blob: 444f93a016a6870e5b099a19eb10a879b53d62e2 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
|
/*
**
** Copyright 2009, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#ifndef ANDROID_AUDIO_COMMON_H
#define ANDROID_AUDIO_COMMON_H
#include <stdint.h>
#include <stddef.h>
namespace android {
// Audio coefficient type.
typedef int32_t audio_coef_t;
// Audio sample type.
typedef int32_t audio_sample_t;
// Accumulator type for coef x sample.
typedef int64_t audio_coef_sample_acc_t;
// Number of fraction bits for audio coefficient.
static const int AUDIO_COEF_PRECISION = 24;
// Audio coefficient with the value of 1.0
static const audio_coef_t AUDIO_COEF_ONE = 1 << AUDIO_COEF_PRECISION;
// Audio coefficient with the value of 0.5
static const audio_coef_t AUDIO_COEF_HALF = 1 << (AUDIO_COEF_PRECISION - 1);
// Number of fraction bits for audio sample.
static const int AUDIO_SAMPLE_PRECISION = 24;
// Audio sample with the value of 1.0
static const audio_sample_t AUDIO_SAMPLE_ONE = 1 << AUDIO_SAMPLE_PRECISION;
// TODO: These are just temporary naive implementations of the necessary
// arithmetic operations needed for the filter. They should be moved to a more
// generic location and implemented more efficiently.
// Multiply a sample by a coefficient to return an accumulator.
inline audio_coef_sample_acc_t mul_coef_sample(audio_coef_t x, audio_sample_t y) {
return ((audio_coef_sample_acc_t) (x)) * y;
}
// Multiply and accumulate sample by a coefficient to return an accumulator.
inline audio_coef_sample_acc_t mac_coef_sample(audio_coef_t x, audio_sample_t y, audio_coef_sample_acc_t acc) {
return acc + ((audio_coef_sample_acc_t) (x)) * y;
}
// Convert a sample-coefficient accumulator to a sample.
inline audio_sample_t coef_sample_acc_to_sample(audio_coef_sample_acc_t acc) {
if (acc < 0) {
acc += AUDIO_COEF_ONE - 1;
}
return (audio_sample_t) (acc >> AUDIO_COEF_PRECISION);
}
// Convert a S15 sample to audio_sample_t
inline audio_sample_t s15_to_audio_sample_t(int16_t s15) {
return audio_sample_t(s15) << 9;
}
// Convert a audio_sample_t sample to S15 (no clipping)
inline int16_t audio_sample_t_to_s15(audio_sample_t sample) {
return int16_t((sample + (1 << 8)) >> 9);
}
// Convert a audio_sample_t sample to S15 (with clipping)
inline int16_t audio_sample_t_to_s15_clip(audio_sample_t sample) {
// TODO: optimize for targets supporting this as an atomic operation.
if (__builtin_expect(sample >= (0x7FFF << 9), 0)) {
return 0x7FFF;
} else if (__builtin_expect(sample <= -(0x8000 << 9), 0)) {
return 0x8000;
} else {
return audio_sample_t_to_s15(sample);
}
}
////////////////////////////////////////////////////////////////////////////////
}
#endif // ANDROID_AUDIO_COMMON_H
|