1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
|
/*
* Copyright (C) 2009-2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.renderscript;
import java.lang.Math;
/**
* Class for exposing the native RenderScript rs_matrix4x4 type back to the Android system.
*
**/
public class Matrix4f {
/**
* Creates a new identity 4x4 matrix
*/
public Matrix4f() {
mMat = new float[16];
loadIdentity();
}
/**
* Creates a new matrix and sets its values from the given
* parameter
*
* @param dataArray values to set the matrix to, must be 16
* floats long
*/
public Matrix4f(float[] dataArray) {
mMat = new float[16];
System.arraycopy(dataArray, 0, mMat, 0, mMat.length);
}
/**
* Return a reference to the internal array representing matrix
* values. Modifying this array will also change the matrix
*
* @return internal array representing the matrix
*/
public float[] getArray() {
return mMat;
}
/**
* Returns the value for a given row and column
*
* @param x column of the value to return
* @param y row of the value to return
*
* @return value in the yth row and xth column
*/
public float get(int x, int y) {
return mMat[x*4 + y];
}
/**
* Sets the value for a given row and column
*
* @param x column of the value to set
* @param y row of the value to set
*/
public void set(int x, int y, float v) {
mMat[x*4 + y] = v;
}
/**
* Sets the matrix values to identity
*/
public void loadIdentity() {
mMat[0] = 1;
mMat[1] = 0;
mMat[2] = 0;
mMat[3] = 0;
mMat[4] = 0;
mMat[5] = 1;
mMat[6] = 0;
mMat[7] = 0;
mMat[8] = 0;
mMat[9] = 0;
mMat[10] = 1;
mMat[11] = 0;
mMat[12] = 0;
mMat[13] = 0;
mMat[14] = 0;
mMat[15] = 1;
}
/**
* Sets the values of the matrix to those of the parameter
*
* @param src matrix to load the values from
*/
public void load(Matrix4f src) {
System.arraycopy(src.getArray(), 0, mMat, 0, mMat.length);
}
/**
* Sets the values of the matrix to those of the parameter
*
* @param src matrix to load the values from
* @hide
*/
public void load(Matrix3f src) {
mMat[0] = src.mMat[0];
mMat[1] = src.mMat[1];
mMat[2] = src.mMat[2];
mMat[3] = 0;
mMat[4] = src.mMat[3];
mMat[5] = src.mMat[4];
mMat[6] = src.mMat[5];
mMat[7] = 0;
mMat[8] = src.mMat[6];
mMat[9] = src.mMat[7];
mMat[10] = src.mMat[8];
mMat[11] = 0;
mMat[12] = 0;
mMat[13] = 0;
mMat[14] = 0;
mMat[15] = 1;
}
/**
* Sets current values to be a rotation matrix of certain angle
* about a given axis
*
* @param rot angle of rotation
* @param x rotation axis x
* @param y rotation axis y
* @param z rotation axis z
*/
public void loadRotate(float rot, float x, float y, float z) {
float c, s;
mMat[3] = 0;
mMat[7] = 0;
mMat[11]= 0;
mMat[12]= 0;
mMat[13]= 0;
mMat[14]= 0;
mMat[15]= 1;
rot *= (float)(java.lang.Math.PI / 180.0f);
c = (float)java.lang.Math.cos(rot);
s = (float)java.lang.Math.sin(rot);
float len = (float)java.lang.Math.sqrt(x*x + y*y + z*z);
if (!(len != 1)) {
float recipLen = 1.f / len;
x *= recipLen;
y *= recipLen;
z *= recipLen;
}
float nc = 1.0f - c;
float xy = x * y;
float yz = y * z;
float zx = z * x;
float xs = x * s;
float ys = y * s;
float zs = z * s;
mMat[ 0] = x*x*nc + c;
mMat[ 4] = xy*nc - zs;
mMat[ 8] = zx*nc + ys;
mMat[ 1] = xy*nc + zs;
mMat[ 5] = y*y*nc + c;
mMat[ 9] = yz*nc - xs;
mMat[ 2] = zx*nc - ys;
mMat[ 6] = yz*nc + xs;
mMat[10] = z*z*nc + c;
}
/**
* Sets current values to be a scale matrix of given dimensions
*
* @param x scale component x
* @param y scale component y
* @param z scale component z
*/
public void loadScale(float x, float y, float z) {
loadIdentity();
mMat[0] = x;
mMat[5] = y;
mMat[10] = z;
}
/**
* Sets current values to be a translation matrix of given
* dimensions
*
* @param x translation component x
* @param y translation component y
* @param z translation component z
*/
public void loadTranslate(float x, float y, float z) {
loadIdentity();
mMat[12] = x;
mMat[13] = y;
mMat[14] = z;
}
/**
* Sets current values to be the result of multiplying two given
* matrices
*
* @param lhs left hand side matrix
* @param rhs right hand side matrix
*/
public void loadMultiply(Matrix4f lhs, Matrix4f rhs) {
for (int i=0 ; i<4 ; i++) {
float ri0 = 0;
float ri1 = 0;
float ri2 = 0;
float ri3 = 0;
for (int j=0 ; j<4 ; j++) {
float rhs_ij = rhs.get(i,j);
ri0 += lhs.get(j,0) * rhs_ij;
ri1 += lhs.get(j,1) * rhs_ij;
ri2 += lhs.get(j,2) * rhs_ij;
ri3 += lhs.get(j,3) * rhs_ij;
}
set(i,0, ri0);
set(i,1, ri1);
set(i,2, ri2);
set(i,3, ri3);
}
}
/**
* Set current values to be an orthographic projection matrix
*
* @param l location of the left vertical clipping plane
* @param r location of the right vertical clipping plane
* @param b location of the bottom horizontal clipping plane
* @param t location of the top horizontal clipping plane
* @param n location of the near clipping plane
* @param f location of the far clipping plane
*/
public void loadOrtho(float l, float r, float b, float t, float n, float f) {
loadIdentity();
mMat[0] = 2 / (r - l);
mMat[5] = 2 / (t - b);
mMat[10]= -2 / (f - n);
mMat[12]= -(r + l) / (r - l);
mMat[13]= -(t + b) / (t - b);
mMat[14]= -(f + n) / (f - n);
}
/**
* Set current values to be an orthographic projection matrix
* with the right and bottom clipping planes set to the given
* values. Left and top clipping planes are set to 0. Near and
* far are set to -1, 1 respectively
*
* @param w location of the right vertical clipping plane
* @param h location of the bottom horizontal clipping plane
*
*/
public void loadOrthoWindow(int w, int h) {
loadOrtho(0,w, h,0, -1,1);
}
/**
* Sets current values to be a perspective projection matrix
*
* @param l location of the left vertical clipping plane
* @param r location of the right vertical clipping plane
* @param b location of the bottom horizontal clipping plane
* @param t location of the top horizontal clipping plane
* @param n location of the near clipping plane, must be positive
* @param f location of the far clipping plane, must be positive
*
*/
public void loadFrustum(float l, float r, float b, float t, float n, float f) {
loadIdentity();
mMat[0] = 2 * n / (r - l);
mMat[5] = 2 * n / (t - b);
mMat[8] = (r + l) / (r - l);
mMat[9] = (t + b) / (t - b);
mMat[10]= -(f + n) / (f - n);
mMat[11]= -1;
mMat[14]= -2*f*n / (f - n);
mMat[15]= 0;
}
/**
* Sets current values to be a perspective projection matrix
*
* @param fovy vertical field of view angle in degrees
* @param aspect aspect ratio of the screen
* @param near near cliping plane, must be positive
* @param far far clipping plane, must be positive
*/
public void loadPerspective(float fovy, float aspect, float near, float far) {
float top = near * (float)Math.tan((float) (fovy * Math.PI / 360.0f));
float bottom = -top;
float left = bottom * aspect;
float right = top * aspect;
loadFrustum(left, right, bottom, top, near, far);
}
/**
* Helper function to set the current values to a perspective
* projection matrix with aspect ratio defined by the parameters
* and (near, far), (bottom, top) mapping to (-1, 1) at z = 0
*
* @param w screen width
* @param h screen height
*/
public void loadProjectionNormalized(int w, int h) {
// range -1,1 in the narrow axis at z = 0.
Matrix4f m1 = new Matrix4f();
Matrix4f m2 = new Matrix4f();
if(w > h) {
float aspect = ((float)w) / h;
m1.loadFrustum(-aspect,aspect, -1,1, 1,100);
} else {
float aspect = ((float)h) / w;
m1.loadFrustum(-1,1, -aspect,aspect, 1,100);
}
m2.loadRotate(180, 0, 1, 0);
m1.loadMultiply(m1, m2);
m2.loadScale(-2, 2, 1);
m1.loadMultiply(m1, m2);
m2.loadTranslate(0, 0, 2);
m1.loadMultiply(m1, m2);
load(m1);
}
/**
* Post-multiplies the current matrix by a given parameter
*
* @param rhs right hand side to multiply by
*/
public void multiply(Matrix4f rhs) {
Matrix4f tmp = new Matrix4f();
tmp.loadMultiply(this, rhs);
load(tmp);
}
/**
* Modifies the current matrix by post-multiplying it with a
* rotation matrix of certain angle about a given axis
*
* @param rot angle of rotation
* @param x rotation axis x
* @param y rotation axis y
* @param z rotation axis z
*/
public void rotate(float rot, float x, float y, float z) {
Matrix4f tmp = new Matrix4f();
tmp.loadRotate(rot, x, y, z);
multiply(tmp);
}
/**
* Modifies the current matrix by post-multiplying it with a
* scale matrix of given dimensions
*
* @param x scale component x
* @param y scale component y
* @param z scale component z
*/
public void scale(float x, float y, float z) {
Matrix4f tmp = new Matrix4f();
tmp.loadScale(x, y, z);
multiply(tmp);
}
/**
* Modifies the current matrix by post-multiplying it with a
* translation matrix of given dimensions
*
* @param x translation component x
* @param y translation component y
* @param z translation component z
*/
public void translate(float x, float y, float z) {
Matrix4f tmp = new Matrix4f();
tmp.loadTranslate(x, y, z);
multiply(tmp);
}
private float computeCofactor(int i, int j) {
int c0 = (i+1) % 4;
int c1 = (i+2) % 4;
int c2 = (i+3) % 4;
int r0 = (j+1) % 4;
int r1 = (j+2) % 4;
int r2 = (j+3) % 4;
float minor = (mMat[c0 + 4*r0] * (mMat[c1 + 4*r1] * mMat[c2 + 4*r2] -
mMat[c1 + 4*r2] * mMat[c2 + 4*r1]))
- (mMat[c0 + 4*r1] * (mMat[c1 + 4*r0] * mMat[c2 + 4*r2] -
mMat[c1 + 4*r2] * mMat[c2 + 4*r0]))
+ (mMat[c0 + 4*r2] * (mMat[c1 + 4*r0] * mMat[c2 + 4*r1] -
mMat[c1 + 4*r1] * mMat[c2 + 4*r0]));
float cofactor = ((i+j) & 1) != 0 ? -minor : minor;
return cofactor;
}
/**
* Sets the current matrix to its inverse
*/
public boolean inverse() {
Matrix4f result = new Matrix4f();
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
result.mMat[4*i + j] = computeCofactor(i, j);
}
}
// Dot product of 0th column of source and 0th row of result
float det = mMat[0]*result.mMat[0] + mMat[4]*result.mMat[1] +
mMat[8]*result.mMat[2] + mMat[12]*result.mMat[3];
if (Math.abs(det) < 1e-6) {
return false;
}
det = 1.0f / det;
for (int i = 0; i < 16; ++i) {
mMat[i] = result.mMat[i] * det;
}
return true;
}
/**
* Sets the current matrix to its inverse transpose
*/
public boolean inverseTranspose() {
Matrix4f result = new Matrix4f();
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
result.mMat[4*j + i] = computeCofactor(i, j);
}
}
float det = mMat[0]*result.mMat[0] + mMat[4]*result.mMat[4] +
mMat[8]*result.mMat[8] + mMat[12]*result.mMat[12];
if (Math.abs(det) < 1e-6) {
return false;
}
det = 1.0f / det;
for (int i = 0; i < 16; ++i) {
mMat[i] = result.mMat[i] * det;
}
return true;
}
/**
* Sets the current matrix to its transpose
*/
public void transpose() {
for(int i = 0; i < 3; ++i) {
for(int j = i + 1; j < 4; ++j) {
float temp = mMat[i*4 + j];
mMat[i*4 + j] = mMat[j*4 + i];
mMat[j*4 + i] = temp;
}
}
}
final float[] mMat;
}
|