1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "OpenGLRenderer"
#define SHADOW_SHRINK_SCALE 0.1f
#include <math.h>
#include <stdlib.h>
#include <utils/Log.h>
#include "ShadowTessellator.h"
#include "SpotShadow.h"
#include "Vertex.h"
namespace android {
namespace uirenderer {
static const double EPSILON = 1e-7;
/**
* Calculate the angle between and x and a y coordinate.
* The atan2 range from -PI to PI.
*/
static float angle(const Vector2& point, const Vector2& center) {
return atan2(point.y - center.y, point.x - center.x);
}
/**
* Calculate the intersection of a ray with the line segment defined by two points.
*
* Returns a negative value in error conditions.
* @param rayOrigin The start of the ray
* @param dx The x vector of the ray
* @param dy The y vector of the ray
* @param p1 The first point defining the line segment
* @param p2 The second point defining the line segment
* @return The distance along the ray if it intersects with the line segment, negative if otherwise
*/
static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
const Vector2& p1, const Vector2& p2) {
// The math below is derived from solving this formula, basically the
// intersection point should stay on both the ray and the edge of (p1, p2).
// solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
if (divisor == 0) return -1.0f; // error, invalid divisor
#if DEBUG_SHADOW
double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
if (interpVal < 0 || interpVal > 1) {
ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
}
#endif
double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
rayOrigin.x * (p2.y - p1.y)) / divisor;
return distance; // may be negative in error cases
}
/**
* Sort points by their X coordinates
*
* @param points the points as a Vector2 array.
* @param pointsLength the number of vertices of the polygon.
*/
void SpotShadow::xsort(Vector2* points, int pointsLength) {
quicksortX(points, 0, pointsLength - 1);
}
/**
* compute the convex hull of a collection of Points
*
* @param points the points as a Vector2 array.
* @param pointsLength the number of vertices of the polygon.
* @param retPoly pre allocated array of floats to put the vertices
* @return the number of points in the polygon 0 if no intersection
*/
int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
xsort(points, pointsLength);
int n = pointsLength;
Vector2 lUpper[n];
lUpper[0] = points[0];
lUpper[1] = points[1];
int lUpperSize = 2;
for (int i = 2; i < n; i++) {
lUpper[lUpperSize] = points[i];
lUpperSize++;
while (lUpperSize > 2 && !ccw(
lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
// Remove the middle point of the three last
lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
lUpperSize--;
}
}
Vector2 lLower[n];
lLower[0] = points[n - 1];
lLower[1] = points[n - 2];
int lLowerSize = 2;
for (int i = n - 3; i >= 0; i--) {
lLower[lLowerSize] = points[i];
lLowerSize++;
while (lLowerSize > 2 && !ccw(
lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
// Remove the middle point of the three last
lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
lLowerSize--;
}
}
// output points in CW ordering
const int total = lUpperSize + lLowerSize - 2;
int outIndex = total - 1;
for (int i = 0; i < lUpperSize; i++) {
retPoly[outIndex] = lUpper[i];
outIndex--;
}
for (int i = 1; i < lLowerSize - 1; i++) {
retPoly[outIndex] = lLower[i];
outIndex--;
}
// TODO: Add test harness which verify that all the points are inside the hull.
return total;
}
/**
* Test whether the 3 points form a counter clockwise turn.
*
* @return true if a right hand turn
*/
bool SpotShadow::ccw(double ax, double ay, double bx, double by,
double cx, double cy) {
return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
}
/**
* Calculates the intersection of poly1 with poly2 and put in poly2.
* Note that both poly1 and poly2 must be in CW order already!
*
* @param poly1 The 1st polygon, as a Vector2 array.
* @param poly1Length The number of vertices of 1st polygon.
* @param poly2 The 2nd and output polygon, as a Vector2 array.
* @param poly2Length The number of vertices of 2nd polygon.
* @return number of vertices in output polygon as poly2.
*/
int SpotShadow::intersection(const Vector2* poly1, int poly1Length,
Vector2* poly2, int poly2Length) {
#if DEBUG_SHADOW
if (!ShadowTessellator::isClockwise(poly1, poly1Length)) {
ALOGW("Poly1 is not clockwise! Intersection is wrong!");
}
if (!ShadowTessellator::isClockwise(poly2, poly2Length)) {
ALOGW("Poly2 is not clockwise! Intersection is wrong!");
}
#endif
Vector2 poly[poly1Length * poly2Length + 2];
int count = 0;
int pcount = 0;
// If one vertex from one polygon sits inside another polygon, add it and
// count them.
for (int i = 0; i < poly1Length; i++) {
if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) {
poly[count] = poly1[i];
count++;
pcount++;
}
}
int insidePoly2 = pcount;
for (int i = 0; i < poly2Length; i++) {
if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) {
poly[count] = poly2[i];
count++;
}
}
int insidePoly1 = count - insidePoly2;
// If all vertices from poly1 are inside poly2, then just return poly1.
if (insidePoly2 == poly1Length) {
memcpy(poly2, poly1, poly1Length * sizeof(Vector2));
return poly1Length;
}
// If all vertices from poly2 are inside poly1, then just return poly2.
if (insidePoly1 == poly2Length) {
return poly2Length;
}
// Since neither polygon fully contain the other one, we need to add all the
// intersection points.
Vector2 intersection;
for (int i = 0; i < poly2Length; i++) {
for (int j = 0; j < poly1Length; j++) {
int poly2LineStart = i;
int poly2LineEnd = ((i + 1) % poly2Length);
int poly1LineStart = j;
int poly1LineEnd = ((j + 1) % poly1Length);
bool found = lineIntersection(
poly2[poly2LineStart].x, poly2[poly2LineStart].y,
poly2[poly2LineEnd].x, poly2[poly2LineEnd].y,
poly1[poly1LineStart].x, poly1[poly1LineStart].y,
poly1[poly1LineEnd].x, poly1[poly1LineEnd].y,
intersection);
if (found) {
poly[count].x = intersection.x;
poly[count].y = intersection.y;
count++;
} else {
Vector2 delta = poly2[i] - poly1[j];
if (delta.lengthSquared() < EPSILON) {
poly[count] = poly2[i];
count++;
}
}
}
}
if (count == 0) {
return 0;
}
// Sort the result polygon around the center.
Vector2 center(0.0f, 0.0f);
for (int i = 0; i < count; i++) {
center += poly[i];
}
center /= count;
sort(poly, count, center);
#if DEBUG_SHADOW
// Since poly2 is overwritten as the result, we need to save a copy to do
// our verification.
Vector2 oldPoly2[poly2Length];
int oldPoly2Length = poly2Length;
memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length);
#endif
// Filter the result out from poly and put it into poly2.
poly2[0] = poly[0];
int lastOutputIndex = 0;
for (int i = 1; i < count; i++) {
Vector2 delta = poly[i] - poly2[lastOutputIndex];
if (delta.lengthSquared() >= EPSILON) {
poly2[++lastOutputIndex] = poly[i];
} else {
// If the vertices are too close, pick the inner one, because the
// inner one is more likely to be an intersection point.
Vector2 delta1 = poly[i] - center;
Vector2 delta2 = poly2[lastOutputIndex] - center;
if (delta1.lengthSquared() < delta2.lengthSquared()) {
poly2[lastOutputIndex] = poly[i];
}
}
}
int resultLength = lastOutputIndex + 1;
#if DEBUG_SHADOW
testConvex(poly2, resultLength, "intersection");
testConvex(poly1, poly1Length, "input poly1");
testConvex(oldPoly2, oldPoly2Length, "input poly2");
testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength);
#endif
return resultLength;
}
/**
* Sort points about a center point
*
* @param poly The in and out polyogon as a Vector2 array.
* @param polyLength The number of vertices of the polygon.
* @param center the center ctr[0] = x , ctr[1] = y to sort around.
*/
void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
quicksortCirc(poly, 0, polyLength - 1, center);
}
/**
* Swap points pointed to by i and j
*/
void SpotShadow::swap(Vector2* points, int i, int j) {
Vector2 temp = points[i];
points[i] = points[j];
points[j] = temp;
}
/**
* quick sort implementation about the center.
*/
void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
const Vector2& center) {
int i = low, j = high;
int p = low + (high - low) / 2;
float pivot = angle(points[p], center);
while (i <= j) {
while (angle(points[i], center) > pivot) {
i++;
}
while (angle(points[j], center) < pivot) {
j--;
}
if (i <= j) {
swap(points, i, j);
i++;
j--;
}
}
if (low < j) quicksortCirc(points, low, j, center);
if (i < high) quicksortCirc(points, i, high, center);
}
/**
* Sort points by x axis
*
* @param points points to sort
* @param low start index
* @param high end index
*/
void SpotShadow::quicksortX(Vector2* points, int low, int high) {
int i = low, j = high;
int p = low + (high - low) / 2;
float pivot = points[p].x;
while (i <= j) {
while (points[i].x < pivot) {
i++;
}
while (points[j].x > pivot) {
j--;
}
if (i <= j) {
swap(points, i, j);
i++;
j--;
}
}
if (low < j) quicksortX(points, low, j);
if (i < high) quicksortX(points, i, high);
}
/**
* Test whether a point is inside the polygon.
*
* @param testPoint the point to test
* @param poly the polygon
* @return true if the testPoint is inside the poly.
*/
bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
const Vector2* poly, int len) {
bool c = false;
double testx = testPoint.x;
double testy = testPoint.y;
for (int i = 0, j = len - 1; i < len; j = i++) {
double startX = poly[j].x;
double startY = poly[j].y;
double endX = poly[i].x;
double endY = poly[i].y;
if (((endY > testy) != (startY > testy)) &&
(testx < (startX - endX) * (testy - endY)
/ (startY - endY) + endX)) {
c = !c;
}
}
return c;
}
/**
* Make the polygon turn clockwise.
*
* @param polygon the polygon as a Vector2 array.
* @param len the number of points of the polygon
*/
void SpotShadow::makeClockwise(Vector2* polygon, int len) {
if (polygon == 0 || len == 0) {
return;
}
if (!ShadowTessellator::isClockwise(polygon, len)) {
reverse(polygon, len);
}
}
/**
* Reverse the polygon
*
* @param polygon the polygon as a Vector2 array
* @param len the number of points of the polygon
*/
void SpotShadow::reverse(Vector2* polygon, int len) {
int n = len / 2;
for (int i = 0; i < n; i++) {
Vector2 tmp = polygon[i];
int k = len - 1 - i;
polygon[i] = polygon[k];
polygon[k] = tmp;
}
}
/**
* Intersects two lines in parametric form. This function is called in a tight
* loop, and we need double precision to get things right.
*
* @param x1 the x coordinate point 1 of line 1
* @param y1 the y coordinate point 1 of line 1
* @param x2 the x coordinate point 2 of line 1
* @param y2 the y coordinate point 2 of line 1
* @param x3 the x coordinate point 1 of line 2
* @param y3 the y coordinate point 1 of line 2
* @param x4 the x coordinate point 2 of line 2
* @param y4 the y coordinate point 2 of line 2
* @param ret the x,y location of the intersection
* @return true if it found an intersection
*/
inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2,
double x3, double y3, double x4, double y4, Vector2& ret) {
double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
if (d == 0.0) return false;
double dx = (x1 * y2 - y1 * x2);
double dy = (x3 * y4 - y3 * x4);
double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d;
double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d;
// The intersection should be in the middle of the point 1 and point 2,
// likewise point 3 and point 4.
if (((x - x1) * (x - x2) > EPSILON)
|| ((x - x3) * (x - x4) > EPSILON)
|| ((y - y1) * (y - y2) > EPSILON)
|| ((y - y3) * (y - y4) > EPSILON)) {
// Not interesected
return false;
}
ret.x = x;
ret.y = y;
return true;
}
/**
* Compute a horizontal circular polygon about point (x , y , height) of radius
* (size)
*
* @param points number of the points of the output polygon.
* @param lightCenter the center of the light.
* @param size the light size.
* @param ret result polygon.
*/
void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
float size, Vector3* ret) {
// TODO: Caching all the sin / cos values and store them in a look up table.
for (int i = 0; i < points; i++) {
double angle = 2 * i * M_PI / points;
ret[i].x = cosf(angle) * size + lightCenter.x;
ret[i].y = sinf(angle) * size + lightCenter.y;
ret[i].z = lightCenter.z;
}
}
/**
* Generate the shadow from a spot light.
*
* @param poly x,y,z vertexes of a convex polygon that occludes the light source
* @param polyLength number of vertexes of the occluding polygon
* @param lightCenter the center of the light
* @param lightSize the radius of the light source
* @param lightVertexCount the vertex counter for the light polygon
* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
* empty strip if error.
*
*/
VertexBufferMode SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3* poly,
int polyLength, const Vector3& lightCenter, float lightSize,
int lightVertexCount, VertexBuffer& retStrips) {
Vector3 light[lightVertexCount * 3];
computeLightPolygon(lightVertexCount, lightCenter, lightSize, light);
computeSpotShadow(isCasterOpaque, light, lightVertexCount, lightCenter, poly,
polyLength, retStrips);
return kVertexBufferMode_TwoPolyRingShadow;
}
/**
* Generate the shadow spot light of shape lightPoly and a object poly
*
* @param lightPoly x,y,z vertex of a convex polygon that is the light source
* @param lightPolyLength number of vertexes of the light source polygon
* @param poly x,y,z vertexes of a convex polygon that occludes the light source
* @param polyLength number of vertexes of the occluding polygon
* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
* empty strip if error.
*/
void SpotShadow::computeSpotShadow(bool isCasterOpaque, const Vector3* lightPoly,
int lightPolyLength, const Vector3& lightCenter, const Vector3* poly,
int polyLength, VertexBuffer& shadowTriangleStrip) {
// Point clouds for all the shadowed vertices
Vector2 shadowRegion[lightPolyLength * polyLength];
// Shadow polygon from one point light.
Vector2 outline[polyLength];
Vector2 umbraMem[polyLength * lightPolyLength];
Vector2* umbra = umbraMem;
int umbraLength = 0;
// Validate input, receiver is always at z = 0 plane.
bool inputPolyPositionValid = true;
for (int i = 0; i < polyLength; i++) {
if (poly[i].z >= lightPoly[0].z) {
inputPolyPositionValid = false;
ALOGW("polygon above the light");
break;
}
}
// If the caster's position is invalid, don't draw anything.
if (!inputPolyPositionValid) {
return;
}
// Calculate the umbra polygon based on intersections of all outlines
int k = 0;
for (int j = 0; j < lightPolyLength; j++) {
int m = 0;
for (int i = 0; i < polyLength; i++) {
// After validating the input, deltaZ is guaranteed to be positive.
float deltaZ = lightPoly[j].z - poly[i].z;
float ratioZ = lightPoly[j].z / deltaZ;
float x = lightPoly[j].x - ratioZ * (lightPoly[j].x - poly[i].x);
float y = lightPoly[j].y - ratioZ * (lightPoly[j].y - poly[i].y);
Vector2 newPoint = Vector2(x, y);
shadowRegion[k] = newPoint;
outline[m] = newPoint;
k++;
m++;
}
// For the first light polygon's vertex, use the outline as the umbra.
// Later on, use the intersection of the outline and existing umbra.
if (umbraLength == 0) {
for (int i = 0; i < polyLength; i++) {
umbra[i] = outline[i];
}
umbraLength = polyLength;
} else {
int col = ((j * 255) / lightPolyLength);
umbraLength = intersection(outline, polyLength, umbra, umbraLength);
if (umbraLength == 0) {
break;
}
}
}
// Generate the penumbra area using the hull of all shadow regions.
int shadowRegionLength = k;
Vector2 penumbra[k];
int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra);
Vector2 fakeUmbra[polyLength];
if (umbraLength < 3) {
// If there is no real umbra, make a fake one.
for (int i = 0; i < polyLength; i++) {
float deltaZ = lightCenter.z - poly[i].z;
float ratioZ = lightCenter.z / deltaZ;
float x = lightCenter.x - ratioZ * (lightCenter.x - poly[i].x);
float y = lightCenter.y - ratioZ * (lightCenter.y - poly[i].y);
fakeUmbra[i].x = x;
fakeUmbra[i].y = y;
}
// Shrink the centroid's shadow by 10%.
// TODO: Study the magic number of 10%.
Vector2 shadowCentroid =
ShadowTessellator::centroid2d(fakeUmbra, polyLength);
for (int i = 0; i < polyLength; i++) {
fakeUmbra[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) +
fakeUmbra[i] * SHADOW_SHRINK_SCALE;
}
#if DEBUG_SHADOW
ALOGD("No real umbra make a fake one, centroid2d = %f , %f",
shadowCentroid.x, shadowCentroid.y);
#endif
// Set the fake umbra, whose size is the same as the original polygon.
umbra = fakeUmbra;
umbraLength = polyLength;
}
generateTriangleStrip(isCasterOpaque, penumbra, penumbraLength, umbra,
umbraLength, poly, polyLength, shadowTriangleStrip);
}
/**
* Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
*
* Returns false in error conditions
*
* @param poly Array of vertices. Note that these *must* be CW.
* @param polyLength The number of vertices in the polygon.
* @param polyCentroid The centroid of the polygon, from which rays will be cast
* @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
*/
bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
float* rayDist) {
const int rays = SHADOW_RAY_COUNT;
const float step = M_PI * 2 / rays;
const Vector2* lastVertex = &(poly[polyLength - 1]);
float startAngle = angle(*lastVertex, polyCentroid);
// Start with the ray that's closest to and less than startAngle
int rayIndex = floor((startAngle - EPSILON) / step);
rayIndex = (rayIndex + rays) % rays; // ensure positive
for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
/*
* For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
* intersect these will be those that are between the two angles from the centroid that the
* vertices define.
*
* Because the polygon vertices are stored clockwise, the closest ray with an angle
* *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
* not intersect with poly[i-1], poly[i].
*/
float currentAngle = angle(poly[polyIndex], polyCentroid);
// find first ray that will not intersect the line segment poly[i-1] & poly[i]
int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
// Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
// This may be 0 rays.
while (rayIndex != firstRayIndexOnNextSegment) {
float distanceToIntersect = rayIntersectPoints(polyCentroid,
cos(rayIndex * step),
sin(rayIndex * step),
*lastVertex, poly[polyIndex]);
if (distanceToIntersect < 0) {
#if DEBUG_SHADOW
ALOGW("ERROR: convertPolyToRayDist failed");
#endif
return false; // error case, abort
}
rayDist[rayIndex] = distanceToIntersect;
rayIndex = (rayIndex - 1 + rays) % rays;
}
lastVertex = &poly[polyIndex];
}
return true;
}
int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength,
const Vector3* poly, int polyLength, Vector2* occludedUmbra) {
// Occluded umbra area is computed as the intersection of the projected 2D
// poly and umbra.
for (int i = 0; i < polyLength; i++) {
occludedUmbra[i].x = poly[i].x;
occludedUmbra[i].y = poly[i].y;
}
// Both umbra and incoming polygon are guaranteed to be CW, so we can call
// intersection() directly.
return intersection(umbra, umbraLength,
occludedUmbra, polyLength);
}
#define OCLLUDED_UMBRA_SHRINK_FACTOR 0.95f
/**
* Generate a triangle strip given two convex polygons
*
* @param penumbra The outer polygon x,y vertexes
* @param penumbraLength The number of vertexes in the outer polygon
* @param umbra The inner outer polygon x,y vertexes
* @param umbraLength The number of vertexes in the inner polygon
* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
* empty strip if error.
**/
void SpotShadow::generateTriangleStrip(bool isCasterOpaque, const Vector2* penumbra,
int penumbraLength, const Vector2* umbra, int umbraLength,
const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip) {
const int rays = SHADOW_RAY_COUNT;
const int size = 2 * rays;
const float step = M_PI * 2 / rays;
// Centroid of the umbra.
Vector2 centroid = ShadowTessellator::centroid2d(umbra, umbraLength);
#if DEBUG_SHADOW
ALOGD("centroid2d = %f , %f", centroid.x, centroid.y);
#endif
// Intersection to the penumbra.
float penumbraDistPerRay[rays];
// Intersection to the umbra.
float umbraDistPerRay[rays];
// Intersection to the occluded umbra area.
float occludedUmbraDistPerRay[rays];
// convert CW polygons to ray distance encoding, aborting on conversion failure
if (!convertPolyToRayDist(umbra, umbraLength, centroid, umbraDistPerRay)) return;
if (!convertPolyToRayDist(penumbra, penumbraLength, centroid, penumbraDistPerRay)) return;
bool hasOccludedUmbraArea = false;
if (isCasterOpaque) {
Vector2 occludedUmbra[polyLength + umbraLength];
int occludedUmbraLength = calculateOccludedUmbra(umbra, umbraLength, poly, polyLength,
occludedUmbra);
// Make sure the centroid is inside the umbra, otherwise, fall back to the
// approach as if there is no occluded umbra area.
if (testPointInsidePolygon(centroid, occludedUmbra, occludedUmbraLength)) {
hasOccludedUmbraArea = true;
// Shrink the occluded umbra area to avoid pixel level artifacts.
for (int i = 0; i < occludedUmbraLength; i ++) {
occludedUmbra[i] = centroid + (occludedUmbra[i] - centroid) *
OCLLUDED_UMBRA_SHRINK_FACTOR;
}
if (!convertPolyToRayDist(occludedUmbra, occludedUmbraLength, centroid,
occludedUmbraDistPerRay)) {
return;
}
}
}
AlphaVertex* shadowVertices =
shadowTriangleStrip.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT);
// Calculate the vertices (x, y, alpha) in the shadow area.
AlphaVertex centroidXYA;
AlphaVertex::set(¢roidXYA, centroid.x, centroid.y, 1.0f);
for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
float dx = cosf(step * rayIndex);
float dy = sinf(step * rayIndex);
// penumbra ring
float penumbraDistance = penumbraDistPerRay[rayIndex];
AlphaVertex::set(&shadowVertices[rayIndex],
dx * penumbraDistance + centroid.x,
dy * penumbraDistance + centroid.y, 0.0f);
// umbra ring
float umbraDistance = umbraDistPerRay[rayIndex];
AlphaVertex::set(&shadowVertices[rays + rayIndex],
dx * umbraDistance + centroid.x, dy * umbraDistance + centroid.y, 1.0f);
// occluded umbra ring
if (hasOccludedUmbraArea) {
float occludedUmbraDistance = occludedUmbraDistPerRay[rayIndex];
AlphaVertex::set(&shadowVertices[2 * rays + rayIndex],
dx * occludedUmbraDistance + centroid.x,
dy * occludedUmbraDistance + centroid.y, 1.0f);
} else {
// Put all vertices of the occluded umbra ring at the centroid.
shadowVertices[2 * rays + rayIndex] = centroidXYA;
}
}
}
/**
* This is only for experimental purpose.
* After intersections are calculated, we could smooth the polygon if needed.
* So far, we don't think it is more appealing yet.
*
* @param level The level of smoothness.
* @param rays The total number of rays.
* @param rayDist (In and Out) The distance for each ray.
*
*/
void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
for (int k = 0; k < level; k++) {
for (int i = 0; i < rays; i++) {
float p1 = rayDist[(rays - 1 + i) % rays];
float p2 = rayDist[i];
float p3 = rayDist[(i + 1) % rays];
rayDist[i] = (p1 + p2 * 2 + p3) / 4;
}
}
}
#if DEBUG_SHADOW
#define TEST_POINT_NUMBER 128
/**
* Calculate the bounds for generating random test points.
*/
void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
Vector2& upperBound ) {
if (inVector.x < lowerBound.x) {
lowerBound.x = inVector.x;
}
if (inVector.y < lowerBound.y) {
lowerBound.y = inVector.y;
}
if (inVector.x > upperBound.x) {
upperBound.x = inVector.x;
}
if (inVector.y > upperBound.y) {
upperBound.y = inVector.y;
}
}
/**
* For debug purpose, when things go wrong, dump the whole polygon data.
*/
static void dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
for (int i = 0; i < polyLength; i++) {
ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
}
}
/**
* Test whether the polygon is convex.
*/
bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
const char* name) {
bool isConvex = true;
for (int i = 0; i < polygonLength; i++) {
Vector2 start = polygon[i];
Vector2 middle = polygon[(i + 1) % polygonLength];
Vector2 end = polygon[(i + 2) % polygonLength];
double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) -
(double(middle.y) - start.y) * (double(end.x) - start.x);
bool isCCWOrCoLinear = (delta >= EPSILON);
if (isCCWOrCoLinear) {
ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
"middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
isConvex = false;
break;
}
}
return isConvex;
}
/**
* Test whether or not the polygon (intersection) is within the 2 input polygons.
* Using Marte Carlo method, we generate a random point, and if it is inside the
* intersection, then it must be inside both source polygons.
*/
void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
const Vector2* poly2, int poly2Length,
const Vector2* intersection, int intersectionLength) {
// Find the min and max of x and y.
Vector2 lowerBound(FLT_MAX, FLT_MAX);
Vector2 upperBound(-FLT_MAX, -FLT_MAX);
for (int i = 0; i < poly1Length; i++) {
updateBound(poly1[i], lowerBound, upperBound);
}
for (int i = 0; i < poly2Length; i++) {
updateBound(poly2[i], lowerBound, upperBound);
}
bool dumpPoly = false;
for (int k = 0; k < TEST_POINT_NUMBER; k++) {
// Generate a random point between minX, minY and maxX, maxY.
double randomX = rand() / double(RAND_MAX);
double randomY = rand() / double(RAND_MAX);
Vector2 testPoint;
testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
// If the random point is in both poly 1 and 2, then it must be intersection.
if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
dumpPoly = true;
ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
" not in the poly1",
testPoint.x, testPoint.y);
}
if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
dumpPoly = true;
ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
" not in the poly2",
testPoint.x, testPoint.y);
}
}
}
if (dumpPoly) {
dumpPolygon(intersection, intersectionLength, "intersection");
for (int i = 1; i < intersectionLength; i++) {
Vector2 delta = intersection[i] - intersection[i - 1];
ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
}
dumpPolygon(poly1, poly1Length, "poly 1");
dumpPolygon(poly2, poly2Length, "poly 2");
}
}
#endif
}; // namespace uirenderer
}; // namespace android
|