summaryrefslogtreecommitdiffstats
path: root/libs/hwui/AmbientShadow.cpp
blob: 1f5d26c4dad4b830b53d952f962557f8ee627857 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "OpenGLRenderer"

#include <math.h>
#include <utils/Log.h>
#include <utils/Vector.h>

#include "AmbientShadow.h"
#include "Vertex.h"

namespace android {
namespace uirenderer {

/**
 * Calculate the shadows as a triangle strips while alpha value as the
 * shadow values.
 *
 * @param vertices The shadow caster's polygon, which is represented in a Vector3
 *                  array.
 * @param vertexCount The length of caster's polygon in terms of number of
 *                    vertices.
 * @param rays The number of rays shooting out from the centroid.
 * @param layers The number of rings outside the polygon.
 * @param strength The darkness of the shadow, the higher, the darker.
 * @param heightFactor The factor showing the higher the object, the lighter the
 *                     shadow.
 * @param geomFactor The factor scaling the geometry expansion along the normal.
 *
 * @param shadowVertexBuffer Return an floating point array of (x, y, a)
 *               triangle strips mode.
 */
void AmbientShadow::createAmbientShadow(const Vector3* vertices, int vertexCount,
        int rays, int layers, float strength, float heightFactor, float geomFactor,
        VertexBuffer& shadowVertexBuffer) {

    // Validate the inputs.
    if (strength <= 0 || heightFactor <= 0 || layers <= 0 || rays <= 0
        || geomFactor <= 0) {
#if DEBUG_SHADOW
        ALOGE("Invalid input for createAmbientShadow(), early return!");
#endif
        return;
    }
    int rings = layers + 1;
    int size = rays * rings;
    Vector2 centroid;
    calculatePolygonCentroid(vertices, vertexCount, centroid);

    Vector<Vector2> dir; // TODO: use C++11 unique_ptr
    dir.setCapacity(rays);
    float rayDist[rays];
    float rayHeight[rays];
    calculateRayDirections(rays, dir.editArray());

    // Calculate the length and height of the points along the edge.
    //
    // The math here is:
    // Intersect each ray (starting from the centroid) with the polygon.
    for (int i = 0; i < rays; i++) {
        int edgeIndex;
        float edgeFraction;
        float rayDistance;
        calculateIntersection(vertices, vertexCount, centroid, dir[i], edgeIndex,
                edgeFraction, rayDistance);
        rayDist[i] = rayDistance;
        if (edgeIndex < 0 || edgeIndex >= vertexCount) {
#if DEBUG_SHADOW
            ALOGE("Invalid edgeIndex!");
#endif
            edgeIndex = 0;
        }
        float h1 = vertices[edgeIndex].z;
        float h2 = vertices[((edgeIndex + 1) % vertexCount)].z;
        rayHeight[i] = h1 + edgeFraction * (h2 - h1);
    }

    // The output buffer length basically is roughly rays * layers, but since we
    // need triangle strips, so we need to duplicate vertices to accomplish that.
    const int shadowVertexCount = (2 + rays + ((layers) * 2 * (rays + 1)));
    AlphaVertex* shadowVertices = shadowVertexBuffer.alloc<AlphaVertex>(shadowVertexCount);

    // Calculate the vertex of the shadows.
    //
    // The math here is:
    // Along the edges of the polygon, for each intersection point P (generated above),
    // calculate the normal N, which should be perpendicular to the edge of the
    // polygon (represented by the neighbor intersection points) .
    // Shadow's vertices will be generated as : P + N * scale.
    int currentIndex = 0;
    for (int r = 0; r < layers; r++) {
        int firstInLayer = currentIndex;
        for (int i = 0; i < rays; i++) {

            Vector2 normal(1.0f, 0.0f);
            calculateNormal(rays, i, dir.array(), rayDist, normal);

            float opacity = strength * (0.5f) / (1 + rayHeight[i] / heightFactor);

            // The vertex should be start from rayDist[i] then scale the
            // normalizeNormal!
            Vector2 intersection = dir[i] * rayDist[i] + centroid;

            // Use 2 rings' vertices to complete one layer's strip
            for (int j = r; j < (r + 2); j++) {
                float jf = j / (float)(rings - 1);

                float expansionDist = rayHeight[i] / heightFactor * geomFactor * jf;
                AlphaVertex::set(&shadowVertices[currentIndex],
                        intersection.x + normal.x * expansionDist,
                        intersection.y + normal.y * expansionDist,
                        (1 - jf) * opacity);
                currentIndex++;
            }
        }

        // From one layer to the next, we need to duplicate the vertex to
        // continue as a single strip.
        shadowVertices[currentIndex] = shadowVertices[firstInLayer];
        currentIndex++;
        shadowVertices[currentIndex] = shadowVertices[firstInLayer + 1];
        currentIndex++;
    }

    // After all rings are done, we need to jump into the polygon.
    // In order to keep everything in a strip, we need to duplicate the last one
    // of the rings and the first one inside the polygon.
    int lastInRings = currentIndex - 1;
    shadowVertices[currentIndex] = shadowVertices[lastInRings];
    currentIndex++;

    // We skip one and fill it back after we finish the internal triangles.
    currentIndex++;
    int firstInternal = currentIndex;

    // Combine the internal area of the polygon into a triangle strip, too.
    // The basic idea is zig zag between the intersection points.
    // 0 -> (n - 1) -> 1 -> (n - 2) ...
    for (int k = 0; k < rays; k++) {
        int  i = k / 2;
        if ((k & 1) == 1) { // traverse the inside in a zig zag pattern for strips
            i = rays - i - 1;
        }
        float cast = rayDist[i] * (1 + rayHeight[i] / heightFactor);
        float opacity = strength * (0.5f) / (1 + rayHeight[i] / heightFactor);
        float t = rayDist[i];

        AlphaVertex::set(&shadowVertices[currentIndex], dir[i].x * t + centroid.x,
                dir[i].y * t + centroid.y, opacity);
        currentIndex++;
    }

    currentIndex = firstInternal - 1;
    shadowVertices[currentIndex] = shadowVertices[firstInternal];
}

/**
 * Calculate the centroid of a given polygon.
 *
 * @param vertices The shadow caster's polygon, which is represented in a
 *                 straight Vector3 array.
 * @param vertexCount The length of caster's polygon in terms of number of vertices.
 *
 * @param centroid Return the centroid of the polygon.
 */
void AmbientShadow::calculatePolygonCentroid(const Vector3* vertices, int vertexCount,
        Vector2& centroid) {
    float sumx = 0;
    float sumy = 0;
    int p1 = vertexCount - 1;
    float area = 0;
    for (int p2 = 0; p2 < vertexCount; p2++) {
        float x1 = vertices[p1].x;
        float y1 = vertices[p1].y;
        float x2 = vertices[p2].x;
        float y2 = vertices[p2].y;
        float a = (x1 * y2 - x2 * y1);
        sumx += (x1 + x2) * a;
        sumy += (y1 + y2) * a;
        area += a;
        p1 = p2;
    }

    if (area == 0) {
#if DEBUG_SHADOW
        ALOGE("Area is 0!");
#endif
        centroid.x = vertices[0].x;
        centroid.y = vertices[0].y;
    } else {
        centroid.x = sumx / (3 * area);
        centroid.y = sumy / (3 * area);
    }
}

/**
 * Generate an array of rays' direction vectors.
 *
 * @param rays The number of rays shooting out from the centroid.
 * @param dir Return the array of ray vectors.
 */
void AmbientShadow::calculateRayDirections(int rays, Vector2* dir) {
    float deltaAngle = 2 * M_PI / rays;

    for (int i = 0; i < rays; i++) {
        dir[i].x = sinf(deltaAngle * i);
        dir[i].y = cosf(deltaAngle * i);
    }
}

/**
 * Calculate the intersection of a ray hitting the polygon.
 *
 * @param vertices The shadow caster's polygon, which is represented in a
 *                 Vector3 array.
 * @param vertexCount The length of caster's polygon in terms of number of vertices.
 * @param start The starting point of the ray.
 * @param dir The direction vector of the ray.
 *
 * @param outEdgeIndex Return the index of the segment (or index of the starting
 *                     vertex) that ray intersect with.
 * @param outEdgeFraction Return the fraction offset from the segment starting
 *                        index.
 * @param outRayDist Return the ray distance from centroid to the intersection.
 */
void AmbientShadow::calculateIntersection(const Vector3* vertices, int vertexCount,
        const Vector2& start, const Vector2& dir, int& outEdgeIndex,
        float& outEdgeFraction, float& outRayDist) {
    float startX = start.x;
    float startY = start.y;
    float dirX = dir.x;
    float dirY = dir.y;
    // Start the search from the last edge from poly[len-1] to poly[0].
    int p1 = vertexCount - 1;

    for (int p2 = 0; p2 < vertexCount; p2++) {
        float p1x = vertices[p1].x;
        float p1y = vertices[p1].y;
        float p2x = vertices[p2].x;
        float p2y = vertices[p2].y;

        // The math here is derived from:
        // f(t, v) = p1x * (1 - t) + p2x * t - (startX + dirX * v) = 0;
        // g(t, v) = p1y * (1 - t) + p2y * t - (startY + dirY * v) = 0;
        float div = (dirX * (p1y - p2y) + dirY * p2x - dirY * p1x);
        if (div != 0) {
            float t = (dirX * (p1y - startY) + dirY * startX - dirY * p1x) / (div);
            if (t > 0 && t <= 1) {
                float t2 = (p1x * (startY - p2y)
                            + p2x * (p1y - startY)
                            + startX * (p2y - p1y)) / div;
                if (t2 > 0) {
                    outEdgeIndex = p1;
                    outRayDist = t2;
                    outEdgeFraction = t;
                    return;
                }
            }
        }
        p1 = p2;
    }
    return;
};

/**
 * Calculate the normal at the intersection point between a ray and the polygon.
 *
 * @param rays The total number of rays.
 * @param currentRayIndex The index of the ray which the normal is based on.
 * @param dir The array of the all the rays directions.
 * @param rayDist The pre-computed ray distances array.
 *
 * @param normal Return the normal.
 */
void AmbientShadow::calculateNormal(int rays, int currentRayIndex,
        const Vector2* dir, const float* rayDist, Vector2& normal) {
    int preIndex = (currentRayIndex - 1 + rays) % rays;
    int postIndex = (currentRayIndex + 1) % rays;
    Vector2 p1 = dir[preIndex] * rayDist[preIndex];
    Vector2 p2 = dir[postIndex] * rayDist[postIndex];

    // Now the V (deltaX, deltaY) is the vector going CW around the poly.
    Vector2 delta = p2 - p1;
    if (delta.length() != 0) {
        delta.normalize();
        // Calculate the normal , which is CCW 90 rotate to the V.
        // 90 degrees CCW about z-axis: (x, y, z) -> (-y, x, z)
        normal.x = -delta.y;
        normal.y = delta.x;
    }
}

}; // namespace uirenderer
}; // namespace android