summaryrefslogtreecommitdiffstats
path: root/libs/hwui/ShadowTessellator.cpp
blob: 93d4b317f03b4acddce26b89fa4b8bea5934f81e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "OpenGLRenderer"
#define ATRACE_TAG ATRACE_TAG_VIEW

#include <math.h>
#include <utils/Log.h>
#include <utils/Trace.h>

#include "AmbientShadow.h"
#include "Caches.h"
#include "ShadowTessellator.h"
#include "SpotShadow.h"

namespace android {
namespace uirenderer {

void ShadowTessellator::tessellateAmbientShadow(bool isCasterOpaque,
        const Vector3* casterPolygon, int casterVertexCount,
        const Vector3& centroid3d, const Rect& casterBounds,
        const Rect& localClip, float maxZ, VertexBuffer& shadowVertexBuffer) {
    ATRACE_CALL();

    // A bunch of parameters to tweak the shadow.
    // TODO: Allow some of these changable by debug settings or APIs.
    float heightFactor = 1.0f / 128;
    const float geomFactor = 64;

    Caches& caches = Caches::getInstance();
    if (CC_UNLIKELY(caches.propertyAmbientRatio > 0.0f)) {
        heightFactor *= caches.propertyAmbientRatio;
    }

    Rect ambientShadowBounds(casterBounds);
    ambientShadowBounds.outset(maxZ * geomFactor * heightFactor);

    if (!localClip.intersects(ambientShadowBounds)) {
#if DEBUG_SHADOW
        ALOGD("Ambient shadow is out of clip rect!");
#endif
        return;
    }

    AmbientShadow::createAmbientShadow(isCasterOpaque, casterPolygon,
            casterVertexCount, centroid3d, heightFactor, geomFactor,
            shadowVertexBuffer);
}

void ShadowTessellator::tessellateSpotShadow(bool isCasterOpaque,
        const Vector3* casterPolygon, int casterVertexCount, const Vector3& casterCentroid,
        const mat4& receiverTransform, const Vector3& lightCenter, int lightRadius,
        const Rect& casterBounds, const Rect& localClip, VertexBuffer& shadowVertexBuffer) {
    ATRACE_CALL();

    Caches& caches = Caches::getInstance();

    Vector3 adjustedLightCenter(lightCenter);
    if (CC_UNLIKELY(caches.propertyLightPosY > 0)) {
        adjustedLightCenter.y = - caches.propertyLightPosY; // negated since this shifts up
    }
    if (CC_UNLIKELY(caches.propertyLightPosZ > 0)) {
        adjustedLightCenter.z = caches.propertyLightPosZ;
    }

#if DEBUG_SHADOW
    ALOGD("light center %f %f %f",
            adjustedLightCenter.x, adjustedLightCenter.y, adjustedLightCenter.z);
#endif

    // light position (because it's in local space) needs to compensate for receiver transform
    // TODO: should apply to light orientation, not just position
    Matrix4 reverseReceiverTransform;
    reverseReceiverTransform.loadInverse(receiverTransform);
    reverseReceiverTransform.mapPoint3d(adjustedLightCenter);

    if (CC_UNLIKELY(caches.propertyLightDiameter > 0)) {
        lightRadius = caches.propertyLightDiameter;
    }

    // Now light and caster are both in local space, we will check whether
    // the shadow is within the clip area.
    Rect lightRect = Rect(adjustedLightCenter.x - lightRadius, adjustedLightCenter.y - lightRadius,
            adjustedLightCenter.x + lightRadius, adjustedLightCenter.y + lightRadius);
    lightRect.unionWith(localClip);
    if (!lightRect.intersects(casterBounds)) {
#if DEBUG_SHADOW
        ALOGD("Spot shadow is out of clip rect!");
#endif
        return;
    }

    SpotShadow::createSpotShadow(isCasterOpaque, adjustedLightCenter, lightRadius,
            casterPolygon, casterVertexCount, casterCentroid, shadowVertexBuffer);

#if DEBUG_SHADOW
     if(shadowVertexBuffer.getVertexCount() <= 0) {
        ALOGD("Spot shadow generation failed %d", shadowVertexBuffer.getVertexCount());
     }
#endif
}

void ShadowTessellator::generateShadowIndices(uint16_t* shadowIndices) {
    int currentIndex = 0;
    const int rays = SHADOW_RAY_COUNT;
    // For the penumbra area.
    for (int layer = 0; layer < 2; layer ++) {
        int baseIndex = layer * rays;
        for (int i = 0; i < rays; i++) {
            shadowIndices[currentIndex++] = i + baseIndex;
            shadowIndices[currentIndex++] = rays + i + baseIndex;
        }
        // To close the loop, back to the ray 0.
        shadowIndices[currentIndex++] = 0 + baseIndex;
         // Note this is the same as the first index of next layer loop.
        shadowIndices[currentIndex++] = rays + baseIndex;
    }

#if DEBUG_SHADOW
    if (currentIndex != MAX_SHADOW_INDEX_COUNT) {
        ALOGW("vertex index count is wrong. current %d, expected %d",
                currentIndex, MAX_SHADOW_INDEX_COUNT);
    }
    for (int i = 0; i < MAX_SHADOW_INDEX_COUNT; i++) {
        ALOGD("vertex index is (%d, %d)", i, shadowIndices[i]);
    }
#endif
}

/**
 * Calculate the centroid of a 2d polygon.
 *
 * @param poly The polygon, which is represented in a Vector2 array.
 * @param polyLength The length of the polygon in terms of number of vertices.
 * @return the centroid of the polygon.
 */
Vector2 ShadowTessellator::centroid2d(const Vector2* poly, int polyLength) {
    double sumx = 0;
    double sumy = 0;
    int p1 = polyLength - 1;
    double area = 0;
    for (int p2 = 0; p2 < polyLength; p2++) {
        double x1 = poly[p1].x;
        double y1 = poly[p1].y;
        double x2 = poly[p2].x;
        double y2 = poly[p2].y;
        double a = (x1 * y2 - x2 * y1);
        sumx += (x1 + x2) * a;
        sumy += (y1 + y2) * a;
        area += a;
        p1 = p2;
    }

    Vector2 centroid = poly[0];
    if (area != 0) {
        centroid = (Vector2){static_cast<float>(sumx / (3 * area)),
            static_cast<float>(sumy / (3 * area))};
    } else {
        ALOGW("Area is 0 while computing centroid!");
    }
    return centroid;
}

// Make sure p1 -> p2 is going CW around the poly.
Vector2 ShadowTessellator::calculateNormal(const Vector2& p1, const Vector2& p2) {
    Vector2 result = p2 - p1;
    if (result.x != 0 || result.y != 0) {
        result.normalize();
        // Calculate the normal , which is CCW 90 rotate to the delta.
        float tempy = result.y;
        result.y = result.x;
        result.x = -tempy;
    }
    return result;
}
/**
 * Test whether the polygon is order in clockwise.
 *
 * @param polygon the polygon as a Vector2 array
 * @param len the number of points of the polygon
 */
bool ShadowTessellator::isClockwise(const Vector2* polygon, int len) {
    if (len < 2 || polygon == NULL) {
        return true;
    }
    double sum = 0;
    double p1x = polygon[len - 1].x;
    double p1y = polygon[len - 1].y;
    for (int i = 0; i < len; i++) {

        double p2x = polygon[i].x;
        double p2y = polygon[i].y;
        sum += p1x * p2y - p2x * p1y;
        p1x = p2x;
        p1y = p2y;
    }
    return sum < 0;
}

bool ShadowTessellator::isClockwisePath(const SkPath& path) {
    SkPath::Iter iter(path, false);
    SkPoint pts[4];
    SkPath::Verb v;

    Vector<Vector2> arrayForDirection;
    while (SkPath::kDone_Verb != (v = iter.next(pts))) {
            switch (v) {
            case SkPath::kMove_Verb:
                arrayForDirection.add((Vector2){pts[0].x(), pts[0].y()});
                break;
            case SkPath::kLine_Verb:
                arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()});
                break;
            case SkPath::kQuad_Verb:
                arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()});
                arrayForDirection.add((Vector2){pts[2].x(), pts[2].y()});
                break;
            case SkPath::kCubic_Verb:
                arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()});
                arrayForDirection.add((Vector2){pts[2].x(), pts[2].y()});
                arrayForDirection.add((Vector2){pts[3].x(), pts[3].y()});
                break;
            default:
                break;
            }
    }

    return isClockwise(arrayForDirection.array(), arrayForDirection.size());
}

void ShadowTessellator::reverseVertexArray(Vertex* polygon, int len) {
    int n = len / 2;
    for (int i = 0; i < n; i++) {
        Vertex tmp = polygon[i];
        int k = len - 1 - i;
        polygon[i] = polygon[k];
        polygon[k] = tmp;
    }
}

int ShadowTessellator::getExtraVertexNumber(const Vector2& vector1,
        const Vector2& vector2, float divisor) {
    // When there is no distance difference, there is no need for extra vertices.
    if (vector1.lengthSquared() == 0 || vector2.lengthSquared() == 0) {
        return 0;
    }
    // The formula is :
    // extraNumber = floor(acos(dot(n1, n2)) / (M_PI / EXTRA_VERTEX_PER_PI))
    // The value ranges for each step are:
    // dot( ) --- [-1, 1]
    // acos( )     --- [0, M_PI]
    // floor(...)  --- [0, EXTRA_VERTEX_PER_PI]
    float dotProduct = vector1.dot(vector2);
    // TODO: Use look up table for the dotProduct to extraVerticesNumber
    // computation, if needed.
    float angle = acosf(dotProduct);
    return (int) floor(angle / divisor);
}

void ShadowTessellator::checkOverflow(int used, int total, const char* bufferName) {
    LOG_ALWAYS_FATAL_IF(used > total, "Error: %s overflow!!! used %d, total %d",
            bufferName, used, total);
}

}; // namespace uirenderer
}; // namespace android