summaryrefslogtreecommitdiffstats
path: root/libs/hwui/AmbientShadow.cpp
blob: c1af5f52efd6a94339b859658200779ad4bb877d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "OpenGLRenderer"

#include <math.h>
#include <utils/Log.h>
#include <utils/Vector.h>

#include "AmbientShadow.h"
#include "ShadowTessellator.h"
#include "Vertex.h"

namespace android {
namespace uirenderer {

/**
 * Calculate the shadows as a triangle strips while alpha value as the
 * shadow values.
 *
 * @param isCasterOpaque Whether the caster is opaque.
 * @param vertices The shadow caster's polygon, which is represented in a Vector3
 *                  array.
 * @param vertexCount The length of caster's polygon in terms of number of
 *                    vertices.
 * @param centroid3d The centroid of the shadow caster.
 * @param heightFactor The factor showing the higher the object, the lighter the
 *                     shadow.
 * @param geomFactor The factor scaling the geometry expansion along the normal.
 *
 * @param shadowVertexBuffer Return an floating point array of (x, y, a)
 *               triangle strips mode.
 */
VertexBufferMode AmbientShadow::createAmbientShadow(bool isCasterOpaque,
        const Vector3* vertices, int vertexCount, const Vector3& centroid3d,
        float heightFactor, float geomFactor, VertexBuffer& shadowVertexBuffer) {
    const int rays = SHADOW_RAY_COUNT;
    VertexBufferMode mode = kVertexBufferMode_OnePolyRingShadow;
    // Validate the inputs.
    if (vertexCount < 3 || heightFactor <= 0 || rays <= 0
        || geomFactor <= 0) {
#if DEBUG_SHADOW
        ALOGW("Invalid input for createAmbientShadow(), early return!");
#endif
        return mode; // vertex buffer is empty, so any mode doesn't matter.
    }

    Vector<Vector2> dir; // TODO: use C++11 unique_ptr
    dir.setCapacity(rays);
    float rayDist[rays];
    float rayHeight[rays];
    calculateRayDirections(rays, vertices, vertexCount, centroid3d, dir.editArray());

    // Calculate the length and height of the points along the edge.
    //
    // The math here is:
    // Intersect each ray (starting from the centroid) with the polygon.
    for (int i = 0; i < rays; i++) {
        int edgeIndex;
        float edgeFraction;
        float rayDistance;
        calculateIntersection(vertices, vertexCount, centroid3d, dir[i], edgeIndex,
                edgeFraction, rayDistance);
        rayDist[i] = rayDistance;
        if (edgeIndex < 0 || edgeIndex >= vertexCount) {
#if DEBUG_SHADOW
            ALOGW("Invalid edgeIndex!");
#endif
            edgeIndex = 0;
        }
        float h1 = vertices[edgeIndex].z;
        float h2 = vertices[((edgeIndex + 1) % vertexCount)].z;
        rayHeight[i] = h1 + edgeFraction * (h2 - h1);
    }

    // The output buffer length basically is roughly rays * layers, but since we
    // need triangle strips, so we need to duplicate vertices to accomplish that.
    AlphaVertex* shadowVertices =
            shadowVertexBuffer.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT);

    // Calculate the vertex of the shadows.
    //
    // The math here is:
    // Along the edges of the polygon, for each intersection point P (generated above),
    // calculate the normal N, which should be perpendicular to the edge of the
    // polygon (represented by the neighbor intersection points) .
    // Shadow's vertices will be generated as : P + N * scale.
    const Vector2 centroid2d = Vector2(centroid3d.x, centroid3d.y);
    for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
        Vector2 normal(1.0f, 0.0f);
        calculateNormal(rays, rayIndex, dir.array(), rayDist, normal);

        // The vertex should be start from rayDist[i] then scale the
        // normalizeNormal!
        Vector2 intersection = dir[rayIndex] * rayDist[rayIndex] +
                centroid2d;

        // outer ring of points, expanded based upon height of each ray intersection
        float expansionDist = rayHeight[rayIndex] * heightFactor *
                geomFactor;
        AlphaVertex::set(&shadowVertices[rayIndex],
                intersection.x + normal.x * expansionDist,
                intersection.y + normal.y * expansionDist,
                0.0f);

        // inner ring of points
        float opacity = 1.0 / (1 + rayHeight[rayIndex] * heightFactor);
        AlphaVertex::set(&shadowVertices[rays + rayIndex],
                intersection.x,
                intersection.y,
                opacity);
    }

    // If caster isn't opaque, we need to to fill the umbra by storing the umbra's
    // centroid in the innermost ring of vertices.
    if (!isCasterOpaque) {
        mode = kVertexBufferMode_TwoPolyRingShadow;
        float centroidAlpha = 1.0 / (1 + centroid3d.z * heightFactor);
        AlphaVertex centroidXYA;
        AlphaVertex::set(&centroidXYA, centroid2d.x, centroid2d.y, centroidAlpha);
        for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
            shadowVertices[2 * rays + rayIndex] = centroidXYA;
        }
    }

#if DEBUG_SHADOW
    for (int i = 0; i < SHADOW_VERTEX_COUNT; i++) {
        ALOGD("ambient shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x,
                shadowVertices[i].y, shadowVertices[i].alpha);
    }
#endif
    return mode;
}

/**
 * Generate an array of rays' direction vectors.
 * To make sure the vertices generated are clockwise, the directions are from PI
 * to -PI.
 *
 * @param rays The number of rays shooting out from the centroid.
 * @param vertices Vertices of the polygon.
 * @param vertexCount The number of vertices.
 * @param centroid3d The centroid of the polygon.
 * @param dir Return the array of ray vectors.
 */
void AmbientShadow::calculateRayDirections(const int rays, const Vector3* vertices,
        const int vertexCount, const Vector3& centroid3d, Vector2* dir) {
    // If we don't have enough rays, then fall back to the uniform distribution.
    if (vertexCount * 2 > rays) {
        float deltaAngle = 2 * M_PI / rays;
        for (int i = 0; i < rays; i++) {
            dir[i].x = cosf(M_PI - deltaAngle * i);
            dir[i].y = sinf(M_PI - deltaAngle * i);
        }
        return;
    }

    // If we have enough rays, then we assign each vertices a ray, and distribute
    // the rest uniformly.
    float rayThetas[rays];

    const int uniformRayCount = rays - vertexCount;
    const float deltaAngle = 2 * M_PI / uniformRayCount;

    // We have to generate all the vertices' theta anyway and we also need to
    // find the minimal, so let's precompute it first.
    // Since the incoming polygon is clockwise, we can find the dip to identify
    // the minimal theta.
    float polyThetas[vertexCount];
    int maxPolyThetaIndex = 0;
    for (int i = 0; i < vertexCount; i++) {
        polyThetas[i] = atan2(vertices[i].y - centroid3d.y,
                vertices[i].x - centroid3d.x);
        if (i > 0 && polyThetas[i] > polyThetas[i - 1]) {
            maxPolyThetaIndex = i;
        }
    }

    // Both poly's thetas and uniform thetas are in decrease order(clockwise)
    // from PI to -PI.
    int polyThetaIndex = maxPolyThetaIndex;
    float polyTheta = polyThetas[maxPolyThetaIndex];
    int uniformThetaIndex = 0;
    float uniformTheta = M_PI;
    for (int i = 0; i < rays; i++) {
        // Compare both thetas and pick the smaller one and move on.
        bool hasThetaCollision = abs(polyTheta - uniformTheta) < MINIMAL_DELTA_THETA;
        if (polyTheta > uniformTheta || hasThetaCollision) {
            if (hasThetaCollision) {
                // Shift the uniformTheta to middle way between current polyTheta
                // and next uniform theta. The next uniform theta can wrap around
                // to exactly PI safely here.
                // Note that neither polyTheta nor uniformTheta can be FLT_MAX
                // due to the hasThetaCollision is true.
                uniformTheta = (polyTheta +  M_PI - deltaAngle * (uniformThetaIndex + 1)) / 2;
#if DEBUG_SHADOW
                ALOGD("Shifted uniformTheta to %f", uniformTheta);
#endif
            }
            rayThetas[i] = polyTheta;
            polyThetaIndex = (polyThetaIndex + 1) % vertexCount;
            if (polyThetaIndex != maxPolyThetaIndex) {
                polyTheta = polyThetas[polyThetaIndex];
            } else {
                // out of poly points.
                polyTheta = - FLT_MAX;
            }
        } else {
            rayThetas[i] = uniformTheta;
            uniformThetaIndex++;
            if (uniformThetaIndex < uniformRayCount) {
                uniformTheta = M_PI - deltaAngle * uniformThetaIndex;
            } else {
                // out of uniform points.
                uniformTheta = - FLT_MAX;
            }
        }
    }

    for (int i = 0; i < rays; i++) {
#if DEBUG_SHADOW
        ALOGD("No. %d : %f", i, rayThetas[i] * 180 / M_PI);
#endif
        // TODO: Fix the intersection precision problem and remvoe the delta added
        // here.
        dir[i].x = cosf(rayThetas[i] + MINIMAL_DELTA_THETA);
        dir[i].y = sinf(rayThetas[i] + MINIMAL_DELTA_THETA);
    }
}

/**
 * Calculate the intersection of a ray hitting the polygon.
 *
 * @param vertices The shadow caster's polygon, which is represented in a
 *                 Vector3 array.
 * @param vertexCount The length of caster's polygon in terms of number of vertices.
 * @param start The starting point of the ray.
 * @param dir The direction vector of the ray.
 *
 * @param outEdgeIndex Return the index of the segment (or index of the starting
 *                     vertex) that ray intersect with.
 * @param outEdgeFraction Return the fraction offset from the segment starting
 *                        index.
 * @param outRayDist Return the ray distance from centroid to the intersection.
 */
void AmbientShadow::calculateIntersection(const Vector3* vertices, int vertexCount,
        const Vector3& start, const Vector2& dir, int& outEdgeIndex,
        float& outEdgeFraction, float& outRayDist) {
    float startX = start.x;
    float startY = start.y;
    float dirX = dir.x;
    float dirY = dir.y;
    // Start the search from the last edge from poly[len-1] to poly[0].
    int p1 = vertexCount - 1;

    for (int p2 = 0; p2 < vertexCount; p2++) {
        float p1x = vertices[p1].x;
        float p1y = vertices[p1].y;
        float p2x = vertices[p2].x;
        float p2y = vertices[p2].y;

        // The math here is derived from:
        // f(t, v) = p1x * (1 - t) + p2x * t - (startX + dirX * v) = 0;
        // g(t, v) = p1y * (1 - t) + p2y * t - (startY + dirY * v) = 0;
        float div = (dirX * (p1y - p2y) + dirY * p2x - dirY * p1x);
        if (div != 0) {
            float t = (dirX * (p1y - startY) + dirY * startX - dirY * p1x) / (div);
            if (t > 0 && t <= 1) {
                float t2 = (p1x * (startY - p2y)
                            + p2x * (p1y - startY)
                            + startX * (p2y - p1y)) / div;
                if (t2 > 0) {
                    outEdgeIndex = p1;
                    outRayDist = t2;
                    outEdgeFraction = t;
                    return;
                }
            }
        }
        p1 = p2;
    }
    return;
};

/**
 * Calculate the normal at the intersection point between a ray and the polygon.
 *
 * @param rays The total number of rays.
 * @param currentRayIndex The index of the ray which the normal is based on.
 * @param dir The array of the all the rays directions.
 * @param rayDist The pre-computed ray distances array.
 *
 * @param normal Return the normal.
 */
void AmbientShadow::calculateNormal(int rays, int currentRayIndex,
        const Vector2* dir, const float* rayDist, Vector2& normal) {
    int preIndex = (currentRayIndex - 1 + rays) % rays;
    int postIndex = (currentRayIndex + 1) % rays;
    Vector2 p1 = dir[preIndex] * rayDist[preIndex];
    Vector2 p2 = dir[postIndex] * rayDist[postIndex];

    // Now the rays are going CW around the poly.
    Vector2 delta = p2 - p1;
    if (delta.length() != 0) {
        delta.normalize();
        // Calculate the normal , which is CCW 90 rotate to the delta.
        normal.x = - delta.y;
        normal.y = delta.x;
    }
}

}; // namespace uirenderer
}; // namespace android