1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string.h>
#include "AudioResamplerSinc.h"
namespace android {
// ----------------------------------------------------------------------------
/*
* These coeficients are computed with the "fir" utility found in
* tools/resampler_tools
* TODO: A good optimization would be to transpose this matrix, to take
* better advantage of the data-cache.
*/
const int32_t AudioResamplerSinc::mFirCoefsUp[] = {
0x7fffffff, 0x7f15d078, 0x7c5e0da6, 0x77ecd867, 0x71e2e251, 0x6a6c304a, 0x61be7269, 0x58170412, 0x4db8ab05, 0x42e92ea6, 0x37eee214, 0x2d0e3bb1, 0x22879366, 0x18951e95, 0x0f693d0d, 0x072d2621,
0x00000000, 0xf9f66655, 0xf51a5fd7, 0xf16bbd84, 0xeee0d9ac, 0xed67a922, 0xece70de6, 0xed405897, 0xee50e505, 0xeff3be30, 0xf203370f, 0xf45a6741, 0xf6d67d53, 0xf957db66, 0xfbc2f647, 0xfe00f2b9,
0x00000000, 0x01b37218, 0x0313a0c6, 0x041d930d, 0x04d28057, 0x053731b0, 0x05534dff, 0x05309bfd, 0x04da440d, 0x045c1aee, 0x03c1fcdd, 0x03173ef5, 0x02663ae8, 0x01b7f736, 0x0113ec79, 0x007fe6a9,
0x00000000, 0xff96b229, 0xff44f99f, 0xff0a86be, 0xfee5f803, 0xfed518fd, 0xfed521fd, 0xfee2f4fd, 0xfefb54f8, 0xff1b159b, 0xff3f4203, 0xff6539e0, 0xff8ac502, 0xffae1ddd, 0xffcdf3f9, 0xffe96798,
0x00000000, 0x00119de6, 0x001e6b7e, 0x0026cb7a, 0x002b4830, 0x002c83d6, 0x002b2a82, 0x0027e67a, 0x002356f9, 0x001e098e, 0x001875e4, 0x0012fbbe, 0x000de2d1, 0x00095c10, 0x00058414, 0x00026636,
0x00000000, 0xfffe44a9, 0xfffd206d, 0xfffc7b7f, 0xfffc3c8f, 0xfffc4ac2, 0xfffc8f2b, 0xfffcf5c4, 0xfffd6df3, 0xfffdeab2, 0xfffe6275, 0xfffececf, 0xffff2c07, 0xffff788c, 0xffffb471, 0xffffe0f2,
0x00000000, 0x000013e6, 0x00001f03, 0x00002396, 0x00002399, 0x000020b6, 0x00001c3c, 0x00001722, 0x00001216, 0x00000d81, 0x0000099c, 0x0000067c, 0x00000419, 0x0000025f, 0x00000131, 0x00000070,
0x00000000, 0xffffffc7, 0xffffffb3, 0xffffffb3, 0xffffffbe, 0xffffffcd, 0xffffffdb, 0xffffffe7, 0xfffffff0, 0xfffffff7, 0xfffffffb, 0xfffffffe, 0xffffffff, 0x00000000, 0x00000000, 0x00000000,
0x00000000 // this one is needed for lerping the last coefficient
};
/*
* These coefficients are optimized for 48KHz -> 44.1KHz (stop-band at 22.050KHz)
* It's possible to use the above coefficient for any down-sampling
* at the expense of a slower processing loop (we can interpolate
* these coefficient from the above by "Stretching" them in time).
*/
const int32_t AudioResamplerSinc::mFirCoefsDown[] = {
0x7fffffff, 0x7f55e46d, 0x7d5b4c60, 0x7a1b4b98, 0x75a7fb14, 0x7019f0bd, 0x698f875a, 0x622bfd59, 0x5a167256, 0x5178cc54, 0x487e8e6c, 0x3f53aae8, 0x36235ad4, 0x2d17047b, 0x245539ab, 0x1c00d540,
0x14383e57, 0x0d14d5ca, 0x06aa910b, 0x0107c38b, 0xfc351654, 0xf835abae, 0xf5076b45, 0xf2a37202, 0xf0fe9faa, 0xf00a3bbd, 0xefb4aa81, 0xefea2b05, 0xf0959716, 0xf1a11e83, 0xf2f6f7a0, 0xf481fff4,
0xf62e48ce, 0xf7e98ca5, 0xf9a38b4c, 0xfb4e4bfa, 0xfcde456f, 0xfe4a6d30, 0xff8c2fdf, 0x009f5555, 0x0181d393, 0x0233940f, 0x02b62f06, 0x030ca07d, 0x033afa62, 0x03461725, 0x03334f83, 0x030835fa,
0x02ca59cc, 0x027f12d1, 0x022b570d, 0x01d39a49, 0x017bb78f, 0x0126e414, 0x00d7aaaf, 0x008feec7, 0x0050f584, 0x001b73e3, 0xffefa063, 0xffcd46ed, 0xffb3ddcd, 0xffa29aaa, 0xff988691, 0xff949066,
0xff959d24, 0xff9a959e, 0xffa27195, 0xffac4011, 0xffb72d2b, 0xffc28569, 0xffcdb706, 0xffd85171, 0xffe20364, 0xffea97e9, 0xfff1f2b2, 0xfff80c06, 0xfffcec92, 0x0000a955, 0x00035fd8, 0x000532cf,
0x00064735, 0x0006c1f9, 0x0006c62d, 0x000673ba, 0x0005e68f, 0x00053630, 0x000475a3, 0x0003b397, 0x0002fac1, 0x00025257, 0x0001be9e, 0x0001417a, 0x0000dafd, 0x000089eb, 0x00004c28, 0x00001f1d,
0x00000000, 0xffffec10, 0xffffe0be, 0xffffdbc5, 0xffffdb39, 0xffffdd8b, 0xffffe182, 0xffffe638, 0xffffeb0a, 0xffffef8f, 0xfffff38b, 0xfffff6e3, 0xfffff993, 0xfffffba6, 0xfffffd30, 0xfffffe4a,
0xffffff09, 0xffffff85, 0xffffffd1, 0xfffffffb, 0x0000000f, 0x00000016, 0x00000015, 0x00000012, 0x0000000d, 0x00000009, 0x00000006, 0x00000003, 0x00000002, 0x00000001, 0x00000000, 0x00000000,
0x00000000 // this one is needed for lerping the last coefficient
};
// ----------------------------------------------------------------------------
static inline
int32_t mulRL(int left, int32_t in, uint32_t vRL)
{
#if defined(__arm__) && !defined(__thumb__)
int32_t out;
if (left) {
asm( "smultb %[out], %[in], %[vRL] \n"
: [out]"=r"(out)
: [in]"%r"(in), [vRL]"r"(vRL)
: );
} else {
asm( "smultt %[out], %[in], %[vRL] \n"
: [out]"=r"(out)
: [in]"%r"(in), [vRL]"r"(vRL)
: );
}
return out;
#else
if (left) {
return int16_t(in>>16) * int16_t(vRL&0xFFFF);
} else {
return int16_t(in>>16) * int16_t(vRL>>16);
}
#endif
}
static inline
int32_t mulAdd(int16_t in, int32_t v, int32_t a)
{
#if defined(__arm__) && !defined(__thumb__)
int32_t out;
asm( "smlawb %[out], %[v], %[in], %[a] \n"
: [out]"=r"(out)
: [in]"%r"(in), [v]"r"(v), [a]"r"(a)
: );
return out;
#else
return a + in * (v>>16);
// improved precision
// return a + in * (v>>16) + ((in * (v & 0xffff)) >> 16);
#endif
}
static inline
int32_t mulAddRL(int left, uint32_t inRL, int32_t v, int32_t a)
{
#if defined(__arm__) && !defined(__thumb__)
int32_t out;
if (left) {
asm( "smlawb %[out], %[v], %[inRL], %[a] \n"
: [out]"=r"(out)
: [inRL]"%r"(inRL), [v]"r"(v), [a]"r"(a)
: );
} else {
asm( "smlawt %[out], %[v], %[inRL], %[a] \n"
: [out]"=r"(out)
: [inRL]"%r"(inRL), [v]"r"(v), [a]"r"(a)
: );
}
return out;
#else
if (left) {
return a + (int16_t(inRL&0xFFFF) * (v>>16));
//improved precision
// return a + (int16_t(inRL&0xFFFF) * (v>>16)) + ((int16_t(inRL&0xFFFF) * (v & 0xffff)) >> 16);
} else {
return a + (int16_t(inRL>>16) * (v>>16));
}
#endif
}
// ----------------------------------------------------------------------------
AudioResamplerSinc::AudioResamplerSinc(int bitDepth,
int inChannelCount, int32_t sampleRate)
: AudioResampler(bitDepth, inChannelCount, sampleRate),
mState(0)
{
/*
* Layout of the state buffer for 32 tap:
*
* "present" sample beginning of 2nd buffer
* v v
* 0 01 2 23 3
* 0 F0 0 F0 F
* [pppppppppppppppInnnnnnnnnnnnnnnnpppppppppppppppInnnnnnnnnnnnnnnn]
* ^ ^ head
*
* p = past samples, convoluted with the (p)ositive side of sinc()
* n = future samples, convoluted with the (n)egative side of sinc()
* r = extra space for implementing the ring buffer
*
*/
const size_t numCoefs = 2*halfNumCoefs;
const size_t stateSize = numCoefs * inChannelCount * 2;
mState = new int16_t[stateSize];
memset(mState, 0, sizeof(int16_t)*stateSize);
mImpulse = mState + (halfNumCoefs-1)*inChannelCount;
mRingFull = mImpulse + (numCoefs+1)*inChannelCount;
}
AudioResamplerSinc::~AudioResamplerSinc()
{
delete [] mState;
}
void AudioResamplerSinc::init() {
}
void AudioResamplerSinc::resample(int32_t* out, size_t outFrameCount,
AudioBufferProvider* provider)
{
mFirCoefs = (mInSampleRate <= mSampleRate) ? mFirCoefsUp : mFirCoefsDown;
// select the appropriate resampler
switch (mChannelCount) {
case 1:
resample<1>(out, outFrameCount, provider);
break;
case 2:
resample<2>(out, outFrameCount, provider);
break;
}
}
template<int CHANNELS>
void AudioResamplerSinc::resample(int32_t* out, size_t outFrameCount,
AudioBufferProvider* provider)
{
int16_t* impulse = mImpulse;
uint32_t vRL = mVolumeRL;
size_t inputIndex = mInputIndex;
uint32_t phaseFraction = mPhaseFraction;
uint32_t phaseIncrement = mPhaseIncrement;
size_t outputIndex = 0;
size_t outputSampleCount = outFrameCount * 2;
size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate;
AudioBufferProvider::Buffer& buffer(mBuffer);
while (outputIndex < outputSampleCount) {
// buffer is empty, fetch a new one
while (buffer.frameCount == 0) {
buffer.frameCount = inFrameCount;
provider->getNextBuffer(&buffer);
if (buffer.raw == NULL) {
goto resample_exit;
}
const uint32_t phaseIndex = phaseFraction >> kNumPhaseBits;
if (phaseIndex == 1) {
// read one frame
read<CHANNELS>(impulse, phaseFraction, buffer.i16, inputIndex);
} else if (phaseIndex == 2) {
// read 2 frames
read<CHANNELS>(impulse, phaseFraction, buffer.i16, inputIndex);
inputIndex++;
if (inputIndex >= mBuffer.frameCount) {
inputIndex -= mBuffer.frameCount;
provider->releaseBuffer(&buffer);
} else {
read<CHANNELS>(impulse, phaseFraction, buffer.i16, inputIndex);
}
}
}
int16_t *in = buffer.i16;
const size_t frameCount = buffer.frameCount;
// Always read-in the first samples from the input buffer
int16_t* head = impulse + halfNumCoefs*CHANNELS;
head[0] = in[inputIndex*CHANNELS + 0];
if (CHANNELS == 2)
head[1] = in[inputIndex*CHANNELS + 1];
// handle boundary case
int32_t l, r;
while (outputIndex < outputSampleCount) {
filterCoefficient<CHANNELS>(l, r, phaseFraction, impulse);
out[outputIndex++] += 2 * mulRL(1, l, vRL);
out[outputIndex++] += 2 * mulRL(0, r, vRL);
phaseFraction += phaseIncrement;
const uint32_t phaseIndex = phaseFraction >> kNumPhaseBits;
if (phaseIndex == 1) {
inputIndex++;
if (inputIndex >= frameCount)
break; // need a new buffer
read<CHANNELS>(impulse, phaseFraction, in, inputIndex);
} else if(phaseIndex == 2) { // maximum value
inputIndex++;
if (inputIndex >= frameCount)
break; // 0 frame available, 2 frames needed
// read first frame
read<CHANNELS>(impulse, phaseFraction, in, inputIndex);
inputIndex++;
if (inputIndex >= frameCount)
break; // 0 frame available, 1 frame needed
// read second frame
read<CHANNELS>(impulse, phaseFraction, in, inputIndex);
}
}
// if done with buffer, save samples
if (inputIndex >= frameCount) {
inputIndex -= frameCount;
provider->releaseBuffer(&buffer);
}
}
resample_exit:
mImpulse = impulse;
mInputIndex = inputIndex;
mPhaseFraction = phaseFraction;
}
template<int CHANNELS>
/***
* read()
*
* This function reads only one frame from input buffer and writes it in
* state buffer
*
**/
void AudioResamplerSinc::read(
int16_t*& impulse, uint32_t& phaseFraction,
int16_t const* in, size_t inputIndex)
{
const uint32_t phaseIndex = phaseFraction >> kNumPhaseBits;
impulse += CHANNELS;
phaseFraction -= 1LU<<kNumPhaseBits;
if (impulse >= mRingFull) {
const size_t stateSize = (halfNumCoefs*2)*CHANNELS;
memcpy(mState, mState+stateSize, sizeof(int16_t)*stateSize);
impulse -= stateSize;
}
int16_t* head = impulse + halfNumCoefs*CHANNELS;
head[0] = in[inputIndex*CHANNELS + 0];
if (CHANNELS == 2)
head[1] = in[inputIndex*CHANNELS + 1];
}
template<int CHANNELS>
void AudioResamplerSinc::filterCoefficient(
int32_t& l, int32_t& r, uint32_t phase, int16_t const *samples)
{
// compute the index of the coefficient on the positive side and
// negative side
uint32_t indexP = (phase & cMask) >> cShift;
uint16_t lerpP = (phase & pMask) >> pShift;
uint32_t indexN = (-phase & cMask) >> cShift;
uint16_t lerpN = (-phase & pMask) >> pShift;
if ((indexP == 0) && (lerpP == 0)) {
indexN = cMask >> cShift;
lerpN = pMask >> pShift;
}
l = 0;
r = 0;
int32_t const* coefs = mFirCoefs;
int16_t const *sP = samples;
int16_t const *sN = samples+CHANNELS;
for (unsigned int i=0 ; i<halfNumCoefs/4 ; i++) {
interpolate<CHANNELS>(l, r, coefs+indexP, lerpP, sP);
interpolate<CHANNELS>(l, r, coefs+indexN, lerpN, sN);
sP -= CHANNELS; sN += CHANNELS; coefs += 1<<coefsBits;
interpolate<CHANNELS>(l, r, coefs+indexP, lerpP, sP);
interpolate<CHANNELS>(l, r, coefs+indexN, lerpN, sN);
sP -= CHANNELS; sN += CHANNELS; coefs += 1<<coefsBits;
interpolate<CHANNELS>(l, r, coefs+indexP, lerpP, sP);
interpolate<CHANNELS>(l, r, coefs+indexN, lerpN, sN);
sP -= CHANNELS; sN += CHANNELS; coefs += 1<<coefsBits;
interpolate<CHANNELS>(l, r, coefs+indexP, lerpP, sP);
interpolate<CHANNELS>(l, r, coefs+indexN, lerpN, sN);
sP -= CHANNELS; sN += CHANNELS; coefs += 1<<coefsBits;
}
}
template<int CHANNELS>
void AudioResamplerSinc::interpolate(
int32_t& l, int32_t& r,
int32_t const* coefs, int16_t lerp, int16_t const* samples)
{
int32_t c0 = coefs[0];
int32_t c1 = coefs[1];
int32_t sinc = mulAdd(lerp, (c1-c0)<<1, c0);
if (CHANNELS == 2) {
uint32_t rl = *reinterpret_cast<uint32_t const*>(samples);
l = mulAddRL(1, rl, sinc, l);
r = mulAddRL(0, rl, sinc, r);
} else {
r = l = mulAdd(samples[0], sinc, l);
}
}
// ----------------------------------------------------------------------------
}; // namespace android
|