summaryrefslogtreecommitdiffstats
path: root/libs/hwui/utils/Blur.cpp
blob: 877a42216c271ddfac275ebd0ef7b59b0fab2274 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "OpenGLRenderer"

#include <math.h>

#include "Blur.h"
#include "MathUtils.h"

namespace android {
namespace uirenderer {

// This constant approximates the scaling done in the software path's
// "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)).
static const float BLUR_SIGMA_SCALE = 0.57735f;

float Blur::convertRadiusToSigma(float radius) {
    return radius > 0 ? BLUR_SIGMA_SCALE * radius + 0.5f : 0.0f;
}

float Blur::convertSigmaToRadius(float sigma) {
    return sigma > 0.5f ? (sigma - 0.5f) / BLUR_SIGMA_SCALE : 0.0f;
}

// if the original radius was on an integer boundary and the resulting radius
// is within the conversion error tolerance then we attempt to snap to the
// original integer boundary.
uint32_t Blur::convertRadiusToInt(float radius) {
    const float radiusCeil  = ceilf(radius);
    if (MathUtils::areEqual(radiusCeil, radius)) {
        return radiusCeil;
    }
    return radius;
}

/**
 * HWUI has used a slightly different equation than Skia to generate the value
 * for sigma and to preserve compatibility we have kept that logic.
 *
 * Based on some experimental radius and sigma values we approximate the
 * equation sigma = f(radius) as sigma = radius * 0.3  + 0.6.  The larger the
 * radius gets, the more our gaussian blur will resemble a box blur since with
 * large sigma the gaussian curve begins to lose its shape.
 */
static float legacyConvertRadiusToSigma(float radius) {
    return radius > 0 ? 0.3f * radius + 0.6f : 0.0f;
}

void Blur::generateGaussianWeights(float* weights, int32_t radius) {
    // Compute gaussian weights for the blur
    // e is the euler's number
    static float e = 2.718281828459045f;
    static float pi = 3.1415926535897932f;
    // g(x) = ( 1 / sqrt( 2 * pi ) * sigma) * e ^ ( -x^2 / 2 * sigma^2 )
    // x is of the form [-radius .. 0 .. radius]
    // and sigma varies with radius.
    float sigma = legacyConvertRadiusToSigma((float) radius);

    // Now compute the coefficints
    // We will store some redundant values to save some math during
    // the blur calculations
    // precompute some values
    float coeff1 = 1.0f / (sqrt(2.0f * pi) * sigma);
    float coeff2 = - 1.0f / (2.0f * sigma * sigma);

    float normalizeFactor = 0.0f;
    for (int32_t r = -radius; r <= radius; r ++) {
        float floatR = (float) r;
        weights[r + radius] = coeff1 * pow(e, floatR * floatR * coeff2);
        normalizeFactor += weights[r + radius];
    }

    //Now we need to normalize the weights because all our coefficients need to add up to one
    normalizeFactor = 1.0f / normalizeFactor;
    for (int32_t r = -radius; r <= radius; r ++) {
        weights[r + radius] *= normalizeFactor;
    }
}

void Blur::horizontal(float* weights, int32_t radius,
        const uint8_t* source, uint8_t* dest, int32_t width, int32_t height) {
    float blurredPixel = 0.0f;
    float currentPixel = 0.0f;

    for (int32_t y = 0; y < height; y ++) {

        const uint8_t* input = source + y * width;
        uint8_t* output = dest + y * width;

        for (int32_t x = 0; x < width; x ++) {
            blurredPixel = 0.0f;
            const float* gPtr = weights;
            // Optimization for non-border pixels
            if (x > radius && x < (width - radius)) {
                const uint8_t *i = input + (x - radius);
                for (int r = -radius; r <= radius; r ++) {
                    currentPixel = (float) (*i);
                    blurredPixel += currentPixel * gPtr[0];
                    gPtr++;
                    i++;
                }
            } else {
                for (int32_t r = -radius; r <= radius; r ++) {
                    // Stepping left and right away from the pixel
                    int validW = x + r;
                    if (validW < 0) {
                        validW = 0;
                    }
                    if (validW > width - 1) {
                        validW = width - 1;
                    }

                    currentPixel = (float) input[validW];
                    blurredPixel += currentPixel * gPtr[0];
                    gPtr++;
                }
            }
            *output = (uint8_t)blurredPixel;
            output ++;
        }
    }
}

void Blur::vertical(float* weights, int32_t radius,
        const uint8_t* source, uint8_t* dest, int32_t width, int32_t height) {
    float blurredPixel = 0.0f;
    float currentPixel = 0.0f;

    for (int32_t y = 0; y < height; y ++) {
        uint8_t* output = dest + y * width;

        for (int32_t x = 0; x < width; x ++) {
            blurredPixel = 0.0f;
            const float* gPtr = weights;
            const uint8_t* input = source + x;
            // Optimization for non-border pixels
            if (y > radius && y < (height - radius)) {
                const uint8_t *i = input + ((y - radius) * width);
                for (int32_t r = -radius; r <= radius; r ++) {
                    currentPixel = (float) (*i);
                    blurredPixel += currentPixel * gPtr[0];
                    gPtr++;
                    i += width;
                }
            } else {
                for (int32_t r = -radius; r <= radius; r ++) {
                    int validH = y + r;
                    // Clamp to zero and width
                    if (validH < 0) {
                        validH = 0;
                    }
                    if (validH > height - 1) {
                        validH = height - 1;
                    }

                    const uint8_t *i = input + validH * width;
                    currentPixel = (float) (*i);
                    blurredPixel += currentPixel * gPtr[0];
                    gPtr++;
                }
            }
            *output = (uint8_t) blurredPixel;
            output++;
        }
    }
}

}; // namespace uirenderer
}; // namespace android