summaryrefslogtreecommitdiffstats
path: root/libs/hwui/RenderNode.cpp
blob: 9146b6831a9b6b3e599f71ecc31600daa63b7faa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define ATRACE_TAG ATRACE_TAG_VIEW
#define LOG_TAG "OpenGLRenderer"

#include "RenderNode.h"

#include <algorithm>
#include <string>

#include <SkCanvas.h>
#include <algorithm>


#include "DamageAccumulator.h"
#include "Debug.h"
#include "DisplayListOp.h"
#include "LayerRenderer.h"
#include "OpenGLRenderer.h"
#include "TreeInfo.h"
#include "utils/MathUtils.h"
#include "utils/TraceUtils.h"
#include "renderthread/CanvasContext.h"

namespace android {
namespace uirenderer {

void RenderNode::debugDumpLayers(const char* prefix) {
    if (mLayer) {
        ALOGD("%sNode %p (%s) has layer %p (fbo = %u, wasBuildLayered = %s)",
                prefix, this, getName(), mLayer, mLayer->getFbo(),
                mLayer->wasBuildLayered ? "true" : "false");
    }
    if (mDisplayListData) {
        for (size_t i = 0; i < mDisplayListData->children().size(); i++) {
            mDisplayListData->children()[i]->mRenderNode->debugDumpLayers(prefix);
        }
    }
}

RenderNode::RenderNode()
        : mDirtyPropertyFields(0)
        , mNeedsDisplayListDataSync(false)
        , mDisplayListData(nullptr)
        , mStagingDisplayListData(nullptr)
        , mAnimatorManager(*this)
        , mLayer(nullptr)
        , mParentCount(0) {
}

RenderNode::~RenderNode() {
    deleteDisplayListData();
    delete mStagingDisplayListData;
    if (mLayer) {
        ALOGW("Memory Warning: Layer %p missed its detachment, held on to for far too long!", mLayer);
        mLayer->postDecStrong();
        mLayer = nullptr;
    }
}

void RenderNode::setStagingDisplayList(DisplayListData* data) {
    mNeedsDisplayListDataSync = true;
    delete mStagingDisplayListData;
    mStagingDisplayListData = data;
}

/**
 * This function is a simplified version of replay(), where we simply retrieve and log the
 * display list. This function should remain in sync with the replay() function.
 */
void RenderNode::output(uint32_t level) {
    ALOGD("%*sStart display list (%p, %s%s%s%s)", (level - 1) * 2, "", this,
            getName(),
            (properties().hasShadow() ? ", casting shadow" : ""),
            (isRenderable() ? "" : ", empty"),
            (mLayer != nullptr ? ", on HW Layer" : ""));
    ALOGD("%*s%s %d", level * 2, "", "Save",
            SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);

    properties().debugOutputProperties(level);
    int flags = DisplayListOp::kOpLogFlag_Recurse;
    if (mDisplayListData) {
        // TODO: consider printing the chunk boundaries here
        for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
            mDisplayListData->displayListOps[i]->output(level, flags);
        }
    }

    ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, getName());
}

int RenderNode::getDebugSize() {
    int size = sizeof(RenderNode);
    if (mStagingDisplayListData) {
        size += mStagingDisplayListData->getUsedSize();
    }
    if (mDisplayListData && mDisplayListData != mStagingDisplayListData) {
        size += mDisplayListData->getUsedSize();
    }
    return size;
}

void RenderNode::prepareTree(TreeInfo& info) {
    ATRACE_CALL();
    LOG_ALWAYS_FATAL_IF(!info.damageAccumulator, "DamageAccumulator missing");

    prepareTreeImpl(info);
}

void RenderNode::addAnimator(const sp<BaseRenderNodeAnimator>& animator) {
    mAnimatorManager.addAnimator(animator);
}

void RenderNode::damageSelf(TreeInfo& info) {
    if (isRenderable()) {
        if (properties().getClipDamageToBounds()) {
            info.damageAccumulator->dirty(0, 0, properties().getWidth(), properties().getHeight());
        } else {
            // Hope this is big enough?
            // TODO: Get this from the display list ops or something
            info.damageAccumulator->dirty(INT_MIN, INT_MIN, INT_MAX, INT_MAX);
        }
    }
}

void RenderNode::prepareLayer(TreeInfo& info, uint32_t dirtyMask) {
    LayerType layerType = properties().effectiveLayerType();
    if (CC_UNLIKELY(layerType == LayerType::RenderLayer)) {
        // Damage applied so far needs to affect our parent, but does not require
        // the layer to be updated. So we pop/push here to clear out the current
        // damage and get a clean state for display list or children updates to
        // affect, which will require the layer to be updated
        info.damageAccumulator->popTransform();
        info.damageAccumulator->pushTransform(this);
        if (dirtyMask & DISPLAY_LIST) {
            damageSelf(info);
        }
    }
}

void RenderNode::pushLayerUpdate(TreeInfo& info) {
    LayerType layerType = properties().effectiveLayerType();
    // If we are not a layer OR we cannot be rendered (eg, view was detached)
    // we need to destroy any Layers we may have had previously
    if (CC_LIKELY(layerType != LayerType::RenderLayer) || CC_UNLIKELY(!isRenderable())) {
        if (CC_UNLIKELY(mLayer)) {
            LayerRenderer::destroyLayer(mLayer);
            mLayer = nullptr;
        }
        return;
    }

    bool transformUpdateNeeded = false;
    if (!mLayer) {
        mLayer = LayerRenderer::createRenderLayer(info.renderState, getWidth(), getHeight());
        applyLayerPropertiesToLayer(info);
        damageSelf(info);
        transformUpdateNeeded = true;
    } else if (mLayer->layer.getWidth() != getWidth() || mLayer->layer.getHeight() != getHeight()) {
        if (!LayerRenderer::resizeLayer(mLayer, getWidth(), getHeight())) {
            LayerRenderer::destroyLayer(mLayer);
            mLayer = nullptr;
        }
        damageSelf(info);
        transformUpdateNeeded = true;
    }

    SkRect dirty;
    info.damageAccumulator->peekAtDirty(&dirty);

    if (!mLayer) {
        Caches::getInstance().dumpMemoryUsage();
        if (info.errorHandler) {
            std::string msg = "Unable to create layer for ";
            msg += getName();
            info.errorHandler->onError(msg);
        }
        return;
    }

    if (transformUpdateNeeded) {
        // update the transform in window of the layer to reset its origin wrt light source position
        Matrix4 windowTransform;
        info.damageAccumulator->computeCurrentTransform(&windowTransform);
        mLayer->setWindowTransform(windowTransform);
    }

    if (dirty.intersect(0, 0, getWidth(), getHeight())) {
        dirty.roundOut(&dirty);
        mLayer->updateDeferred(this, dirty.fLeft, dirty.fTop, dirty.fRight, dirty.fBottom);
    }
    // This is not inside the above if because we may have called
    // updateDeferred on a previous prepare pass that didn't have a renderer
    if (info.renderer && mLayer->deferredUpdateScheduled) {
        info.renderer->pushLayerUpdate(mLayer);
    }

    if (CC_UNLIKELY(info.canvasContext)) {
        // If canvasContext is not null that means there are prefetched layers
        // that need to be accounted for. That might be us, so tell CanvasContext
        // that this layer is in the tree and should not be destroyed.
        info.canvasContext->markLayerInUse(this);
    }
}

void RenderNode::prepareTreeImpl(TreeInfo& info) {
    info.damageAccumulator->pushTransform(this);

    if (info.mode == TreeInfo::MODE_FULL) {
        pushStagingPropertiesChanges(info);
    }
    uint32_t animatorDirtyMask = 0;
    if (CC_LIKELY(info.runAnimations)) {
        animatorDirtyMask = mAnimatorManager.animate(info);
    }
    prepareLayer(info, animatorDirtyMask);
    if (info.mode == TreeInfo::MODE_FULL) {
        pushStagingDisplayListChanges(info);
    }
    prepareSubTree(info, mDisplayListData);
    pushLayerUpdate(info);

    info.damageAccumulator->popTransform();
}

void RenderNode::pushStagingPropertiesChanges(TreeInfo& info) {
    // Push the animators first so that setupStartValueIfNecessary() is called
    // before properties() is trampled by stagingProperties(), as they are
    // required by some animators.
    if (CC_LIKELY(info.runAnimations)) {
        mAnimatorManager.pushStaging();
    }
    if (mDirtyPropertyFields) {
        mDirtyPropertyFields = 0;
        damageSelf(info);
        info.damageAccumulator->popTransform();
        mProperties = mStagingProperties;
        applyLayerPropertiesToLayer(info);
        // We could try to be clever and only re-damage if the matrix changed.
        // However, we don't need to worry about that. The cost of over-damaging
        // here is only going to be a single additional map rect of this node
        // plus a rect join(). The parent's transform (and up) will only be
        // performed once.
        info.damageAccumulator->pushTransform(this);
        damageSelf(info);
    }
}

void RenderNode::applyLayerPropertiesToLayer(TreeInfo& info) {
    if (CC_LIKELY(!mLayer)) return;

    const LayerProperties& props = properties().layerProperties();
    mLayer->setAlpha(props.alpha(), props.xferMode());
    mLayer->setColorFilter(props.colorFilter());
    mLayer->setBlend(props.needsBlending());
}

void RenderNode::pushStagingDisplayListChanges(TreeInfo& info) {
    if (mNeedsDisplayListDataSync) {
        mNeedsDisplayListDataSync = false;
        // Make sure we inc first so that we don't fluctuate between 0 and 1,
        // which would thrash the layer cache
        if (mStagingDisplayListData) {
            for (size_t i = 0; i < mStagingDisplayListData->children().size(); i++) {
                mStagingDisplayListData->children()[i]->mRenderNode->incParentRefCount();
            }
        }
        // Damage with the old display list first then the new one to catch any
        // changes in isRenderable or, in the future, bounds
        damageSelf(info);
        deleteDisplayListData();
        // TODO: Remove this caches stuff
        if (mStagingDisplayListData && mStagingDisplayListData->functors.size()) {
            Caches::getInstance().registerFunctors(mStagingDisplayListData->functors.size());
        }
        mDisplayListData = mStagingDisplayListData;
        mStagingDisplayListData = nullptr;
        if (mDisplayListData) {
            for (size_t i = 0; i < mDisplayListData->functors.size(); i++) {
                (*mDisplayListData->functors[i])(DrawGlInfo::kModeSync, nullptr);
            }
        }
        damageSelf(info);
    }
}

void RenderNode::deleteDisplayListData() {
    if (mDisplayListData) {
        for (size_t i = 0; i < mDisplayListData->children().size(); i++) {
            mDisplayListData->children()[i]->mRenderNode->decParentRefCount();
        }
        if (mDisplayListData->functors.size()) {
            Caches::getInstance().unregisterFunctors(mDisplayListData->functors.size());
        }
    }
    delete mDisplayListData;
    mDisplayListData = nullptr;
}

void RenderNode::prepareSubTree(TreeInfo& info, DisplayListData* subtree) {
    if (subtree) {
        TextureCache& cache = Caches::getInstance().textureCache;
        info.out.hasFunctors |= subtree->functors.size();
        for (size_t i = 0; info.prepareTextures && i < subtree->bitmapResources.size(); i++) {
            info.prepareTextures = cache.prefetchAndMarkInUse(subtree->bitmapResources[i]);
        }
        for (size_t i = 0; i < subtree->children().size(); i++) {
            DrawRenderNodeOp* op = subtree->children()[i];
            RenderNode* childNode = op->mRenderNode;
            info.damageAccumulator->pushTransform(&op->mTransformFromParent);
            childNode->prepareTreeImpl(info);
            info.damageAccumulator->popTransform();
        }
    }
}

void RenderNode::destroyHardwareResources() {
    if (mLayer) {
        LayerRenderer::destroyLayer(mLayer);
        mLayer = nullptr;
    }
    if (mDisplayListData) {
        for (size_t i = 0; i < mDisplayListData->children().size(); i++) {
            mDisplayListData->children()[i]->mRenderNode->destroyHardwareResources();
        }
        if (mNeedsDisplayListDataSync) {
            // Next prepare tree we are going to push a new display list, so we can
            // drop our current one now
            deleteDisplayListData();
        }
    }
}

void RenderNode::decParentRefCount() {
    LOG_ALWAYS_FATAL_IF(!mParentCount, "already 0!");
    mParentCount--;
    if (!mParentCount) {
        // If a child of ours is being attached to our parent then this will incorrectly
        // destroy its hardware resources. However, this situation is highly unlikely
        // and the failure is "just" that the layer is re-created, so this should
        // be safe enough
        destroyHardwareResources();
    }
}

/*
 * For property operations, we pass a savecount of 0, since the operations aren't part of the
 * displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in
 * base saveCount (i.e., how RestoreToCount uses saveCount + properties().getCount())
 */
#define PROPERTY_SAVECOUNT 0

template <class T>
void RenderNode::setViewProperties(OpenGLRenderer& renderer, T& handler) {
#if DEBUG_DISPLAY_LIST
    properties().debugOutputProperties(handler.level() + 1);
#endif
    if (properties().getLeft() != 0 || properties().getTop() != 0) {
        renderer.translate(properties().getLeft(), properties().getTop());
    }
    if (properties().getStaticMatrix()) {
        renderer.concatMatrix(*properties().getStaticMatrix());
    } else if (properties().getAnimationMatrix()) {
        renderer.concatMatrix(*properties().getAnimationMatrix());
    }
    if (properties().hasTransformMatrix()) {
        if (properties().isTransformTranslateOnly()) {
            renderer.translate(properties().getTranslationX(), properties().getTranslationY());
        } else {
            renderer.concatMatrix(*properties().getTransformMatrix());
        }
    }
    const bool isLayer = properties().effectiveLayerType() != LayerType::None;
    int clipFlags = properties().getClippingFlags();
    if (properties().getAlpha() < 1) {
        if (isLayer) {
            clipFlags &= ~CLIP_TO_BOUNDS; // bounds clipping done by layer
        }
        LOG_ALWAYS_FATAL_IF(!isLayer && properties().getHasOverlappingRendering());
        renderer.scaleAlpha(properties().getAlpha());

        if (CC_UNLIKELY(ATRACE_ENABLED() && properties().promotedToLayer())) {
            // pretend to cause savelayer to warn about performance problem affecting old versions
            ATRACE_FORMAT("%s alpha caused saveLayer %dx%d", getName(),
                    static_cast<int>(getWidth()),
                    static_cast<int>(getHeight()));
        }
    }
    if (clipFlags) {
        Rect clipRect;
        properties().getClippingRectForFlags(clipFlags, &clipRect);
        ClipRectOp* op = new (handler.allocator()) ClipRectOp(
                clipRect.left, clipRect.top, clipRect.right, clipRect.bottom,
                SkRegion::kIntersect_Op);
        handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
    }

    // TODO: support nesting round rect clips
    if (mProperties.getRevealClip().willClip()) {
        Rect bounds;
        mProperties.getRevealClip().getBounds(&bounds);
        renderer.setClippingRoundRect(handler.allocator(), bounds, mProperties.getRevealClip().getRadius());
    } else if (mProperties.getOutline().willClip()) {
        renderer.setClippingOutline(handler.allocator(), &(mProperties.getOutline()));
    }
}

/**
 * Apply property-based transformations to input matrix
 *
 * If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4
 * matrix computation instead of the Skia 3x3 matrix + camera hackery.
 */
void RenderNode::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) const {
    if (properties().getLeft() != 0 || properties().getTop() != 0) {
        matrix.translate(properties().getLeft(), properties().getTop());
    }
    if (properties().getStaticMatrix()) {
        mat4 stat(*properties().getStaticMatrix());
        matrix.multiply(stat);
    } else if (properties().getAnimationMatrix()) {
        mat4 anim(*properties().getAnimationMatrix());
        matrix.multiply(anim);
    }

    bool applyTranslationZ = true3dTransform && !MathUtils::isZero(properties().getZ());
    if (properties().hasTransformMatrix() || applyTranslationZ) {
        if (properties().isTransformTranslateOnly()) {
            matrix.translate(properties().getTranslationX(), properties().getTranslationY(),
                    true3dTransform ? properties().getZ() : 0.0f);
        } else {
            if (!true3dTransform) {
                matrix.multiply(*properties().getTransformMatrix());
            } else {
                mat4 true3dMat;
                true3dMat.loadTranslate(
                        properties().getPivotX() + properties().getTranslationX(),
                        properties().getPivotY() + properties().getTranslationY(),
                        properties().getZ());
                true3dMat.rotate(properties().getRotationX(), 1, 0, 0);
                true3dMat.rotate(properties().getRotationY(), 0, 1, 0);
                true3dMat.rotate(properties().getRotation(), 0, 0, 1);
                true3dMat.scale(properties().getScaleX(), properties().getScaleY(), 1);
                true3dMat.translate(-properties().getPivotX(), -properties().getPivotY());

                matrix.multiply(true3dMat);
            }
        }
    }
}

/**
 * Organizes the DisplayList hierarchy to prepare for background projection reordering.
 *
 * This should be called before a call to defer() or drawDisplayList()
 *
 * Each DisplayList that serves as a 3d root builds its list of composited children,
 * which are flagged to not draw in the standard draw loop.
 */
void RenderNode::computeOrdering() {
    ATRACE_CALL();
    mProjectedNodes.clear();

    // TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that
    // transform properties are applied correctly to top level children
    if (mDisplayListData == nullptr) return;
    for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) {
        DrawRenderNodeOp* childOp = mDisplayListData->children()[i];
        childOp->mRenderNode->computeOrderingImpl(childOp,
                properties().getOutline().getPath(), &mProjectedNodes, &mat4::identity());
    }
}

void RenderNode::computeOrderingImpl(
        DrawRenderNodeOp* opState,
        const SkPath* outlineOfProjectionSurface,
        Vector<DrawRenderNodeOp*>* compositedChildrenOfProjectionSurface,
        const mat4* transformFromProjectionSurface) {
    mProjectedNodes.clear();
    if (mDisplayListData == nullptr || mDisplayListData->isEmpty()) return;

    // TODO: should avoid this calculation in most cases
    // TODO: just calculate single matrix, down to all leaf composited elements
    Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface);
    localTransformFromProjectionSurface.multiply(opState->mTransformFromParent);

    if (properties().getProjectBackwards()) {
        // composited projectee, flag for out of order draw, save matrix, and store in proj surface
        opState->mSkipInOrderDraw = true;
        opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface);
        compositedChildrenOfProjectionSurface->add(opState);
    } else {
        // standard in order draw
        opState->mSkipInOrderDraw = false;
    }

    if (mDisplayListData->children().size() > 0) {
        const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0;
        bool haveAppliedPropertiesToProjection = false;
        for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) {
            DrawRenderNodeOp* childOp = mDisplayListData->children()[i];
            RenderNode* child = childOp->mRenderNode;

            const SkPath* projectionOutline = nullptr;
            Vector<DrawRenderNodeOp*>* projectionChildren = nullptr;
            const mat4* projectionTransform = nullptr;
            if (isProjectionReceiver && !child->properties().getProjectBackwards()) {
                // if receiving projections, collect projecting descendent

                // Note that if a direct descendent is projecting backwards, we pass it's
                // grandparent projection collection, since it shouldn't project onto it's
                // parent, where it will already be drawing.
                projectionOutline = properties().getOutline().getPath();
                projectionChildren = &mProjectedNodes;
                projectionTransform = &mat4::identity();
            } else {
                if (!haveAppliedPropertiesToProjection) {
                    applyViewPropertyTransforms(localTransformFromProjectionSurface);
                    haveAppliedPropertiesToProjection = true;
                }
                projectionOutline = outlineOfProjectionSurface;
                projectionChildren = compositedChildrenOfProjectionSurface;
                projectionTransform = &localTransformFromProjectionSurface;
            }
            child->computeOrderingImpl(childOp,
                    projectionOutline, projectionChildren, projectionTransform);
        }
    }
}

class DeferOperationHandler {
public:
    DeferOperationHandler(DeferStateStruct& deferStruct, int level)
        : mDeferStruct(deferStruct), mLevel(level) {}
    inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
        operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds);
    }
    inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); }
    inline void startMark(const char* name) {} // do nothing
    inline void endMark() {}
    inline int level() { return mLevel; }
    inline int replayFlags() { return mDeferStruct.mReplayFlags; }
    inline SkPath* allocPathForFrame() { return mDeferStruct.allocPathForFrame(); }

private:
    DeferStateStruct& mDeferStruct;
    const int mLevel;
};

void RenderNode::defer(DeferStateStruct& deferStruct, const int level) {
    DeferOperationHandler handler(deferStruct, level);
    issueOperations<DeferOperationHandler>(deferStruct.mRenderer, handler);
}

class ReplayOperationHandler {
public:
    ReplayOperationHandler(ReplayStateStruct& replayStruct, int level)
        : mReplayStruct(replayStruct), mLevel(level) {}
    inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
#if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS
        mReplayStruct.mRenderer.eventMark(operation->name());
#endif
        operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds);
    }
    inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); }
    inline void startMark(const char* name) {
        mReplayStruct.mRenderer.startMark(name);
    }
    inline void endMark() {
        mReplayStruct.mRenderer.endMark();
    }
    inline int level() { return mLevel; }
    inline int replayFlags() { return mReplayStruct.mReplayFlags; }
    inline SkPath* allocPathForFrame() { return mReplayStruct.allocPathForFrame(); }

private:
    ReplayStateStruct& mReplayStruct;
    const int mLevel;
};

void RenderNode::replay(ReplayStateStruct& replayStruct, const int level) {
    ReplayOperationHandler handler(replayStruct, level);
    issueOperations<ReplayOperationHandler>(replayStruct.mRenderer, handler);
}

void RenderNode::buildZSortedChildList(const DisplayListData::Chunk& chunk,
        Vector<ZDrawRenderNodeOpPair>& zTranslatedNodes) {
    if (chunk.beginChildIndex == chunk.endChildIndex) return;

    for (unsigned int i = chunk.beginChildIndex; i < chunk.endChildIndex; i++) {
        DrawRenderNodeOp* childOp = mDisplayListData->children()[i];
        RenderNode* child = childOp->mRenderNode;
        float childZ = child->properties().getZ();

        if (!MathUtils::isZero(childZ) && chunk.reorderChildren) {
            zTranslatedNodes.add(ZDrawRenderNodeOpPair(childZ, childOp));
            childOp->mSkipInOrderDraw = true;
        } else if (!child->properties().getProjectBackwards()) {
            // regular, in order drawing DisplayList
            childOp->mSkipInOrderDraw = false;
        }
    }

    // Z sort any 3d children (stable-ness makes z compare fall back to standard drawing order)
    std::stable_sort(zTranslatedNodes.begin(), zTranslatedNodes.end());
}

template <class T>
void RenderNode::issueDrawShadowOperation(const Matrix4& transformFromParent, T& handler) {
    if (properties().getAlpha() <= 0.0f
            || properties().getOutline().getAlpha() <= 0.0f
            || !properties().getOutline().getPath()) {
        // no shadow to draw
        return;
    }

    mat4 shadowMatrixXY(transformFromParent);
    applyViewPropertyTransforms(shadowMatrixXY);

    // Z matrix needs actual 3d transformation, so mapped z values will be correct
    mat4 shadowMatrixZ(transformFromParent);
    applyViewPropertyTransforms(shadowMatrixZ, true);

    const SkPath* casterOutlinePath = properties().getOutline().getPath();
    const SkPath* revealClipPath = properties().getRevealClip().getPath();
    if (revealClipPath && revealClipPath->isEmpty()) return;

    float casterAlpha = properties().getAlpha() * properties().getOutline().getAlpha();


    // holds temporary SkPath to store the result of intersections
    SkPath* frameAllocatedPath = nullptr;
    const SkPath* outlinePath = casterOutlinePath;

    // intersect the outline with the reveal clip, if present
    if (revealClipPath) {
        frameAllocatedPath = handler.allocPathForFrame();

        Op(*outlinePath, *revealClipPath, kIntersect_PathOp, frameAllocatedPath);
        outlinePath = frameAllocatedPath;
    }

    // intersect the outline with the clipBounds, if present
    if (properties().getClippingFlags() & CLIP_TO_CLIP_BOUNDS) {
        if (!frameAllocatedPath) {
            frameAllocatedPath = handler.allocPathForFrame();
        }

        Rect clipBounds;
        properties().getClippingRectForFlags(CLIP_TO_CLIP_BOUNDS, &clipBounds);
        SkPath clipBoundsPath;
        clipBoundsPath.addRect(clipBounds.left, clipBounds.top,
                clipBounds.right, clipBounds.bottom);

        Op(*outlinePath, clipBoundsPath, kIntersect_PathOp, frameAllocatedPath);
        outlinePath = frameAllocatedPath;
    }

    DisplayListOp* shadowOp  = new (handler.allocator()) DrawShadowOp(
            shadowMatrixXY, shadowMatrixZ, casterAlpha, outlinePath);
    handler(shadowOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
}

#define SHADOW_DELTA 0.1f

template <class T>
void RenderNode::issueOperationsOf3dChildren(ChildrenSelectMode mode,
        const Matrix4& initialTransform, const Vector<ZDrawRenderNodeOpPair>& zTranslatedNodes,
        OpenGLRenderer& renderer, T& handler) {
    const int size = zTranslatedNodes.size();
    if (size == 0
            || (mode == kNegativeZChildren && zTranslatedNodes[0].key > 0.0f)
            || (mode == kPositiveZChildren && zTranslatedNodes[size - 1].key < 0.0f)) {
        // no 3d children to draw
        return;
    }

    // Apply the base transform of the parent of the 3d children. This isolates
    // 3d children of the current chunk from transformations made in previous chunks.
    int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
    renderer.setMatrix(initialTransform);

    /**
     * Draw shadows and (potential) casters mostly in order, but allow the shadows of casters
     * with very similar Z heights to draw together.
     *
     * This way, if Views A & B have the same Z height and are both casting shadows, the shadows are
     * underneath both, and neither's shadow is drawn on top of the other.
     */
    const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes);
    size_t drawIndex, shadowIndex, endIndex;
    if (mode == kNegativeZChildren) {
        drawIndex = 0;
        endIndex = nonNegativeIndex;
        shadowIndex = endIndex; // draw no shadows
    } else {
        drawIndex = nonNegativeIndex;
        endIndex = size;
        shadowIndex = drawIndex; // potentially draw shadow for each pos Z child
    }

    DISPLAY_LIST_LOGD("%*s%d %s 3d children:", (handler.level() + 1) * 2, "",
            endIndex - drawIndex, mode == kNegativeZChildren ? "negative" : "positive");

    float lastCasterZ = 0.0f;
    while (shadowIndex < endIndex || drawIndex < endIndex) {
        if (shadowIndex < endIndex) {
            DrawRenderNodeOp* casterOp = zTranslatedNodes[shadowIndex].value;
            RenderNode* caster = casterOp->mRenderNode;
            const float casterZ = zTranslatedNodes[shadowIndex].key;
            // attempt to render the shadow if the caster about to be drawn is its caster,
            // OR if its caster's Z value is similar to the previous potential caster
            if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) {
                caster->issueDrawShadowOperation(casterOp->mTransformFromParent, handler);

                lastCasterZ = casterZ; // must do this even if current caster not casting a shadow
                shadowIndex++;
                continue;
            }
        }

        // only the actual child DL draw needs to be in save/restore,
        // since it modifies the renderer's matrix
        int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);

        DrawRenderNodeOp* childOp = zTranslatedNodes[drawIndex].value;

        renderer.concatMatrix(childOp->mTransformFromParent);
        childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
        handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
        childOp->mSkipInOrderDraw = true;

        renderer.restoreToCount(restoreTo);
        drawIndex++;
    }
    renderer.restoreToCount(rootRestoreTo);
}

template <class T>
void RenderNode::issueOperationsOfProjectedChildren(OpenGLRenderer& renderer, T& handler) {
    DISPLAY_LIST_LOGD("%*s%d projected children:", (handler.level() + 1) * 2, "", mProjectedNodes.size());
    const SkPath* projectionReceiverOutline = properties().getOutline().getPath();
    int restoreTo = renderer.getSaveCount();

    LinearAllocator& alloc = handler.allocator();
    handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
            PROPERTY_SAVECOUNT, properties().getClipToBounds());

    // Transform renderer to match background we're projecting onto
    // (by offsetting canvas by translationX/Y of background rendernode, since only those are set)
    const DisplayListOp* op =
            (mDisplayListData->displayListOps[mDisplayListData->projectionReceiveIndex]);
    const DrawRenderNodeOp* backgroundOp = reinterpret_cast<const DrawRenderNodeOp*>(op);
    const RenderProperties& backgroundProps = backgroundOp->mRenderNode->properties();
    renderer.translate(backgroundProps.getTranslationX(), backgroundProps.getTranslationY());

    // If the projection reciever has an outline, we mask each of the projected rendernodes to it
    // Either with clipRect, or special saveLayer masking
    if (projectionReceiverOutline != nullptr) {
        const SkRect& outlineBounds = projectionReceiverOutline->getBounds();
        if (projectionReceiverOutline->isRect(nullptr)) {
            // mask to the rect outline simply with clipRect
            ClipRectOp* clipOp = new (alloc) ClipRectOp(
                    outlineBounds.left(), outlineBounds.top(),
                    outlineBounds.right(), outlineBounds.bottom(), SkRegion::kIntersect_Op);
            handler(clipOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
        } else {
            // wrap the projected RenderNodes with a SaveLayer that will mask to the outline
            SaveLayerOp* op = new (alloc) SaveLayerOp(
                    outlineBounds.left(), outlineBounds.top(),
                    outlineBounds.right(), outlineBounds.bottom(),
                    255, SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag | SkCanvas::kARGB_ClipLayer_SaveFlag);
            op->setMask(projectionReceiverOutline);
            handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());

            /* TODO: add optimizations here to take advantage of placement/size of projected
             * children (which may shrink saveLayer area significantly). This is dependent on
             * passing actual drawing/dirtying bounds of projected content down to native.
             */
        }
    }

    // draw projected nodes
    for (size_t i = 0; i < mProjectedNodes.size(); i++) {
        DrawRenderNodeOp* childOp = mProjectedNodes[i];

        // matrix save, concat, and restore can be done safely without allocating operations
        int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
        renderer.concatMatrix(childOp->mTransformFromCompositingAncestor);
        childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
        handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
        childOp->mSkipInOrderDraw = true;
        renderer.restoreToCount(restoreTo);
    }

    if (projectionReceiverOutline != nullptr) {
        handler(new (alloc) RestoreToCountOp(restoreTo),
                PROPERTY_SAVECOUNT, properties().getClipToBounds());
    }
}

/**
 * This function serves both defer and replay modes, and will organize the displayList's component
 * operations for a single frame:
 *
 * Every 'simple' state operation that affects just the matrix and alpha (or other factors of
 * DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom
 * defer logic) and operations in displayListOps are issued through the 'handler' which handles the
 * defer vs replay logic, per operation
 */
template <class T>
void RenderNode::issueOperations(OpenGLRenderer& renderer, T& handler) {
    if (mDisplayListData->isEmpty()) {
        DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, getName());
        return;
    }

    const bool drawLayer = (mLayer && (&renderer != mLayer->renderer.get()));
    // If we are updating the contents of mLayer, we don't want to apply any of
    // the RenderNode's properties to this issueOperations pass. Those will all
    // be applied when the layer is drawn, aka when this is true.
    const bool useViewProperties = (!mLayer || drawLayer);
    if (useViewProperties) {
        const Outline& outline = properties().getOutline();
        if (properties().getAlpha() <= 0 || (outline.getShouldClip() && outline.isEmpty())) {
            DISPLAY_LIST_LOGD("%*sRejected display list (%p, %s)", level * 2, "", this, getName());
            return;
        }
    }

    handler.startMark(getName());

#if DEBUG_DISPLAY_LIST
    const Rect& clipRect = renderer.getLocalClipBounds();
    DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), localClipBounds: %.0f, %.0f, %.0f, %.0f",
            handler.level() * 2, "", this, getName(),
            clipRect.left, clipRect.top, clipRect.right, clipRect.bottom);
#endif

    LinearAllocator& alloc = handler.allocator();
    int restoreTo = renderer.getSaveCount();
    handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
            PROPERTY_SAVECOUNT, properties().getClipToBounds());

    DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "",
            SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo);

    if (useViewProperties) {
        setViewProperties<T>(renderer, handler);
    }

    bool quickRejected = properties().getClipToBounds()
            && renderer.quickRejectConservative(0, 0, properties().getWidth(), properties().getHeight());
    if (!quickRejected) {
        Matrix4 initialTransform(*(renderer.currentTransform()));

        if (drawLayer) {
            handler(new (alloc) DrawLayerOp(mLayer, 0, 0),
                    renderer.getSaveCount() - 1, properties().getClipToBounds());
        } else {
            const int saveCountOffset = renderer.getSaveCount() - 1;
            const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex;
            for (size_t chunkIndex = 0; chunkIndex < mDisplayListData->getChunks().size(); chunkIndex++) {
                const DisplayListData::Chunk& chunk = mDisplayListData->getChunks()[chunkIndex];

                Vector<ZDrawRenderNodeOpPair> zTranslatedNodes;
                buildZSortedChildList(chunk, zTranslatedNodes);

                issueOperationsOf3dChildren(kNegativeZChildren,
                        initialTransform, zTranslatedNodes, renderer, handler);


                for (size_t opIndex = chunk.beginOpIndex; opIndex < chunk.endOpIndex; opIndex++) {
                    DisplayListOp *op = mDisplayListData->displayListOps[opIndex];
#if DEBUG_DISPLAY_LIST
                    op->output(handler.level() + 1);
#endif
                    handler(op, saveCountOffset, properties().getClipToBounds());

                    if (CC_UNLIKELY(!mProjectedNodes.isEmpty() && projectionReceiveIndex >= 0 &&
                        opIndex == static_cast<size_t>(projectionReceiveIndex))) {
                        issueOperationsOfProjectedChildren(renderer, handler);
                    }
                }

                issueOperationsOf3dChildren(kPositiveZChildren,
                        initialTransform, zTranslatedNodes, renderer, handler);
            }
        }
    }

    DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo);
    handler(new (alloc) RestoreToCountOp(restoreTo),
            PROPERTY_SAVECOUNT, properties().getClipToBounds());

    DISPLAY_LIST_LOGD("%*sDone (%p, %s)", level * 2, "", this, getName());
    handler.endMark();
}

} /* namespace uirenderer */
} /* namespace android */