conflict resolution can be, so you must design your data carefully in order
to allow your conflict resolution logic to handle each case correctly.</p>

<p>The article starts by describing a few flawed approaches
and explains where they fall short. Then it presents a solution for avoiding
conflicts. The discussion focuses on games, but you can
apply the same principles to any app that saves data to the cloud.</p>

<h2 id="conflict">Get Notified of Conflicts</h2>

<p>The
<a href="{@docRoot}reference/com/google/android/gms/appstate/OnStateLoadedListener.html">{@code OnStateLoadedListener}</a>
methods are responsible for loading an application's state data from Google's servers.
The callback <a href="{@docRoot}reference/com/google/android/gms/appstate/OnStateLoadedListener.html#onStateConflict">
{@code OnStateLoadedListener.onStateConflict}</a> provides a mechanism
for your application to resolve conflicts between the local state on a user's
device and the state stored in the cloud:</p>

<pre style="clear:right">&#64;Override
public void onStateConflict(int stateKey, String resolvedVersion,
    byte[] localData, byte[] serverData) {
    // resolve conflict, then call mAppStateClient.resolveConflict()
 ...
}</pre>

<p>At this point your application must choose which one of the data sets should
be kept, or it can submit a new data set that represents the merged data. It is
up to you to implement this conflict resolution logic.</p>

<p>It's important to realize that the Cloud Save service synchronizes
data in the background. Therefore, you should ensure that your app is prepared
to receive that callback outside of the context where you originally generated
the data. Specifically, if the Google Play services application detects a conflict
in the background, the callback will be called the next time you attempt to load the
data, which might not happen until the next time the user starts the app.</p>

<p>Therefore, design of your cloud save data and conflict resolution code must be
<em>context-independent</em>: given two conflicting save states, you must be able
to resolve the conflict using only the data available within the data sets, without
consulting any external context. </p>

<h2 id="simple">Handle the Simple Cases</h2>

<p>Here are some simple cases of conflict resolution. For many apps, it is
sufficient to adopt a variant of one of these strategies:</p>

<ul>
  <li> <strong>New is better than old</strong>. In some cases, new data should
always replace old data. For example, if the data represents the player's choice
for a character's shirt color, then a more recent choice should override an
older choice. In this case, you would probably choose to store the timestamp in the cloud
save data. When resolving the conflict, pick the data set with the most recent
timestamp (remember to use a reliable clock, and be careful about time zone
differences).</li>

  <li> <strong>One set of data is clearly better than the other</strong>. In other
cases, it will always be clear which data can be defined as &quot;best&quot;. For
example, if the data represents the player's best time in a racing game, then it's
clear that, in case of conflicts, you should keep the best (smallest) time.</li>

  <li> <strong>Merge by union</strong>. It may be possible to resolve the conflict
by computing a union of the two conflicting sets. For example, if your data
represents the set of levels that player has unlocked, then the resolved data is
simply the union of the two conflicting sets. This way, players won't lose any
levels they have unlocked. The
<a href="https://github.com/playgameservices/android-samples/tree/master/CollectAllTheStars">
CollectAllTheStars</a> sample game uses a variant of this strategy.</li>
</ul>

<h2 id="complicated">Design a Strategy for More Complex Cases</h2>

<p>A more complicated case happens when your game allows the player to collect
fungible items or units, such as gold coins or experience points. Let's
consider a hypothetical game, called Coin Run, an infinite runner where the goal
is to collect coins and become very, very rich. Each coin collected gets added to
the player's piggy bank.</p>

<p>The following sections describe three strategies for resolving sync conflicts
between multiple devices: two that sound good but ultimately fail to successfully
resolve all scenarios, and one final solution that can manage conflicts between
any number of devices.</p>

<h3 id="attempt-1">First Attempt: Store Only the Total</h3>

<p>At first thought, it might seem that the cloud save data should simply be the
number of coins in the bank. But if that data is all that's available, conflict
resolution will be severely limited. The best you could do would be to pick the largest of
the two numbers in case of a conflict.</p>

<p>Consider the scenario illustrated in Table 1. Suppose the player initially
has 20 coins, and then collects 10 coins on device A and 15 coins on device B.
Then device B saves the state to the cloud. When device A attempts to save, a
conflict is detected. The "store only the total" conflict resolution algorithm would resolve
the conflict by writing 35 (the largest of the two numbers).</p>

<p class="table-caption"><strong>Table 1.</strong> Storing only the total number
of coins (failed strategy).</p>

<table border="1">
  <tr>
    <th>Event</th>
    <th>Data on Device A</th>
    <th>Data on Device B</th>
    <th>Data on Cloud</th>
    <th>Actual Total</th>
  </tr>
  <tr>
    <td>Starting conditions</td>
    <td>20</td>
    <td>20</td>
    <td>20</td>
    <td>20</td>
  </tr>
  <tr>
    <td>Player collects 10 coins on device A</td>
    <td class="new-value">30</td>
    <td>20</td>
    <td>20</td>
    <td>30</td>
  </tr>
  <tr>
    <td>Player collects 15 coins on device B</td>
    <td>30</td>
    <td class="new-value">35</td>
    <td>20</td>
    <td>45</td>
  </tr>
  <tr>
    <td>Device B saves state to cloud</td>
    <td>30</td>
    <td>35</td>
    <td class="new-value">35</td>
    <td>45</td>
  </tr>
  <tr>
    <td>Device A tries to save state to cloud.<br />
    <span class="conflict">Conflict detected.</span></td>
    <td class="conflict">30</td>
    <td>35</td>
    <td class="conflict">35</td>
    <td>45</td>
  </tr>
  <tr>
    <td>Device A resolves conflict by picking largest of the two numbers.</td>
    <td class="new-value">35</td>
    <td>35</td>
    <td class="new-value">35</td>
    <td>45</td>
  </tr>
</table>

<p>This strategy would fail&mdash;the player's bank has gone from 20
to 35, when the user actually collected a total of 25 coins (10 on device A and 15 on
device B). So 10 coins were lost. Storing only the total number of coins in the
cloud save is not enough to implement a robust conflict resolution algorithm.</p>

<h3 id="attempt-2">Second Attempt: Store the Total and the Delta</h3>

<p>A different approach is to include an additional field in
the save data: the number of coins added (the delta) since the last commit. In
this approach the save data can be represented by a tuple <em>(T,d)</em> where <em>T</em> is
the total number of coins and <em>d</em> is the number of coins that you just
added.</p>

<p>With this structure, your conflict resolution algorithm has room to be more
robust, as illustrated below. But this approach still doesn't give your app
a reliable picture of the player's overall state.</p>

<p>Here is the conflict resolution algorithm for including the delta:</p>

<ul>
  <li><strong>Local data:</strong> (T, d)</li>
  <li><strong>Cloud data:</strong> (T', d')</li>
  <li><strong>Resolved data:</strong> (T' + d, d)</li>
</ul>

<p>For example, when you get a conflict between the local state <em>(T,d)</em>
and the cloud state <em>(T',d')</em>, you can resolve it as <em>(T'+d, d)</em>.
What this means is that you are taking the delta from your local data and
incorporating it into the cloud data, hoping that this will correctly account for
any gold coins that were collected on the other device.</p>

<p>This approach might sound promising, but it breaks down in a dynamic mobile
environment:</p>
<ul>
<li>Users might save state when the device is offline. These changes will be
queued up for submission when the device comes back online.</li>

<li>The way that sync works is that
the most recent change overwrites any previous changes. In other words, the
second write is the only one that gets sent to the cloud (this happens
when the device eventually comes online), and the delta in the first
write is ignored.</li>
</ul>

<p>To illustrate, consider the scenario illustrated by Table 2. After the
series of operations shown in the table, the cloud state
will be (130, +5). This means the resolved state would be (140, +10). This is
incorrect because in total, the user has collected 110 coins on device A and
120 coins on device B. The total should be 250 coins.</p>

<p class="table-caption"><strong>Table 2.</strong>  Failure case for total+delta
strategy.</p>

<table border="1">
  <tr>
    <th>Event</th>
    <th>Data on Device A</th>
    <th>Data on Device B</th>
    <th>Data on Cloud</th>
    <th>Actual Total</th>
  </tr>
  <tr>
    <td>Starting conditions</td>
    <td>(20, x)</td>
    <td>(20, x)</td>
    <td>(20, x)</td>
    <td>20</td>
  </tr>
  <tr>
    <td>Player collects 100 coins on device A</td>
    <td class="test2">(120, +100)</td>
    <td>(20, x)</td>
    <td>(20, x)</td>
    <td>120</td>
  </tr>
  <tr>
    <td>Player collects 10 more coins on device A</td>
    <td class="new-value" style="white-space:nowrap">(130, +10)</td>
    <td>(20, x)</td>
    <td>(20, x)</td>
    <td>130</td>
  </tr>
  <tr>
    <td>Player collects 115 coins on device B</td>
    <td>(130, +10)</td>
    <td class="new-value" style="white-space:nowrap">(125, +115)</td>
    <td>(20, x)</td>
    <td>245</td>
  </tr>
  <tr>
    <td>Player collects 5 more coins on device B</td>
    <td>(130, +10)</td>
    <td class="new-value">
(130, +5)</td>
    <td>
(20, x)</td>
    <td>250</td>
  </tr>
  <tr>
    <td>Device B uploads its data to the cloud
      </td>
    <td>(130, +10)</td>
    <td>(130, +5)</td>
    <td class="new-value">
(130, +5)</td>
    <td>250</td>
  </tr>
  <tr>
    <td>Device A tries to upload its data to the cloud.
    <br />
    <span class="conflict">Conflict detected.</span></td>
    <td class="conflict">(130, +10)</td>
    <td>(130, +5)</td>
    <td class="conflict">(130, +5)</td>
    <td>250</td>
  </tr>
  <tr>
    <td>Device A resolves the conflict by applying the local delta to the cloud total.
      </td>
    <td class="new-value" style="white-space:nowrap">(140, +10)</td>
    <td>(130, +5)</td>
    <td class="new-value" style="white-space:nowrap">(140, +10)</td>
    <td>250</td>
  </tr>
</table>
<p><em>(*): x represents data that is irrelevant to our scenario.</em></p>

<p>You might try to fix the problem by not resetting the delta after each save,
so that the second save on each device accounts for all the coins collected thus far.
With that change the second save made by device A would be<em> (130, +110)</em> instead of
<em>(130, +10)</em>. However, you would then run into the problem illustrated in Table 3.</p>

<p class="table-caption"><strong>Table 3.</strong>  Failure case for the modified
algorithm.</p>
<table border="1">
  <tr>
    <th>Event</th>
    <th>Data on Device A</th>
    <th>Data on Device B</th>
    <th>Data on Cloud</th>
    <th>Actual Total</th>
  </tr>
  <tr>
    <td>Starting conditions</td>
    <td>(20, x)</td>
    <td>(20, x)</td>
    <td>(20, x)</td>
    <td>20</td>
  </tr>
  <tr>
    <td>Player collects 100 coins on device A
      </td>
    <td class="new-value">(120, +100)</td>
    <td>(20, x)</td>
    <td>(20, x)</td>
    <td>120</td>
  </tr>
  <tr>
    <td>Device A saves state to cloud</td>
    <td>(120, +100)</td>
    <td>(20, x)</td>
    <td class="new-value">(120, +100)</td>
    <td>120</td>
  </tr>
  <tr>
    <td>Player collects 10 more coins on device A
      </td>
    <td class="new-value">(130, +110)</td>
    <td>
(20, x)</td>
    <td>(120, +100)</td>
    <td>130</td>
  </tr>
  <tr>
    <td>Player collects 1 coin on device B

      </td>
    <td>(130, +110)</td>
    <td class="new-value">(21, +1)</td>
    <td>(120, +100)</td>
    <td>131</td>
  </tr>
  <tr>
    <td>Device B attempts to save state to cloud.
    <br />
    Conflict detected.
      </td>
    <td>(130, +110)</td>
    <td class="conflict">(21, +1)</td>
    <td class="conflict">
(120, +100)</td>
    <td>131</td>
  </tr>
  <tr>
    <td>Device B solves conflict by applying local delta to cloud total.

      </td>
    <td>(130, +110)</td>
    <td>(121, +1)</td>
    <td>(121, +1)</td>
    <td>131</td>
  </tr>
  <tr>
    <td>Device A tries to upload its data to the cloud.
    <br />
    <span class="conflict">Conflict detected. </span></td>
    <td class="conflict">(130, +110)</td>
    <td>(121, +1)</td>
    <td class="conflict">(121, +1)</td>
    <td>131</td>
  </tr>
  <tr>
    <td>Device A resolves the conflict by applying the local delta to the cloud total.

      </td>
    <td class="new-value" style="white-space:nowrap">(231, +110)</td>
    <td>(121, +1)</td>
    <td class="new-value" style="white-space:nowrap">(231, +110)</td>
    <td>131</td>
  </tr>
</table>
<p><em>(*): x represents data that is irrelevant to our scenario.</em></p>

<p>Now you have the opposite problem: you are giving the player too many coins.
The player has gained 211 coins, when in fact she has collected only 111 coins.</p>

<h3 id="solution">Solution: Store the Sub-totals per Device</h3>

<p>Analyzing the previous attempts, it seems that what those strategies
fundamentally miss is the ability to know which coins have already been counted
and which coins have not been counted yet, especially in the presence of multiple
consecutive commits coming from different devices.</p>

<p>The solution to the problem is to change the structure of your cloud save to
be a dictionary that maps strings to integers. Each key-value pair in this
dictionary represents a &quot;drawer&quot; that contains coins, and the total
number of coins in the save is the sum of the values of all entries.
The fundamental principle of this design is that each device has its own
drawer, and only the device itself can put coins into that drawer.</p>

<p>The structure of the dictionary is <em>(A:a, B:b, C:c, ...)</em>, where
<em>a</em> is the total number of coins in the drawer A, <em>b</em> is
the total number of coins in drawer B, and so on.</p>

<p>The new conflict resolution algorithm for the "drawer" solution is as follows:</p>

  <ul>
    <li><strong>Local data:</strong> (A:a, B:b, C:c, ...)</li>
    <li><strong>Cloud data:</strong> (A:a', B:b', C:c', ...)</li>
    <li><strong>Resolved data:</strong> (A:<em>max</em>(a,a'), B:<em>max</em>(b,b'),
        C:<em>max</em>(c,c'), ...)</li>
  </ul>

<p>For example, if the local data is <em>(A:20, B:4, C:7)</em> and the cloud data
is <em>(B:10, C:2, D:14)</em>, then the resolved data will be
<em>(A:20, B:10, C:7, D:14)</em>. Note that how you apply  conflict resolution
logic to this dictionary data may vary depending on your app. For example, for
some apps you might want to take the lower value.</p>

<p>To test this new algorithm, apply it to any of the test scenarios
mentioned above. You will see that it arrives at the correct result.</p>

Table 4 illustrates this, based on the scenario from Table 3. Note the following:</p>

<ul>
  <li>In the initial state, the player has 20 coins. This is accurately reflected
  on each device and the cloud. This value is represented as a dictionary (X:20),
  where the value of X isn't significant&mdash;we don't care where this initial data came from.</li>
  <li>When the player collects 100 coins on device A, this change
  is packaged as a dictionary and saved to the cloud. The dictionary's value is 100 because
  that is the number of coins that the player collected on device A. There is no
  calculation being performed on the data at this point&mdash;device A is simply
  reporting the number of coins the player collected on it.</li>
  <li>Each new
  submission of coins is packaged as a dictionary associated with the device
  that saved it to the cloud. When the player collects 10 more coins on device A,
  for example, the device A dictionary value is updated to be 110.</li>

  <li>The net result is that the app knows the total number of coins
  the player has collected on each device. Thus it can easily calculate the total.</li>
</ul>

<p class="table-caption"><strong>Table 4.</strong> Successful application of the
key-value pair strategy.</p>

<table border="1">
  <tr>
    <th>Event</th>
    <th>Data on Device A</th>
    <th>Data on Device B</th>
    <th>Data on Cloud</th>
    <th>Actual Total</th>
  </tr>
  <tr>
    <td>Starting conditions</td>
    <td>(X:20, x)</td>
    <td>(X:20, x)</td>
    <td>(X:20, x)</td>
    <td>20</td>
  </tr>
  <tr>
    <td>Player collects 100 coins on device A

      </td>
    <td class="new-value">(X:20, A:100)</td>
    <td>(X:20)</td>
    <td>(X:20)</td>
    <td>120</td>
  </tr>
  <tr>
    <td>Device A saves state to cloud

      </td>
    <td>(X:20, A:100)</td>
    <td>(X:20)</td>
    <td class="new-value">(X:20, A:100)</td>
    <td>120</td>
  </tr>
  <tr>
    <td>Player collects 10 more coins on device A
            </td>
    <td class="new-value">(X:20, A:110)</td>
    <td>(X:20)</td>
    <td>(X:20, A:100)</td>
    <td>130</td>
  </tr>
  <tr>
    <td>Player collects 1 coin on device B</td>
    <td>(X:20, A:110)</td>
    <td class="new-value">
(X:20, B:1)</td>
    <td>
(X:20, A:100)</td>
    <td>131</td>
  </tr>
  <tr>
    <td>Device B attempts to save state to cloud.
    <br />
    <span class="conflict">Conflict detected. </span></td>
    <td>(X:20, A:110)</td>
    <td class="conflict">(X:20, B:1)</td>
    <td class="conflict">
(X:20, A:100)</td>
    <td>131</td>
  </tr>
  <tr>
    <td>Device B solves conflict

      </td>
    <td>(X:20, A:110)</td>
    <td class="new-value">(X:20, A:100, B:1)</td>
    <td class="new-value">(X:20, A:100, B:1)</td>
    <td>131</td>
  </tr>
  <tr>
    <td>Device A tries to upload its data to the cloud. <br />
      <span class="conflict">Conflict detected.</span></td>
    <td class="conflict">(X:20, A:110)</td>
    <td>(X:20, A:100, B:1)</td>
    <td class="conflict">
(X:20, A:100, B:1)</td>
    <td>131</td>
  </tr>
  <tr>
    <td>Device A resolves the conflict

      </td>
    <td class="new-value" style="white-space:nowrap">(X:20, A:110, B:1)</td>
    <td style="white-space:nowrap">(X:20, A:100, B:1)</td>
    <td class="new-value" style="white-space:nowrap">(X:20, A:110, B:1)
      <br />
    <em>total 131</em></td>
    <td>131</td>
  </tr>
</table>


<h2 id="cleanup">Clean Up Your Data</h2>
<p>There is a limit to the size of cloud save data, so in following the strategy
outlined in this article, take care not to create arbitrarily large dictionaries. At first
glance it may seem that the dictionary will have only one entry per device, and even
the very enthusiastic user is unlikely to have thousands of them. However,
obtaining a device ID is difficult and considered a bad practice, so instead you should
use an installation ID, which is easier to obtain and more reliable. This means
that the dictionary might have one entry for each time the user installed the
application on each device. Assuming each key-value pair takes 32 bytes, and
since an individual cloud save buffer can be
up to 128K in size, you are safe if you have up to 4,096 entries.</p>

<p>In real-life situations, your data will probably be more complex than a number
of coins. In this case, the number of entries in this dictionary may be much more
limited. Depending on your implementation, it might make sense to store the
timestamp for when each entry in the dictionary was modified. When you detect that a
given entry has not been modified in the last several weeks or months, it is
probably safe to transfer the coins into another entry and delete the old entry.</p>