summaryrefslogtreecommitdiffstats
path: root/libs/androidfw/VelocityTracker.cpp
blob: 7300ea1bd1db950884f8fb135091d17a7169d8ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "VelocityTracker"
//#define LOG_NDEBUG 0

// Log debug messages about velocity tracking.
#define DEBUG_VELOCITY 0

// Log debug messages about the progress of the algorithm itself.
#define DEBUG_STRATEGY 0

#include <math.h>
#include <limits.h>

#include <androidfw/VelocityTracker.h>
#include <utils/BitSet.h>
#include <utils/String8.h>
#include <utils/Timers.h>

#include <cutils/properties.h>

namespace android {

// Nanoseconds per milliseconds.
static const nsecs_t NANOS_PER_MS = 1000000;

// Threshold for determining that a pointer has stopped moving.
// Some input devices do not send ACTION_MOVE events in the case where a pointer has
// stopped.  We need to detect this case so that we can accurately predict the
// velocity after the pointer starts moving again.
static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;


static float vectorDot(const float* a, const float* b, uint32_t m) {
    float r = 0;
    while (m--) {
        r += *(a++) * *(b++);
    }
    return r;
}

static float vectorNorm(const float* a, uint32_t m) {
    float r = 0;
    while (m--) {
        float t = *(a++);
        r += t * t;
    }
    return sqrtf(r);
}

#if DEBUG_STRATEGY || DEBUG_VELOCITY
static String8 vectorToString(const float* a, uint32_t m) {
    String8 str;
    str.append("[");
    while (m--) {
        str.appendFormat(" %f", *(a++));
        if (m) {
            str.append(",");
        }
    }
    str.append(" ]");
    return str;
}

static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
    String8 str;
    str.append("[");
    for (size_t i = 0; i < m; i++) {
        if (i) {
            str.append(",");
        }
        str.append(" [");
        for (size_t j = 0; j < n; j++) {
            if (j) {
                str.append(",");
            }
            str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]);
        }
        str.append(" ]");
    }
    str.append(" ]");
    return str;
}
#endif


// --- VelocityTracker ---

// The default velocity tracker strategy.
// Although other strategies are available for testing and comparison purposes,
// this is the strategy that applications will actually use.  Be very careful
// when adjusting the default strategy because it can dramatically affect
// (often in a bad way) the user experience.
const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";

VelocityTracker::VelocityTracker(const char* strategy) :
        mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
    char value[PROPERTY_VALUE_MAX];

    // Allow the default strategy to be overridden using a system property for debugging.
    if (!strategy) {
        int length = property_get("debug.velocitytracker.strategy", value, NULL);
        if (length > 0) {
            strategy = value;
        } else {
            strategy = DEFAULT_STRATEGY;
        }
    }

    // Configure the strategy.
    if (!configureStrategy(strategy)) {
        ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
        if (!configureStrategy(DEFAULT_STRATEGY)) {
            LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
                    strategy);
        }
    }
}

VelocityTracker::~VelocityTracker() {
    delete mStrategy;
}

bool VelocityTracker::configureStrategy(const char* strategy) {
    mStrategy = createStrategy(strategy);
    return mStrategy != NULL;
}

VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
    if (!strcmp("lsq1", strategy)) {
        // 1st order least squares.  Quality: POOR.
        // Frequently underfits the touch data especially when the finger accelerates
        // or changes direction.  Often underestimates velocity.  The direction
        // is overly influenced by historical touch points.
        return new LeastSquaresVelocityTrackerStrategy(1);
    }
    if (!strcmp("lsq2", strategy)) {
        // 2nd order least squares.  Quality: VERY GOOD.
        // Pretty much ideal, but can be confused by certain kinds of touch data,
        // particularly if the panel has a tendency to generate delayed,
        // duplicate or jittery touch coordinates when the finger is released.
        return new LeastSquaresVelocityTrackerStrategy(2);
    }
    if (!strcmp("lsq3", strategy)) {
        // 3rd order least squares.  Quality: UNUSABLE.
        // Frequently overfits the touch data yielding wildly divergent estimates
        // of the velocity when the finger is released.
        return new LeastSquaresVelocityTrackerStrategy(3);
    }
    if (!strcmp("int1", strategy)) {
        // 1st order integrating filter.  Quality: GOOD.
        // Not as good as 'lsq2' because it cannot estimate acceleration but it is
        // more tolerant of errors.  Like 'lsq1', this strategy tends to underestimate
        // the velocity of a fling but this strategy tends to respond to changes in
        // direction more quickly and accurately.
        return new IntegratingVelocityTrackerStrategy();
    }
    return NULL;
}

void VelocityTracker::clear() {
    mCurrentPointerIdBits.clear();
    mActivePointerId = -1;

    mStrategy->clear();
}

void VelocityTracker::clearPointers(BitSet32 idBits) {
    BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
    mCurrentPointerIdBits = remainingIdBits;

    if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
        mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
    }

    mStrategy->clearPointers(idBits);
}

void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
    while (idBits.count() > MAX_POINTERS) {
        idBits.clearLastMarkedBit();
    }

    if ((mCurrentPointerIdBits.value & idBits.value)
            && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
#if DEBUG_VELOCITY
        ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
                (eventTime - mLastEventTime) * 0.000001f);
#endif
        // We have not received any movements for too long.  Assume that all pointers
        // have stopped.
        mStrategy->clear();
    }
    mLastEventTime = eventTime;

    mCurrentPointerIdBits = idBits;
    if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
        mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
    }

    mStrategy->addMovement(eventTime, idBits, positions);

#if DEBUG_VELOCITY
    ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d",
            eventTime, idBits.value, mActivePointerId);
    for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
        uint32_t id = iterBits.firstMarkedBit();
        uint32_t index = idBits.getIndexOfBit(id);
        iterBits.clearBit(id);
        Estimator estimator;
        getEstimator(id, &estimator);
        ALOGD("  %d: position (%0.3f, %0.3f), "
                "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
                id, positions[index].x, positions[index].y,
                int(estimator.degree),
                vectorToString(estimator.xCoeff, estimator.degree + 1).string(),
                vectorToString(estimator.yCoeff, estimator.degree + 1).string(),
                estimator.confidence);
    }
#endif
}

void VelocityTracker::addMovement(const MotionEvent* event) {
    int32_t actionMasked = event->getActionMasked();

    switch (actionMasked) {
    case AMOTION_EVENT_ACTION_DOWN:
    case AMOTION_EVENT_ACTION_HOVER_ENTER:
        // Clear all pointers on down before adding the new movement.
        clear();
        break;
    case AMOTION_EVENT_ACTION_POINTER_DOWN: {
        // Start a new movement trace for a pointer that just went down.
        // We do this on down instead of on up because the client may want to query the
        // final velocity for a pointer that just went up.
        BitSet32 downIdBits;
        downIdBits.markBit(event->getPointerId(event->getActionIndex()));
        clearPointers(downIdBits);
        break;
    }
    case AMOTION_EVENT_ACTION_MOVE:
    case AMOTION_EVENT_ACTION_HOVER_MOVE:
        break;
    default:
        // Ignore all other actions because they do not convey any new information about
        // pointer movement.  We also want to preserve the last known velocity of the pointers.
        // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
        // of the pointers that went up.  ACTION_POINTER_UP does include the new position of
        // pointers that remained down but we will also receive an ACTION_MOVE with this
        // information if any of them actually moved.  Since we don't know how many pointers
        // will be going up at once it makes sense to just wait for the following ACTION_MOVE
        // before adding the movement.
        return;
    }

    size_t pointerCount = event->getPointerCount();
    if (pointerCount > MAX_POINTERS) {
        pointerCount = MAX_POINTERS;
    }

    BitSet32 idBits;
    for (size_t i = 0; i < pointerCount; i++) {
        idBits.markBit(event->getPointerId(i));
    }

    uint32_t pointerIndex[MAX_POINTERS];
    for (size_t i = 0; i < pointerCount; i++) {
        pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
    }

    nsecs_t eventTime;
    Position positions[pointerCount];

    size_t historySize = event->getHistorySize();
    for (size_t h = 0; h < historySize; h++) {
        eventTime = event->getHistoricalEventTime(h);
        for (size_t i = 0; i < pointerCount; i++) {
            uint32_t index = pointerIndex[i];
            positions[index].x = event->getHistoricalX(i, h);
            positions[index].y = event->getHistoricalY(i, h);
        }
        addMovement(eventTime, idBits, positions);
    }

    eventTime = event->getEventTime();
    for (size_t i = 0; i < pointerCount; i++) {
        uint32_t index = pointerIndex[i];
        positions[index].x = event->getX(i);
        positions[index].y = event->getY(i);
    }
    addMovement(eventTime, idBits, positions);
}

bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
    Estimator estimator;
    if (getEstimator(id, &estimator) && estimator.degree >= 1) {
        *outVx = estimator.xCoeff[1];
        *outVy = estimator.yCoeff[1];
        return true;
    }
    *outVx = 0;
    *outVy = 0;
    return false;
}

bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
    return mStrategy->getEstimator(id, outEstimator);
}


// --- LeastSquaresVelocityTrackerStrategy ---

const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON;
const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE;

LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(uint32_t degree) :
        mDegree(degree) {
    clear();
}

LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
}

void LeastSquaresVelocityTrackerStrategy::clear() {
    mIndex = 0;
    mMovements[0].idBits.clear();
}

void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
    BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
    mMovements[mIndex].idBits = remainingIdBits;
}

void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
        const VelocityTracker::Position* positions) {
    if (++mIndex == HISTORY_SIZE) {
        mIndex = 0;
    }

    Movement& movement = mMovements[mIndex];
    movement.eventTime = eventTime;
    movement.idBits = idBits;
    uint32_t count = idBits.count();
    for (uint32_t i = 0; i < count; i++) {
        movement.positions[i] = positions[i];
    }
}

/**
 * Solves a linear least squares problem to obtain a N degree polynomial that fits
 * the specified input data as nearly as possible.
 *
 * Returns true if a solution is found, false otherwise.
 *
 * The input consists of two vectors of data points X and Y with indices 0..m-1.
 * The output is a vector B with indices 0..n that describes a polynomial
 * that fits the data, such the sum of abs(Y[i] - (B[0] + B[1] X[i] + B[2] X[i]^2 ... B[n] X[i]^n))
 * for all i between 0 and m-1 is minimized.
 *
 * That is to say, the function that generated the input data can be approximated
 * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
 *
 * The coefficient of determination (R^2) is also returned to describe the goodness
 * of fit of the model for the given data.  It is a value between 0 and 1, where 1
 * indicates perfect correspondence.
 *
 * This function first expands the X vector to a m by n matrix A such that
 * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n.
 *
 * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
 * and an m by n upper triangular matrix R.  Because R is upper triangular (lower
 * part is all zeroes), we can simplify the decomposition into an m by n matrix
 * Q1 and a n by n matrix R1 such that A = Q1 R1.
 *
 * Finally we solve the system of linear equations given by R1 B = (Qtranspose Y)
 * to find B.
 *
 * For efficiency, we lay out A and Q column-wise in memory because we frequently
 * operate on the column vectors.  Conversely, we lay out R row-wise.
 *
 * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
 * http://en.wikipedia.org/wiki/Gram-Schmidt
 */
static bool solveLeastSquares(const float* x, const float* y, uint32_t m, uint32_t n,
        float* outB, float* outDet) {
#if DEBUG_STRATEGY
    ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s", int(m), int(n),
            vectorToString(x, m).string(), vectorToString(y, m).string());
#endif

    // Expand the X vector to a matrix A.
    float a[n][m]; // column-major order
    for (uint32_t h = 0; h < m; h++) {
        a[0][h] = 1;
        for (uint32_t i = 1; i < n; i++) {
            a[i][h] = a[i - 1][h] * x[h];
        }
    }
#if DEBUG_STRATEGY
    ALOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string());
#endif

    // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
    float q[n][m]; // orthonormal basis, column-major order
    float r[n][n]; // upper triangular matrix, row-major order
    for (uint32_t j = 0; j < n; j++) {
        for (uint32_t h = 0; h < m; h++) {
            q[j][h] = a[j][h];
        }
        for (uint32_t i = 0; i < j; i++) {
            float dot = vectorDot(&q[j][0], &q[i][0], m);
            for (uint32_t h = 0; h < m; h++) {
                q[j][h] -= dot * q[i][h];
            }
        }

        float norm = vectorNorm(&q[j][0], m);
        if (norm < 0.000001f) {
            // vectors are linearly dependent or zero so no solution
#if DEBUG_STRATEGY
            ALOGD("  - no solution, norm=%f", norm);
#endif
            return false;
        }

        float invNorm = 1.0f / norm;
        for (uint32_t h = 0; h < m; h++) {
            q[j][h] *= invNorm;
        }
        for (uint32_t i = 0; i < n; i++) {
            r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
        }
    }
#if DEBUG_STRATEGY
    ALOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string());
    ALOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string());

    // calculate QR, if we factored A correctly then QR should equal A
    float qr[n][m];
    for (uint32_t h = 0; h < m; h++) {
        for (uint32_t i = 0; i < n; i++) {
            qr[i][h] = 0;
            for (uint32_t j = 0; j < n; j++) {
                qr[i][h] += q[j][h] * r[j][i];
            }
        }
    }
    ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string());
#endif

    // Solve R B = Qt Y to find B.  This is easy because R is upper triangular.
    // We just work from bottom-right to top-left calculating B's coefficients.
    for (uint32_t i = n; i-- != 0; ) {
        outB[i] = vectorDot(&q[i][0], y, m);
        for (uint32_t j = n - 1; j > i; j--) {
            outB[i] -= r[i][j] * outB[j];
        }
        outB[i] /= r[i][i];
    }
#if DEBUG_STRATEGY
    ALOGD("  - b=%s", vectorToString(outB, n).string());
#endif

    // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
    // SSerr is the residual sum of squares (squared variance of the error),
    // and SStot is the total sum of squares (squared variance of the data).
    float ymean = 0;
    for (uint32_t h = 0; h < m; h++) {
        ymean += y[h];
    }
    ymean /= m;

    float sserr = 0;
    float sstot = 0;
    for (uint32_t h = 0; h < m; h++) {
        float err = y[h] - outB[0];
        float term = 1;
        for (uint32_t i = 1; i < n; i++) {
            term *= x[h];
            err -= term * outB[i];
        }
        sserr += err * err;
        float var = y[h] - ymean;
        sstot += var * var;
    }
    *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
#if DEBUG_STRATEGY
    ALOGD("  - sserr=%f", sserr);
    ALOGD("  - sstot=%f", sstot);
    ALOGD("  - det=%f", *outDet);
#endif
    return true;
}

bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
        VelocityTracker::Estimator* outEstimator) const {
    outEstimator->clear();

    // Iterate over movement samples in reverse time order and collect samples.
    float x[HISTORY_SIZE];
    float y[HISTORY_SIZE];
    float time[HISTORY_SIZE];
    uint32_t m = 0;
    uint32_t index = mIndex;
    const Movement& newestMovement = mMovements[mIndex];
    do {
        const Movement& movement = mMovements[index];
        if (!movement.idBits.hasBit(id)) {
            break;
        }

        nsecs_t age = newestMovement.eventTime - movement.eventTime;
        if (age > HORIZON) {
            break;
        }

        const VelocityTracker::Position& position = movement.getPosition(id);
        x[m] = position.x;
        y[m] = position.y;
        time[m] = -age * 0.000000001f;
        index = (index == 0 ? HISTORY_SIZE : index) - 1;
    } while (++m < HISTORY_SIZE);

    if (m == 0) {
        return false; // no data
    }

    // Calculate a least squares polynomial fit.
    uint32_t degree = mDegree;
    if (degree > m - 1) {
        degree = m - 1;
    }
    if (degree >= 1) {
        float xdet, ydet;
        uint32_t n = degree + 1;
        if (solveLeastSquares(time, x, m, n, outEstimator->xCoeff, &xdet)
                && solveLeastSquares(time, y, m, n, outEstimator->yCoeff, &ydet)) {
            outEstimator->time = newestMovement.eventTime;
            outEstimator->degree = degree;
            outEstimator->confidence = xdet * ydet;
#if DEBUG_STRATEGY
            ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
                    int(outEstimator->degree),
                    vectorToString(outEstimator->xCoeff, n).string(),
                    vectorToString(outEstimator->yCoeff, n).string(),
                    outEstimator->confidence);
#endif
            return true;
        }
    }

    // No velocity data available for this pointer, but we do have its current position.
    outEstimator->xCoeff[0] = x[0];
    outEstimator->yCoeff[0] = y[0];
    outEstimator->time = newestMovement.eventTime;
    outEstimator->degree = 0;
    outEstimator->confidence = 1;
    return true;
}


// --- IntegratingVelocityTrackerStrategy ---

IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy() {
}

IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
}

void IntegratingVelocityTrackerStrategy::clear() {
    mPointerIdBits.clear();
}

void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
    mPointerIdBits.value &= ~idBits.value;
}

void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
        const VelocityTracker::Position* positions) {
    uint32_t index = 0;
    for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
        uint32_t id = iterIdBits.clearFirstMarkedBit();
        State& state = mPointerState[id];
        const VelocityTracker::Position& position = positions[index++];
        if (mPointerIdBits.hasBit(id)) {
            updateState(state, eventTime, position.x, position.y);
        } else {
            initState(state, eventTime, position.x, position.y);
        }
    }

    mPointerIdBits = idBits;
}

bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
        VelocityTracker::Estimator* outEstimator) const {
    outEstimator->clear();

    if (mPointerIdBits.hasBit(id)) {
        const State& state = mPointerState[id];
        populateEstimator(state, outEstimator);
        return true;
    }

    return false;
}

void IntegratingVelocityTrackerStrategy::initState(State& state,
        nsecs_t eventTime, float xpos, float ypos) {
    state.updateTime = eventTime;
    state.first = true;

    state.xpos = xpos;
    state.xvel = 0;
    state.ypos = ypos;
    state.yvel = 0;
}

void IntegratingVelocityTrackerStrategy::updateState(State& state,
        nsecs_t eventTime, float xpos, float ypos) {
    const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
    const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds

    if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
        return;
    }

    float dt = (eventTime - state.updateTime) * 0.000000001f;
    state.updateTime = eventTime;

    float xvel = (xpos - state.xpos) / dt;
    float yvel = (ypos - state.ypos) / dt;
    if (state.first) {
        state.xvel = xvel;
        state.yvel = yvel;
        state.first = false;
    } else {
        float alpha = dt / (FILTER_TIME_CONSTANT + dt);
        state.xvel += (xvel - state.xvel) * alpha;
        state.yvel += (yvel - state.yvel) * alpha;
    }
    state.xpos = xpos;
    state.ypos = ypos;
}

void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
        VelocityTracker::Estimator* outEstimator) {
    outEstimator->time = state.updateTime;
    outEstimator->degree = 1;
    outEstimator->confidence = 1.0f;
    outEstimator->xCoeff[0] = state.xpos;
    outEstimator->xCoeff[1] = state.xvel;
    outEstimator->yCoeff[0] = state.ypos;
    outEstimator->yCoeff[1] = state.yvel;
}

} // namespace android