summaryrefslogtreecommitdiffstats
path: root/opengl/java/android/opengl/Matrix.java
blob: ce3f57ebfea1d313b88fe4a94d73cc67ce8c1a92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
/*
 * Copyright (C) 2007 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.opengl;

/**
 * Matrix math utilities. These methods operate on OpenGL ES format
 * matrices and vectors stored in float arrays.
 * <p>
 * Matrices are 4 x 4 column-vector matrices stored in column-major
 * order:
 * <pre>
 *  m[offset +  0] m[offset +  4] m[offset +  8] m[offset + 12]
 *  m[offset +  1] m[offset +  5] m[offset +  9] m[offset + 13]
 *  m[offset +  2] m[offset +  6] m[offset + 10] m[offset + 14]
 *  m[offset +  3] m[offset +  7] m[offset + 11] m[offset + 15]</pre>
 *
 * Vectors are 4 x 1 column vectors stored in order:
 * <pre>
 * v[offset + 0]
 * v[offset + 1]
 * v[offset + 2]
 * v[offset + 3]</pre>
 */
public class Matrix {

    /** Temporary memory for operations that need temporary matrix data. */
    private final static float[] sTemp = new float[32];

    /**
     * @deprecated All methods are static, do not instantiate this class.
     */
    @Deprecated
    public Matrix() {}

    /**
     * Multiplies two 4x4 matrices together and stores the result in a third 4x4
     * matrix. In matrix notation: result = lhs x rhs. Due to the way
     * matrix multiplication works, the result matrix will have the same
     * effect as first multiplying by the rhs matrix, then multiplying by
     * the lhs matrix. This is the opposite of what you might expect.
     * <p>
     * The same float array may be passed for result, lhs, and/or rhs. However,
     * the result element values are undefined if the result elements overlap
     * either the lhs or rhs elements.
     *
     * @param result The float array that holds the result.
     * @param resultOffset The offset into the result array where the result is
     *        stored.
     * @param lhs The float array that holds the left-hand-side matrix.
     * @param lhsOffset The offset into the lhs array where the lhs is stored
     * @param rhs The float array that holds the right-hand-side matrix.
     * @param rhsOffset The offset into the rhs array where the rhs is stored.
     *
     * @throws IllegalArgumentException if result, lhs, or rhs are null, or if
     * resultOffset + 16 > result.length or lhsOffset + 16 > lhs.length or
     * rhsOffset + 16 > rhs.length.
     */
    public static native void multiplyMM(float[] result, int resultOffset,
            float[] lhs, int lhsOffset, float[] rhs, int rhsOffset);

    /**
     * Multiplies a 4 element vector by a 4x4 matrix and stores the result in a
     * 4-element column vector. In matrix notation: result = lhs x rhs
     * <p>
     * The same float array may be passed for resultVec, lhsMat, and/or rhsVec.
     * However, the resultVec element values are undefined if the resultVec
     * elements overlap either the lhsMat or rhsVec elements.
     *
     * @param resultVec The float array that holds the result vector.
     * @param resultVecOffset The offset into the result array where the result
     *        vector is stored.
     * @param lhsMat The float array that holds the left-hand-side matrix.
     * @param lhsMatOffset The offset into the lhs array where the lhs is stored
     * @param rhsVec The float array that holds the right-hand-side vector.
     * @param rhsVecOffset The offset into the rhs vector where the rhs vector
     *        is stored.
     *
     * @throws IllegalArgumentException if resultVec, lhsMat,
     * or rhsVec are null, or if resultVecOffset + 4 > resultVec.length
     * or lhsMatOffset + 16 > lhsMat.length or
     * rhsVecOffset + 4 > rhsVec.length.
     */
    public static native void multiplyMV(float[] resultVec,
            int resultVecOffset, float[] lhsMat, int lhsMatOffset,
            float[] rhsVec, int rhsVecOffset);

    /**
     * Transposes a 4 x 4 matrix.
     * <p>
     * mTrans and m must not overlap.
     *
     * @param mTrans the array that holds the output transposed matrix
     * @param mTransOffset an offset into mTrans where the transposed matrix is
     *        stored.
     * @param m the input array
     * @param mOffset an offset into m where the input matrix is stored.
     */
    public static void transposeM(float[] mTrans, int mTransOffset, float[] m,
            int mOffset) {
        for (int i = 0; i < 4; i++) {
            int mBase = i * 4 + mOffset;
            mTrans[i + mTransOffset] = m[mBase];
            mTrans[i + 4 + mTransOffset] = m[mBase + 1];
            mTrans[i + 8 + mTransOffset] = m[mBase + 2];
            mTrans[i + 12 + mTransOffset] = m[mBase + 3];
        }
    }

    /**
     * Inverts a 4 x 4 matrix.
     * <p>
     * mInv and m must not overlap.
     *
     * @param mInv the array that holds the output inverted matrix
     * @param mInvOffset an offset into mInv where the inverted matrix is
     *        stored.
     * @param m the input array
     * @param mOffset an offset into m where the input matrix is stored.
     * @return true if the matrix could be inverted, false if it could not.
     */
    public static boolean invertM(float[] mInv, int mInvOffset, float[] m,
            int mOffset) {
        // Invert a 4 x 4 matrix using Cramer's Rule

        // transpose matrix
        final float src0  = m[mOffset +  0];
        final float src4  = m[mOffset +  1];
        final float src8  = m[mOffset +  2];
        final float src12 = m[mOffset +  3];

        final float src1  = m[mOffset +  4];
        final float src5  = m[mOffset +  5];
        final float src9  = m[mOffset +  6];
        final float src13 = m[mOffset +  7];

        final float src2  = m[mOffset +  8];
        final float src6  = m[mOffset +  9];
        final float src10 = m[mOffset + 10];
        final float src14 = m[mOffset + 11];

        final float src3  = m[mOffset + 12];
        final float src7  = m[mOffset + 13];
        final float src11 = m[mOffset + 14];
        final float src15 = m[mOffset + 15];

        // calculate pairs for first 8 elements (cofactors)
        final float atmp0  = src10 * src15;
        final float atmp1  = src11 * src14;
        final float atmp2  = src9  * src15;
        final float atmp3  = src11 * src13;
        final float atmp4  = src9  * src14;
        final float atmp5  = src10 * src13;
        final float atmp6  = src8  * src15;
        final float atmp7  = src11 * src12;
        final float atmp8  = src8  * src14;
        final float atmp9  = src10 * src12;
        final float atmp10 = src8  * src13;
        final float atmp11 = src9  * src12;

        // calculate first 8 elements (cofactors)
        final float dst0  = (atmp0 * src5 + atmp3 * src6 + atmp4  * src7)
                          - (atmp1 * src5 + atmp2 * src6 + atmp5  * src7);
        final float dst1  = (atmp1 * src4 + atmp6 * src6 + atmp9  * src7)
                          - (atmp0 * src4 + atmp7 * src6 + atmp8  * src7);
        final float dst2  = (atmp2 * src4 + atmp7 * src5 + atmp10 * src7)
                          - (atmp3 * src4 + atmp6 * src5 + atmp11 * src7);
        final float dst3  = (atmp5 * src4 + atmp8 * src5 + atmp11 * src6)
                          - (atmp4 * src4 + atmp9 * src5 + atmp10 * src6);
        final float dst4  = (atmp1 * src1 + atmp2 * src2 + atmp5  * src3)
                          - (atmp0 * src1 + atmp3 * src2 + atmp4  * src3);
        final float dst5  = (atmp0 * src0 + atmp7 * src2 + atmp8  * src3)
                          - (atmp1 * src0 + atmp6 * src2 + atmp9  * src3);
        final float dst6  = (atmp3 * src0 + atmp6 * src1 + atmp11 * src3)
                          - (atmp2 * src0 + atmp7 * src1 + atmp10 * src3);
        final float dst7  = (atmp4 * src0 + atmp9 * src1 + atmp10 * src2)
                          - (atmp5 * src0 + atmp8 * src1 + atmp11 * src2);

        // calculate pairs for second 8 elements (cofactors)
        final float btmp0  = src2 * src7;
        final float btmp1  = src3 * src6;
        final float btmp2  = src1 * src7;
        final float btmp3  = src3 * src5;
        final float btmp4  = src1 * src6;
        final float btmp5  = src2 * src5;
        final float btmp6  = src0 * src7;
        final float btmp7  = src3 * src4;
        final float btmp8  = src0 * src6;
        final float btmp9  = src2 * src4;
        final float btmp10 = src0 * src5;
        final float btmp11 = src1 * src4;

        // calculate second 8 elements (cofactors)
        final float dst8  = (btmp0  * src13 + btmp3  * src14 + btmp4  * src15)
                          - (btmp1  * src13 + btmp2  * src14 + btmp5  * src15);
        final float dst9  = (btmp1  * src12 + btmp6  * src14 + btmp9  * src15)
                          - (btmp0  * src12 + btmp7  * src14 + btmp8  * src15);
        final float dst10 = (btmp2  * src12 + btmp7  * src13 + btmp10 * src15)
                          - (btmp3  * src12 + btmp6  * src13 + btmp11 * src15);
        final float dst11 = (btmp5  * src12 + btmp8  * src13 + btmp11 * src14)
                          - (btmp4  * src12 + btmp9  * src13 + btmp10 * src14);
        final float dst12 = (btmp2  * src10 + btmp5  * src11 + btmp1  * src9 )
                          - (btmp4  * src11 + btmp0  * src9  + btmp3  * src10);
        final float dst13 = (btmp8  * src11 + btmp0  * src8  + btmp7  * src10)
                          - (btmp6  * src10 + btmp9  * src11 + btmp1  * src8 );
        final float dst14 = (btmp6  * src9  + btmp11 * src11 + btmp3  * src8 )
                          - (btmp10 * src11 + btmp2  * src8  + btmp7  * src9 );
        final float dst15 = (btmp10 * src10 + btmp4  * src8  + btmp9  * src9 )
                          - (btmp8  * src9  + btmp11 * src10 + btmp5  * src8 );

        // calculate determinant
        final float det =
                src0 * dst0 + src1 * dst1 + src2 * dst2 + src3 * dst3;

        if (det == 0.0f) {
            return false;
        }

        // calculate matrix inverse
        final float invdet = 1.0f / det;
        mInv[     mInvOffset] = dst0  * invdet;
        mInv[ 1 + mInvOffset] = dst1  * invdet;
        mInv[ 2 + mInvOffset] = dst2  * invdet;
        mInv[ 3 + mInvOffset] = dst3  * invdet;

        mInv[ 4 + mInvOffset] = dst4  * invdet;
        mInv[ 5 + mInvOffset] = dst5  * invdet;
        mInv[ 6 + mInvOffset] = dst6  * invdet;
        mInv[ 7 + mInvOffset] = dst7  * invdet;

        mInv[ 8 + mInvOffset] = dst8  * invdet;
        mInv[ 9 + mInvOffset] = dst9  * invdet;
        mInv[10 + mInvOffset] = dst10 * invdet;
        mInv[11 + mInvOffset] = dst11 * invdet;

        mInv[12 + mInvOffset] = dst12 * invdet;
        mInv[13 + mInvOffset] = dst13 * invdet;
        mInv[14 + mInvOffset] = dst14 * invdet;
        mInv[15 + mInvOffset] = dst15 * invdet;

        return true;
    }

    /**
     * Computes an orthographic projection matrix.
     *
     * @param m returns the result
     * @param mOffset
     * @param left
     * @param right
     * @param bottom
     * @param top
     * @param near
     * @param far
     */
    public static void orthoM(float[] m, int mOffset,
        float left, float right, float bottom, float top,
        float near, float far) {
        if (left == right) {
            throw new IllegalArgumentException("left == right");
        }
        if (bottom == top) {
            throw new IllegalArgumentException("bottom == top");
        }
        if (near == far) {
            throw new IllegalArgumentException("near == far");
        }

        final float r_width  = 1.0f / (right - left);
        final float r_height = 1.0f / (top - bottom);
        final float r_depth  = 1.0f / (far - near);
        final float x =  2.0f * (r_width);
        final float y =  2.0f * (r_height);
        final float z = -2.0f * (r_depth);
        final float tx = -(right + left) * r_width;
        final float ty = -(top + bottom) * r_height;
        final float tz = -(far + near) * r_depth;
        m[mOffset + 0] = x;
        m[mOffset + 5] = y;
        m[mOffset +10] = z;
        m[mOffset +12] = tx;
        m[mOffset +13] = ty;
        m[mOffset +14] = tz;
        m[mOffset +15] = 1.0f;
        m[mOffset + 1] = 0.0f;
        m[mOffset + 2] = 0.0f;
        m[mOffset + 3] = 0.0f;
        m[mOffset + 4] = 0.0f;
        m[mOffset + 6] = 0.0f;
        m[mOffset + 7] = 0.0f;
        m[mOffset + 8] = 0.0f;
        m[mOffset + 9] = 0.0f;
        m[mOffset + 11] = 0.0f;
    }


    /**
     * Defines a projection matrix in terms of six clip planes.
     *
     * @param m the float array that holds the output perspective matrix
     * @param offset the offset into float array m where the perspective
     *        matrix data is written
     * @param left
     * @param right
     * @param bottom
     * @param top
     * @param near
     * @param far
     */
    public static void frustumM(float[] m, int offset,
            float left, float right, float bottom, float top,
            float near, float far) {
        if (left == right) {
            throw new IllegalArgumentException("left == right");
        }
        if (top == bottom) {
            throw new IllegalArgumentException("top == bottom");
        }
        if (near == far) {
            throw new IllegalArgumentException("near == far");
        }
        if (near <= 0.0f) {
            throw new IllegalArgumentException("near <= 0.0f");
        }
        if (far <= 0.0f) {
            throw new IllegalArgumentException("far <= 0.0f");
        }
        final float r_width  = 1.0f / (right - left);
        final float r_height = 1.0f / (top - bottom);
        final float r_depth  = 1.0f / (near - far);
        final float x = 2.0f * (near * r_width);
        final float y = 2.0f * (near * r_height);
        final float A = (right + left) * r_width;
        final float B = (top + bottom) * r_height;
        final float C = (far + near) * r_depth;
        final float D = 2.0f * (far * near * r_depth);
        m[offset + 0] = x;
        m[offset + 5] = y;
        m[offset + 8] = A;
        m[offset +  9] = B;
        m[offset + 10] = C;
        m[offset + 14] = D;
        m[offset + 11] = -1.0f;
        m[offset +  1] = 0.0f;
        m[offset +  2] = 0.0f;
        m[offset +  3] = 0.0f;
        m[offset +  4] = 0.0f;
        m[offset +  6] = 0.0f;
        m[offset +  7] = 0.0f;
        m[offset + 12] = 0.0f;
        m[offset + 13] = 0.0f;
        m[offset + 15] = 0.0f;
    }

    /**
     * Defines a projection matrix in terms of a field of view angle, an
     * aspect ratio, and z clip planes.
     *
     * @param m the float array that holds the perspective matrix
     * @param offset the offset into float array m where the perspective
     *        matrix data is written
     * @param fovy field of view in y direction, in degrees
     * @param aspect width to height aspect ratio of the viewport
     * @param zNear
     * @param zFar
     */
    public static void perspectiveM(float[] m, int offset,
          float fovy, float aspect, float zNear, float zFar) {
        float f = 1.0f / (float) Math.tan(fovy * (Math.PI / 360.0));
        float rangeReciprocal = 1.0f / (zNear - zFar);

        m[offset + 0] = f / aspect;
        m[offset + 1] = 0.0f;
        m[offset + 2] = 0.0f;
        m[offset + 3] = 0.0f;

        m[offset + 4] = 0.0f;
        m[offset + 5] = f;
        m[offset + 6] = 0.0f;
        m[offset + 7] = 0.0f;

        m[offset + 8] = 0.0f;
        m[offset + 9] = 0.0f;
        m[offset + 10] = (zFar + zNear) * rangeReciprocal;
        m[offset + 11] = -1.0f;

        m[offset + 12] = 0.0f;
        m[offset + 13] = 0.0f;
        m[offset + 14] = 2.0f * zFar * zNear * rangeReciprocal;
        m[offset + 15] = 0.0f;
    }

    /**
     * Computes the length of a vector.
     *
     * @param x x coordinate of a vector
     * @param y y coordinate of a vector
     * @param z z coordinate of a vector
     * @return the length of a vector
     */
    public static float length(float x, float y, float z) {
        return (float) Math.sqrt(x * x + y * y + z * z);
    }

    /**
     * Sets matrix m to the identity matrix.
     *
     * @param sm returns the result
     * @param smOffset index into sm where the result matrix starts
     */
    public static void setIdentityM(float[] sm, int smOffset) {
        for (int i=0 ; i<16 ; i++) {
            sm[smOffset + i] = 0;
        }
        for(int i = 0; i < 16; i += 5) {
            sm[smOffset + i] = 1.0f;
        }
    }

    /**
     * Scales matrix m by x, y, and z, putting the result in sm.
     * <p>
     * m and sm must not overlap.
     *
     * @param sm returns the result
     * @param smOffset index into sm where the result matrix starts
     * @param m source matrix
     * @param mOffset index into m where the source matrix starts
     * @param x scale factor x
     * @param y scale factor y
     * @param z scale factor z
     */
    public static void scaleM(float[] sm, int smOffset,
            float[] m, int mOffset,
            float x, float y, float z) {
        for (int i=0 ; i<4 ; i++) {
            int smi = smOffset + i;
            int mi = mOffset + i;
            sm[     smi] = m[     mi] * x;
            sm[ 4 + smi] = m[ 4 + mi] * y;
            sm[ 8 + smi] = m[ 8 + mi] * z;
            sm[12 + smi] = m[12 + mi];
        }
    }

    /**
     * Scales matrix m in place by sx, sy, and sz.
     *
     * @param m matrix to scale
     * @param mOffset index into m where the matrix starts
     * @param x scale factor x
     * @param y scale factor y
     * @param z scale factor z
     */
    public static void scaleM(float[] m, int mOffset,
            float x, float y, float z) {
        for (int i=0 ; i<4 ; i++) {
            int mi = mOffset + i;
            m[     mi] *= x;
            m[ 4 + mi] *= y;
            m[ 8 + mi] *= z;
        }
    }

    /**
     * Translates matrix m by x, y, and z, putting the result in tm.
     * <p>
     * m and tm must not overlap.
     *
     * @param tm returns the result
     * @param tmOffset index into sm where the result matrix starts
     * @param m source matrix
     * @param mOffset index into m where the source matrix starts
     * @param x translation factor x
     * @param y translation factor y
     * @param z translation factor z
     */
    public static void translateM(float[] tm, int tmOffset,
            float[] m, int mOffset,
            float x, float y, float z) {
        for (int i=0 ; i<12 ; i++) {
            tm[tmOffset + i] = m[mOffset + i];
        }
        for (int i=0 ; i<4 ; i++) {
            int tmi = tmOffset + i;
            int mi = mOffset + i;
            tm[12 + tmi] = m[mi] * x + m[4 + mi] * y + m[8 + mi] * z +
                m[12 + mi];
        }
    }

    /**
     * Translates matrix m by x, y, and z in place.
     *
     * @param m matrix
     * @param mOffset index into m where the matrix starts
     * @param x translation factor x
     * @param y translation factor y
     * @param z translation factor z
     */
    public static void translateM(
            float[] m, int mOffset,
            float x, float y, float z) {
        for (int i=0 ; i<4 ; i++) {
            int mi = mOffset + i;
            m[12 + mi] += m[mi] * x + m[4 + mi] * y + m[8 + mi] * z;
        }
    }

    /**
     * Rotates matrix m by angle a (in degrees) around the axis (x, y, z).
     * <p>
     * m and rm must not overlap.
     *
     * @param rm returns the result
     * @param rmOffset index into rm where the result matrix starts
     * @param m source matrix
     * @param mOffset index into m where the source matrix starts
     * @param a angle to rotate in degrees
     * @param x X axis component
     * @param y Y axis component
     * @param z Z axis component
     */
    public static void rotateM(float[] rm, int rmOffset,
            float[] m, int mOffset,
            float a, float x, float y, float z) {
        synchronized(sTemp) {
            setRotateM(sTemp, 0, a, x, y, z);
            multiplyMM(rm, rmOffset, m, mOffset, sTemp, 0);
        }
    }

    /**
     * Rotates matrix m in place by angle a (in degrees)
     * around the axis (x, y, z).
     *
     * @param m source matrix
     * @param mOffset index into m where the matrix starts
     * @param a angle to rotate in degrees
     * @param x X axis component
     * @param y Y axis component
     * @param z Z axis component
     */
    public static void rotateM(float[] m, int mOffset,
            float a, float x, float y, float z) {
        synchronized(sTemp) {
            setRotateM(sTemp, 0, a, x, y, z);
            multiplyMM(sTemp, 16, m, mOffset, sTemp, 0);
            System.arraycopy(sTemp, 16, m, mOffset, 16);
        }
    }

    /**
     * Creates a matrix for rotation by angle a (in degrees)
     * around the axis (x, y, z).
     * <p>
     * An optimized path will be used for rotation about a major axis
     * (e.g. x=1.0f y=0.0f z=0.0f).
     *
     * @param rm returns the result
     * @param rmOffset index into rm where the result matrix starts
     * @param a angle to rotate in degrees
     * @param x X axis component
     * @param y Y axis component
     * @param z Z axis component
     */
    public static void setRotateM(float[] rm, int rmOffset,
            float a, float x, float y, float z) {
        rm[rmOffset + 3] = 0;
        rm[rmOffset + 7] = 0;
        rm[rmOffset + 11]= 0;
        rm[rmOffset + 12]= 0;
        rm[rmOffset + 13]= 0;
        rm[rmOffset + 14]= 0;
        rm[rmOffset + 15]= 1;
        a *= (float) (Math.PI / 180.0f);
        float s = (float) Math.sin(a);
        float c = (float) Math.cos(a);
        if (1.0f == x && 0.0f == y && 0.0f == z) {
            rm[rmOffset + 5] = c;   rm[rmOffset + 10]= c;
            rm[rmOffset + 6] = s;   rm[rmOffset + 9] = -s;
            rm[rmOffset + 1] = 0;   rm[rmOffset + 2] = 0;
            rm[rmOffset + 4] = 0;   rm[rmOffset + 8] = 0;
            rm[rmOffset + 0] = 1;
        } else if (0.0f == x && 1.0f == y && 0.0f == z) {
            rm[rmOffset + 0] = c;   rm[rmOffset + 10]= c;
            rm[rmOffset + 8] = s;   rm[rmOffset + 2] = -s;
            rm[rmOffset + 1] = 0;   rm[rmOffset + 4] = 0;
            rm[rmOffset + 6] = 0;   rm[rmOffset + 9] = 0;
            rm[rmOffset + 5] = 1;
        } else if (0.0f == x && 0.0f == y && 1.0f == z) {
            rm[rmOffset + 0] = c;   rm[rmOffset + 5] = c;
            rm[rmOffset + 1] = s;   rm[rmOffset + 4] = -s;
            rm[rmOffset + 2] = 0;   rm[rmOffset + 6] = 0;
            rm[rmOffset + 8] = 0;   rm[rmOffset + 9] = 0;
            rm[rmOffset + 10]= 1;
        } else {
            float len = length(x, y, z);
            if (1.0f != len) {
                float recipLen = 1.0f / len;
                x *= recipLen;
                y *= recipLen;
                z *= recipLen;
            }
            float nc = 1.0f - c;
            float xy = x * y;
            float yz = y * z;
            float zx = z * x;
            float xs = x * s;
            float ys = y * s;
            float zs = z * s;
            rm[rmOffset +  0] = x*x*nc +  c;
            rm[rmOffset +  4] =  xy*nc - zs;
            rm[rmOffset +  8] =  zx*nc + ys;
            rm[rmOffset +  1] =  xy*nc + zs;
            rm[rmOffset +  5] = y*y*nc +  c;
            rm[rmOffset +  9] =  yz*nc - xs;
            rm[rmOffset +  2] =  zx*nc - ys;
            rm[rmOffset +  6] =  yz*nc + xs;
            rm[rmOffset + 10] = z*z*nc +  c;
        }
    }

    /**
     * Converts Euler angles to a rotation matrix.
     *
     * @param rm returns the result
     * @param rmOffset index into rm where the result matrix starts
     * @param x angle of rotation, in degrees
     * @param y angle of rotation, in degrees
     * @param z angle of rotation, in degrees
     */
    public static void setRotateEulerM(float[] rm, int rmOffset,
            float x, float y, float z) {
        x *= (float) (Math.PI / 180.0f);
        y *= (float) (Math.PI / 180.0f);
        z *= (float) (Math.PI / 180.0f);
        float cx = (float) Math.cos(x);
        float sx = (float) Math.sin(x);
        float cy = (float) Math.cos(y);
        float sy = (float) Math.sin(y);
        float cz = (float) Math.cos(z);
        float sz = (float) Math.sin(z);
        float cxsy = cx * sy;
        float sxsy = sx * sy;

        rm[rmOffset + 0]  =   cy * cz;
        rm[rmOffset + 1]  =  -cy * sz;
        rm[rmOffset + 2]  =   sy;
        rm[rmOffset + 3]  =  0.0f;

        rm[rmOffset + 4]  =  cxsy * cz + cx * sz;
        rm[rmOffset + 5]  = -cxsy * sz + cx * cz;
        rm[rmOffset + 6]  =  -sx * cy;
        rm[rmOffset + 7]  =  0.0f;

        rm[rmOffset + 8]  = -sxsy * cz + sx * sz;
        rm[rmOffset + 9]  =  sxsy * sz + sx * cz;
        rm[rmOffset + 10] =  cx * cy;
        rm[rmOffset + 11] =  0.0f;

        rm[rmOffset + 12] =  0.0f;
        rm[rmOffset + 13] =  0.0f;
        rm[rmOffset + 14] =  0.0f;
        rm[rmOffset + 15] =  1.0f;
    }

    /**
     * Defines a viewing transformation in terms of an eye point, a center of
     * view, and an up vector.
     *
     * @param rm returns the result
     * @param rmOffset index into rm where the result matrix starts
     * @param eyeX eye point X
     * @param eyeY eye point Y
     * @param eyeZ eye point Z
     * @param centerX center of view X
     * @param centerY center of view Y
     * @param centerZ center of view Z
     * @param upX up vector X
     * @param upY up vector Y
     * @param upZ up vector Z
     */
    public static void setLookAtM(float[] rm, int rmOffset,
            float eyeX, float eyeY, float eyeZ,
            float centerX, float centerY, float centerZ, float upX, float upY,
            float upZ) {

        // See the OpenGL GLUT documentation for gluLookAt for a description
        // of the algorithm. We implement it in a straightforward way:

        float fx = centerX - eyeX;
        float fy = centerY - eyeY;
        float fz = centerZ - eyeZ;

        // Normalize f
        float rlf = 1.0f / Matrix.length(fx, fy, fz);
        fx *= rlf;
        fy *= rlf;
        fz *= rlf;

        // compute s = f x up (x means "cross product")
        float sx = fy * upZ - fz * upY;
        float sy = fz * upX - fx * upZ;
        float sz = fx * upY - fy * upX;

        // and normalize s
        float rls = 1.0f / Matrix.length(sx, sy, sz);
        sx *= rls;
        sy *= rls;
        sz *= rls;

        // compute u = s x f
        float ux = sy * fz - sz * fy;
        float uy = sz * fx - sx * fz;
        float uz = sx * fy - sy * fx;

        rm[rmOffset + 0] = sx;
        rm[rmOffset + 1] = ux;
        rm[rmOffset + 2] = -fx;
        rm[rmOffset + 3] = 0.0f;

        rm[rmOffset + 4] = sy;
        rm[rmOffset + 5] = uy;
        rm[rmOffset + 6] = -fy;
        rm[rmOffset + 7] = 0.0f;

        rm[rmOffset + 8] = sz;
        rm[rmOffset + 9] = uz;
        rm[rmOffset + 10] = -fz;
        rm[rmOffset + 11] = 0.0f;

        rm[rmOffset + 12] = 0.0f;
        rm[rmOffset + 13] = 0.0f;
        rm[rmOffset + 14] = 0.0f;
        rm[rmOffset + 15] = 1.0f;

        translateM(rm, rmOffset, -eyeX, -eyeY, -eyeZ);
    }
}