summaryrefslogtreecommitdiffstats
path: root/services/input/InputDispatcher.h
blob: 1e118c4d289190de448dcef951f2ddefaed25278 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
/*
 * Copyright (C) 2010 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef _UI_INPUT_DISPATCHER_H
#define _UI_INPUT_DISPATCHER_H

#include <ui/Input.h>
#include <ui/InputTransport.h>
#include <utils/KeyedVector.h>
#include <utils/Vector.h>
#include <utils/threads.h>
#include <utils/Timers.h>
#include <utils/RefBase.h>
#include <utils/String8.h>
#include <utils/Looper.h>
#include <utils/Pool.h>
#include <utils/BitSet.h>

#include <stddef.h>
#include <unistd.h>
#include <limits.h>

#include "InputWindow.h"
#include "InputApplication.h"


namespace android {

/*
 * Constants used to report the outcome of input event injection.
 */
enum {
    /* (INTERNAL USE ONLY) Specifies that injection is pending and its outcome is unknown. */
    INPUT_EVENT_INJECTION_PENDING = -1,

    /* Injection succeeded. */
    INPUT_EVENT_INJECTION_SUCCEEDED = 0,

    /* Injection failed because the injector did not have permission to inject
     * into the application with input focus. */
    INPUT_EVENT_INJECTION_PERMISSION_DENIED = 1,

    /* Injection failed because there were no available input targets. */
    INPUT_EVENT_INJECTION_FAILED = 2,

    /* Injection failed due to a timeout. */
    INPUT_EVENT_INJECTION_TIMED_OUT = 3
};

/*
 * Constants used to determine the input event injection synchronization mode.
 */
enum {
    /* Injection is asynchronous and is assumed always to be successful. */
    INPUT_EVENT_INJECTION_SYNC_NONE = 0,

    /* Waits for previous events to be dispatched so that the input dispatcher can determine
     * whether input event injection willbe permitted based on the current input focus.
     * Does not wait for the input event to finish processing. */
    INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT = 1,

    /* Waits for the input event to be completely processed. */
    INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED = 2,
};


/*
 * An input target specifies how an input event is to be dispatched to a particular window
 * including the window's input channel, control flags, a timeout, and an X / Y offset to
 * be added to input event coordinates to compensate for the absolute position of the
 * window area.
 */
struct InputTarget {
    enum {
        /* This flag indicates that the event is being delivered to a foreground application. */
        FLAG_FOREGROUND = 0x01,

        /* This flag indicates that a MotionEvent with AMOTION_EVENT_ACTION_DOWN falls outside
         * of the area of this target and so should instead be delivered as an
         * AMOTION_EVENT_ACTION_OUTSIDE to this target. */
        FLAG_OUTSIDE = 0x02,

        /* This flag indicates that the target of a MotionEvent is partly or wholly
         * obscured by another visible window above it.  The motion event should be
         * delivered with flag AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED. */
        FLAG_WINDOW_IS_OBSCURED = 0x04,

        /* This flag indicates that a motion event is being split across multiple windows. */
        FLAG_SPLIT = 0x08,
    };

    // The input channel to be targeted.
    sp<InputChannel> inputChannel;

    // Flags for the input target.
    int32_t flags;

    // The x and y offset to add to a MotionEvent as it is delivered.
    // (ignored for KeyEvents)
    float xOffset, yOffset;

    // The subset of pointer ids to include in motion events dispatched to this input target
    // if FLAG_SPLIT is set.
    BitSet32 pointerIds;
};


/*
 * Input dispatcher policy interface.
 *
 * The input reader policy is used by the input reader to interact with the Window Manager
 * and other system components.
 *
 * The actual implementation is partially supported by callbacks into the DVM
 * via JNI.  This interface is also mocked in the unit tests.
 */
class InputDispatcherPolicyInterface : public virtual RefBase {
protected:
    InputDispatcherPolicyInterface() { }
    virtual ~InputDispatcherPolicyInterface() { }

public:
    /* Notifies the system that a configuration change has occurred. */
    virtual void notifyConfigurationChanged(nsecs_t when) = 0;

    /* Notifies the system that an application is not responding.
     * Returns a new timeout to continue waiting, or 0 to abort dispatch. */
    virtual nsecs_t notifyANR(const sp<InputApplicationHandle>& inputApplicationHandle,
            const sp<InputWindowHandle>& inputWindowHandle) = 0;

    /* Notifies the system that an input channel is unrecoverably broken. */
    virtual void notifyInputChannelBroken(const sp<InputWindowHandle>& inputWindowHandle) = 0;

    /* Gets the key repeat initial timeout or -1 if automatic key repeating is disabled. */
    virtual nsecs_t getKeyRepeatTimeout() = 0;

    /* Gets the key repeat inter-key delay. */
    virtual nsecs_t getKeyRepeatDelay() = 0;

    /* Gets the maximum suggested event delivery rate per second.
     * This value is used to throttle motion event movement actions on a per-device
     * basis.  It is not intended to be a hard limit.
     */
    virtual int32_t getMaxEventsPerSecond() = 0;

    /* Intercepts a key event immediately before queueing it.
     * The policy can use this method as an opportunity to perform power management functions
     * and early event preprocessing such as updating policy flags.
     *
     * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
     * should be dispatched to applications.
     */
    virtual void interceptKeyBeforeQueueing(const KeyEvent* keyEvent, uint32_t& policyFlags) = 0;

    /* Intercepts a touch, trackball or other motion event before queueing it.
     * The policy can use this method as an opportunity to perform power management functions
     * and early event preprocessing such as updating policy flags.
     *
     * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
     * should be dispatched to applications.
     */
    virtual void interceptMotionBeforeQueueing(nsecs_t when, uint32_t& policyFlags) = 0;

    /* Allows the policy a chance to intercept a key before dispatching. */
    virtual bool interceptKeyBeforeDispatching(const sp<InputWindowHandle>& inputWindowHandle,
            const KeyEvent* keyEvent, uint32_t policyFlags) = 0;

    /* Allows the policy a chance to perform default processing for an unhandled key.
     * Returns an alternate keycode to redispatch as a fallback, or 0 to give up. */
    virtual bool dispatchUnhandledKey(const sp<InputWindowHandle>& inputWindowHandle,
            const KeyEvent* keyEvent, uint32_t policyFlags, KeyEvent* outFallbackKeyEvent) = 0;

    /* Notifies the policy about switch events.
     */
    virtual void notifySwitch(nsecs_t when,
            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) = 0;

    /* Poke user activity for an event dispatched to a window. */
    virtual void pokeUserActivity(nsecs_t eventTime, int32_t eventType) = 0;

    /* Checks whether a given application pid/uid has permission to inject input events
     * into other applications.
     *
     * This method is special in that its implementation promises to be non-reentrant and
     * is safe to call while holding other locks.  (Most other methods make no such guarantees!)
     */
    virtual bool checkInjectEventsPermissionNonReentrant(
            int32_t injectorPid, int32_t injectorUid) = 0;
};


/* Notifies the system about input events generated by the input reader.
 * The dispatcher is expected to be mostly asynchronous. */
class InputDispatcherInterface : public virtual RefBase {
protected:
    InputDispatcherInterface() { }
    virtual ~InputDispatcherInterface() { }

public:
    /* Dumps the state of the input dispatcher.
     *
     * This method may be called on any thread (usually by the input manager). */
    virtual void dump(String8& dump) = 0;

    /* Runs a single iteration of the dispatch loop.
     * Nominally processes one queued event, a timeout, or a response from an input consumer.
     *
     * This method should only be called on the input dispatcher thread.
     */
    virtual void dispatchOnce() = 0;

    /* Notifies the dispatcher about new events.
     *
     * These methods should only be called on the input reader thread.
     */
    virtual void notifyConfigurationChanged(nsecs_t eventTime) = 0;
    virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, uint32_t source,
            uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
            int32_t scanCode, int32_t metaState, nsecs_t downTime) = 0;
    virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, uint32_t source,
            uint32_t policyFlags, int32_t action, int32_t flags,
            int32_t metaState, int32_t edgeFlags,
            uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
            float xPrecision, float yPrecision, nsecs_t downTime) = 0;
    virtual void notifySwitch(nsecs_t when,
            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) = 0;

    /* Injects an input event and optionally waits for sync.
     * The synchronization mode determines whether the method blocks while waiting for
     * input injection to proceed.
     * Returns one of the INPUT_EVENT_INJECTION_XXX constants.
     *
     * This method may be called on any thread (usually by the input manager).
     */
    virtual int32_t injectInputEvent(const InputEvent* event,
            int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis) = 0;

    /* Sets the list of input windows.
     *
     * This method may be called on any thread (usually by the input manager).
     */
    virtual void setInputWindows(const Vector<InputWindow>& inputWindows) = 0;

    /* Sets the focused application.
     *
     * This method may be called on any thread (usually by the input manager).
     */
    virtual void setFocusedApplication(const InputApplication* inputApplication) = 0;

    /* Sets the input dispatching mode.
     *
     * This method may be called on any thread (usually by the input manager).
     */
    virtual void setInputDispatchMode(bool enabled, bool frozen) = 0;

    /* Transfers touch focus from the window associated with one channel to the
     * window associated with the other channel.
     *
     * Returns true on success.  False if the window did not actually have touch focus.
     */
    virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
            const sp<InputChannel>& toChannel) = 0;

    /* Registers or unregister input channels that may be used as targets for input events.
     * If monitor is true, the channel will receive a copy of all input events.
     *
     * These methods may be called on any thread (usually by the input manager).
     */
    virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel,
            const sp<InputWindowHandle>& inputWindowHandle, bool monitor) = 0;
    virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel) = 0;
};

/* Dispatches events to input targets.  Some functions of the input dispatcher, such as
 * identifying input targets, are controlled by a separate policy object.
 *
 * IMPORTANT INVARIANT:
 *     Because the policy can potentially block or cause re-entrance into the input dispatcher,
 *     the input dispatcher never calls into the policy while holding its internal locks.
 *     The implementation is also carefully designed to recover from scenarios such as an
 *     input channel becoming unregistered while identifying input targets or processing timeouts.
 *
 *     Methods marked 'Locked' must be called with the lock acquired.
 *
 *     Methods marked 'LockedInterruptible' must be called with the lock acquired but
 *     may during the course of their execution release the lock, call into the policy, and
 *     then reacquire the lock.  The caller is responsible for recovering gracefully.
 *
 *     A 'LockedInterruptible' method may called a 'Locked' method, but NOT vice-versa.
 */
class InputDispatcher : public InputDispatcherInterface {
protected:
    virtual ~InputDispatcher();

public:
    explicit InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy);

    virtual void dump(String8& dump);

    virtual void dispatchOnce();

    virtual void notifyConfigurationChanged(nsecs_t eventTime);
    virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, uint32_t source,
            uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
            int32_t scanCode, int32_t metaState, nsecs_t downTime);
    virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, uint32_t source,
            uint32_t policyFlags, int32_t action, int32_t flags,
            int32_t metaState, int32_t edgeFlags,
            uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
            float xPrecision, float yPrecision, nsecs_t downTime);
    virtual void notifySwitch(nsecs_t when,
            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) ;

    virtual int32_t injectInputEvent(const InputEvent* event,
            int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis);

    virtual void setInputWindows(const Vector<InputWindow>& inputWindows);
    virtual void setFocusedApplication(const InputApplication* inputApplication);
    virtual void setInputDispatchMode(bool enabled, bool frozen);

    virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
            const sp<InputChannel>& toChannel);

    virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel,
            const sp<InputWindowHandle>& inputWindowHandle, bool monitor);
    virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel);

private:
    template <typename T>
    struct Link {
        T* next;
        T* prev;
    };

    struct InjectionState {
        mutable int32_t refCount;

        int32_t injectorPid;
        int32_t injectorUid;
        int32_t injectionResult;  // initially INPUT_EVENT_INJECTION_PENDING
        bool injectionIsAsync; // set to true if injection is not waiting for the result
        int32_t pendingForegroundDispatches; // the number of foreground dispatches in progress
    };

    struct EventEntry : Link<EventEntry> {
        enum {
            TYPE_SENTINEL,
            TYPE_CONFIGURATION_CHANGED,
            TYPE_KEY,
            TYPE_MOTION
        };

        mutable int32_t refCount;
        int32_t type;
        nsecs_t eventTime;
        uint32_t policyFlags;
        InjectionState* injectionState;

        bool dispatchInProgress; // initially false, set to true while dispatching

        inline bool isInjected() { return injectionState != NULL; }
    };

    struct ConfigurationChangedEntry : EventEntry {
    };

    struct KeyEntry : EventEntry {
        int32_t deviceId;
        uint32_t source;
        int32_t action;
        int32_t flags;
        int32_t keyCode;
        int32_t scanCode;
        int32_t metaState;
        int32_t repeatCount;
        nsecs_t downTime;

        bool syntheticRepeat; // set to true for synthetic key repeats

        enum InterceptKeyResult {
            INTERCEPT_KEY_RESULT_UNKNOWN,
            INTERCEPT_KEY_RESULT_SKIP,
            INTERCEPT_KEY_RESULT_CONTINUE,
        };
        InterceptKeyResult interceptKeyResult; // set based on the interception result
    };

    struct MotionSample {
        MotionSample* next;

        nsecs_t eventTime;
        PointerCoords pointerCoords[MAX_POINTERS];
    };

    struct MotionEntry : EventEntry {
        int32_t deviceId;
        uint32_t source;
        int32_t action;
        int32_t flags;
        int32_t metaState;
        int32_t edgeFlags;
        float xPrecision;
        float yPrecision;
        nsecs_t downTime;
        uint32_t pointerCount;
        int32_t pointerIds[MAX_POINTERS];

        // Linked list of motion samples associated with this motion event.
        MotionSample firstSample;
        MotionSample* lastSample;

        uint32_t countSamples() const;
    };

    // Tracks the progress of dispatching a particular event to a particular connection.
    struct DispatchEntry : Link<DispatchEntry> {
        EventEntry* eventEntry; // the event to dispatch
        int32_t targetFlags;
        float xOffset;
        float yOffset;

        // True if dispatch has started.
        bool inProgress;

        // For motion events:
        //   Pointer to the first motion sample to dispatch in this cycle.
        //   Usually NULL to indicate that the list of motion samples begins at
        //   MotionEntry::firstSample.  Otherwise, some samples were dispatched in a previous
        //   cycle and this pointer indicates the location of the first remainining sample
        //   to dispatch during the current cycle.
        MotionSample* headMotionSample;
        //   Pointer to a motion sample to dispatch in the next cycle if the dispatcher was
        //   unable to send all motion samples during this cycle.  On the next cycle,
        //   headMotionSample will be initialized to tailMotionSample and tailMotionSample
        //   will be set to NULL.
        MotionSample* tailMotionSample;

        inline bool hasForegroundTarget() const {
            return targetFlags & InputTarget::FLAG_FOREGROUND;
        }

        inline bool isSplit() const {
            return targetFlags & InputTarget::FLAG_SPLIT;
        }
    };

    // A command entry captures state and behavior for an action to be performed in the
    // dispatch loop after the initial processing has taken place.  It is essentially
    // a kind of continuation used to postpone sensitive policy interactions to a point
    // in the dispatch loop where it is safe to release the lock (generally after finishing
    // the critical parts of the dispatch cycle).
    //
    // The special thing about commands is that they can voluntarily release and reacquire
    // the dispatcher lock at will.  Initially when the command starts running, the
    // dispatcher lock is held.  However, if the command needs to call into the policy to
    // do some work, it can release the lock, do the work, then reacquire the lock again
    // before returning.
    //
    // This mechanism is a bit clunky but it helps to preserve the invariant that the dispatch
    // never calls into the policy while holding its lock.
    //
    // Commands are implicitly 'LockedInterruptible'.
    struct CommandEntry;
    typedef void (InputDispatcher::*Command)(CommandEntry* commandEntry);

    class Connection;
    struct CommandEntry : Link<CommandEntry> {
        CommandEntry();
        ~CommandEntry();

        Command command;

        // parameters for the command (usage varies by command)
        sp<Connection> connection;
        nsecs_t eventTime;
        KeyEntry* keyEntry;
        sp<InputChannel> inputChannel;
        sp<InputApplicationHandle> inputApplicationHandle;
        sp<InputWindowHandle> inputWindowHandle;
        int32_t userActivityEventType;
        bool handled;
    };

    // Generic queue implementation.
    template <typename T>
    struct Queue {
        T headSentinel;
        T tailSentinel;

        inline Queue() {
            headSentinel.prev = NULL;
            headSentinel.next = & tailSentinel;
            tailSentinel.prev = & headSentinel;
            tailSentinel.next = NULL;
        }

        inline bool isEmpty() const {
            return headSentinel.next == & tailSentinel;
        }

        inline void enqueueAtTail(T* entry) {
            T* last = tailSentinel.prev;
            last->next = entry;
            entry->prev = last;
            entry->next = & tailSentinel;
            tailSentinel.prev = entry;
        }

        inline void enqueueAtHead(T* entry) {
            T* first = headSentinel.next;
            headSentinel.next = entry;
            entry->prev = & headSentinel;
            entry->next = first;
            first->prev = entry;
        }

        inline void dequeue(T* entry) {
            entry->prev->next = entry->next;
            entry->next->prev = entry->prev;
        }

        inline T* dequeueAtHead() {
            T* first = headSentinel.next;
            dequeue(first);
            return first;
        }

        uint32_t count() const;
    };

    /* Allocates queue entries and performs reference counting as needed. */
    class Allocator {
    public:
        Allocator();

        InjectionState* obtainInjectionState(int32_t injectorPid, int32_t injectorUid);
        ConfigurationChangedEntry* obtainConfigurationChangedEntry(nsecs_t eventTime);
        KeyEntry* obtainKeyEntry(nsecs_t eventTime,
                int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action,
                int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
                int32_t repeatCount, nsecs_t downTime);
        MotionEntry* obtainMotionEntry(nsecs_t eventTime,
                int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action,
                int32_t flags, int32_t metaState, int32_t edgeFlags,
                float xPrecision, float yPrecision,
                nsecs_t downTime, uint32_t pointerCount,
                const int32_t* pointerIds, const PointerCoords* pointerCoords);
        DispatchEntry* obtainDispatchEntry(EventEntry* eventEntry,
                int32_t targetFlags, float xOffset, float yOffset);
        CommandEntry* obtainCommandEntry(Command command);

        void releaseInjectionState(InjectionState* injectionState);
        void releaseEventEntry(EventEntry* entry);
        void releaseConfigurationChangedEntry(ConfigurationChangedEntry* entry);
        void releaseKeyEntry(KeyEntry* entry);
        void releaseMotionEntry(MotionEntry* entry);
        void releaseDispatchEntry(DispatchEntry* entry);
        void releaseCommandEntry(CommandEntry* entry);

        void recycleKeyEntry(KeyEntry* entry);

        void appendMotionSample(MotionEntry* motionEntry,
                nsecs_t eventTime, const PointerCoords* pointerCoords);

    private:
        Pool<InjectionState> mInjectionStatePool;
        Pool<ConfigurationChangedEntry> mConfigurationChangeEntryPool;
        Pool<KeyEntry> mKeyEntryPool;
        Pool<MotionEntry> mMotionEntryPool;
        Pool<MotionSample> mMotionSamplePool;
        Pool<DispatchEntry> mDispatchEntryPool;
        Pool<CommandEntry> mCommandEntryPool;

        void initializeEventEntry(EventEntry* entry, int32_t type, nsecs_t eventTime,
                uint32_t policyFlags);
        void releaseEventEntryInjectionState(EventEntry* entry);
    };

    /* Tracks dispatched key and motion event state so that cancelation events can be
     * synthesized when events are dropped. */
    class InputState {
    public:
        // Specifies the sources to cancel.
        enum CancelationOptions {
            CANCEL_ALL_EVENTS = 0,
            CANCEL_POINTER_EVENTS = 1,
            CANCEL_NON_POINTER_EVENTS = 2,
            CANCEL_FALLBACK_EVENTS = 3,
        };

        InputState();
        ~InputState();

        // Returns true if there is no state to be canceled.
        bool isNeutral() const;

        // Records tracking information for an event that has just been published.
        void trackEvent(const EventEntry* entry);

        // Records tracking information for a key event that has just been published.
        void trackKey(const KeyEntry* entry);

        // Records tracking information for a motion event that has just been published.
        void trackMotion(const MotionEntry* entry);

        // Synthesizes cancelation events for the current state and resets the tracked state.
        void synthesizeCancelationEvents(nsecs_t currentTime, Allocator* allocator,
                Vector<EventEntry*>& outEvents, CancelationOptions options);

        // Clears the current state.
        void clear();

        // Copies pointer-related parts of the input state to another instance.
        void copyPointerStateTo(InputState& other) const;

    private:
        struct KeyMemento {
            int32_t deviceId;
            uint32_t source;
            int32_t keyCode;
            int32_t scanCode;
            int32_t flags;
            nsecs_t downTime;
        };

        struct MotionMemento {
            int32_t deviceId;
            uint32_t source;
            float xPrecision;
            float yPrecision;
            nsecs_t downTime;
            uint32_t pointerCount;
            int32_t pointerIds[MAX_POINTERS];
            PointerCoords pointerCoords[MAX_POINTERS];

            void setPointers(const MotionEntry* entry);
        };

        Vector<KeyMemento> mKeyMementos;
        Vector<MotionMemento> mMotionMementos;

        static bool shouldCancelKey(const KeyMemento& memento,
                CancelationOptions options);
        static bool shouldCancelMotion(const MotionMemento& memento,
                CancelationOptions options);
    };

    /* Manages the dispatch state associated with a single input channel. */
    class Connection : public RefBase {
    protected:
        virtual ~Connection();

    public:
        enum Status {
            // Everything is peachy.
            STATUS_NORMAL,
            // An unrecoverable communication error has occurred.
            STATUS_BROKEN,
            // The input channel has been unregistered.
            STATUS_ZOMBIE
        };

        Status status;
        sp<InputChannel> inputChannel; // never null
        sp<InputWindowHandle> inputWindowHandle; // may be null
        InputPublisher inputPublisher;
        InputState inputState;
        Queue<DispatchEntry> outboundQueue;

        nsecs_t lastEventTime; // the time when the event was originally captured
        nsecs_t lastDispatchTime; // the time when the last event was dispatched
        int32_t originalKeyCodeForFallback; // original keycode for fallback in progress, -1 if none

        explicit Connection(const sp<InputChannel>& inputChannel,
                const sp<InputWindowHandle>& inputWindowHandle);

        inline const char* getInputChannelName() const { return inputChannel->getName().string(); }

        const char* getStatusLabel() const;

        // Finds a DispatchEntry in the outbound queue associated with the specified event.
        // Returns NULL if not found.
        DispatchEntry* findQueuedDispatchEntryForEvent(const EventEntry* eventEntry) const;

        // Gets the time since the current event was originally obtained from the input driver.
        inline double getEventLatencyMillis(nsecs_t currentTime) const {
            return (currentTime - lastEventTime) / 1000000.0;
        }

        // Gets the time since the current event entered the outbound dispatch queue.
        inline double getDispatchLatencyMillis(nsecs_t currentTime) const {
            return (currentTime - lastDispatchTime) / 1000000.0;
        }

        status_t initialize();
    };

    enum DropReason {
        DROP_REASON_NOT_DROPPED = 0,
        DROP_REASON_POLICY = 1,
        DROP_REASON_APP_SWITCH = 2,
        DROP_REASON_DISABLED = 3,
        DROP_REASON_BLOCKED = 4,
        DROP_REASON_STALE = 5,
    };

    sp<InputDispatcherPolicyInterface> mPolicy;

    Mutex mLock;

    Allocator mAllocator;
    sp<Looper> mLooper;

    EventEntry* mPendingEvent;
    Queue<EventEntry> mInboundQueue;
    Queue<CommandEntry> mCommandQueue;

    Vector<EventEntry*> mTempCancelationEvents;

    void dispatchOnceInnerLocked(nsecs_t keyRepeatTimeout, nsecs_t keyRepeatDelay,
            nsecs_t* nextWakeupTime);

    // Enqueues an inbound event.  Returns true if mLooper->wake() should be called.
    bool enqueueInboundEventLocked(EventEntry* entry);

    // Cleans up input state when dropping an inbound event.
    void dropInboundEventLocked(EventEntry* entry, DropReason dropReason);

    // App switch latency optimization.
    bool mAppSwitchSawKeyDown;
    nsecs_t mAppSwitchDueTime;

    static bool isAppSwitchKeyCode(int32_t keyCode);
    bool isAppSwitchKeyEventLocked(KeyEntry* keyEntry);
    bool isAppSwitchPendingLocked();
    void resetPendingAppSwitchLocked(bool handled);

    // Stale event latency optimization.
    static bool isStaleEventLocked(nsecs_t currentTime, EventEntry* entry);

    // Blocked event latency optimization.  Drops old events when the user intends
    // to transfer focus to a new application.
    EventEntry* mNextUnblockedEvent;

    const InputWindow* findTouchedWindowAtLocked(int32_t x, int32_t y);

    // All registered connections mapped by receive pipe file descriptor.
    KeyedVector<int, sp<Connection> > mConnectionsByReceiveFd;

    ssize_t getConnectionIndexLocked(const sp<InputChannel>& inputChannel);

    // Active connections are connections that have a non-empty outbound queue.
    // We don't use a ref-counted pointer here because we explicitly abort connections
    // during unregistration which causes the connection's outbound queue to be cleared
    // and the connection itself to be deactivated.
    Vector<Connection*> mActiveConnections;

    // Input channels that will receive a copy of all input events.
    Vector<sp<InputChannel> > mMonitoringChannels;

    // Event injection and synchronization.
    Condition mInjectionResultAvailableCondition;
    bool hasInjectionPermission(int32_t injectorPid, int32_t injectorUid);
    void setInjectionResultLocked(EventEntry* entry, int32_t injectionResult);

    Condition mInjectionSyncFinishedCondition;
    void incrementPendingForegroundDispatchesLocked(EventEntry* entry);
    void decrementPendingForegroundDispatchesLocked(EventEntry* entry);

    // Throttling state.
    struct ThrottleState {
        nsecs_t minTimeBetweenEvents;

        nsecs_t lastEventTime;
        int32_t lastDeviceId;
        uint32_t lastSource;

        uint32_t originalSampleCount; // only collected during debugging
    } mThrottleState;

    // Key repeat tracking.
    struct KeyRepeatState {
        KeyEntry* lastKeyEntry; // or null if no repeat
        nsecs_t nextRepeatTime;
    } mKeyRepeatState;

    void resetKeyRepeatLocked();
    KeyEntry* synthesizeKeyRepeatLocked(nsecs_t currentTime, nsecs_t keyRepeatTimeout);

    // Deferred command processing.
    bool runCommandsLockedInterruptible();
    CommandEntry* postCommandLocked(Command command);

    // Inbound event processing.
    void drainInboundQueueLocked();
    void releasePendingEventLocked();
    void releaseInboundEventLocked(EventEntry* entry);

    // Dispatch state.
    bool mDispatchEnabled;
    bool mDispatchFrozen;

    Vector<InputWindow> mWindows;

    const InputWindow* getWindowLocked(const sp<InputChannel>& inputChannel);

    // Focus tracking for keys, trackball, etc.
    const InputWindow* mFocusedWindow;

    // Focus tracking for touch.
    struct TouchedWindow {
        const InputWindow* window;
        int32_t targetFlags;
        BitSet32 pointerIds;        // zero unless target flag FLAG_SPLIT is set
        sp<InputChannel> channel;
    };
    struct TouchState {
        bool down;
        bool split;
        int32_t deviceId; // id of the device that is currently down, others are rejected
        uint32_t source;  // source of the device that is current down, others are rejected
        Vector<TouchedWindow> windows;

        TouchState();
        ~TouchState();
        void reset();
        void copyFrom(const TouchState& other);
        void addOrUpdateWindow(const InputWindow* window, int32_t targetFlags, BitSet32 pointerIds);
        void removeOutsideTouchWindows();
        const InputWindow* getFirstForegroundWindow();
    };

    TouchState mTouchState;
    TouchState mTempTouchState;

    // Focused application.
    InputApplication* mFocusedApplication;
    InputApplication mFocusedApplicationStorage; // preallocated storage for mFocusedApplication
    void releaseFocusedApplicationLocked();

    // Dispatch inbound events.
    bool dispatchConfigurationChangedLocked(
            nsecs_t currentTime, ConfigurationChangedEntry* entry);
    bool dispatchKeyLocked(
            nsecs_t currentTime, KeyEntry* entry, nsecs_t keyRepeatTimeout,
            DropReason* dropReason, nsecs_t* nextWakeupTime);
    bool dispatchMotionLocked(
            nsecs_t currentTime, MotionEntry* entry,
            DropReason* dropReason, nsecs_t* nextWakeupTime);
    void dispatchEventToCurrentInputTargetsLocked(
            nsecs_t currentTime, EventEntry* entry, bool resumeWithAppendedMotionSample);

    void logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry);
    void logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry);

    // The input targets that were most recently identified for dispatch.
    bool mCurrentInputTargetsValid; // false while targets are being recomputed
    Vector<InputTarget> mCurrentInputTargets;

    enum InputTargetWaitCause {
        INPUT_TARGET_WAIT_CAUSE_NONE,
        INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY,
        INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY,
    };

    InputTargetWaitCause mInputTargetWaitCause;
    nsecs_t mInputTargetWaitStartTime;
    nsecs_t mInputTargetWaitTimeoutTime;
    bool mInputTargetWaitTimeoutExpired;
    sp<InputApplicationHandle> mInputTargetWaitApplication;

    // Finding targets for input events.
    void resetTargetsLocked();
    void commitTargetsLocked();
    int32_t handleTargetsNotReadyLocked(nsecs_t currentTime, const EventEntry* entry,
            const InputApplication* application, const InputWindow* window,
            nsecs_t* nextWakeupTime);
    void resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout,
            const sp<InputChannel>& inputChannel);
    nsecs_t getTimeSpentWaitingForApplicationLocked(nsecs_t currentTime);
    void resetANRTimeoutsLocked();

    int32_t findFocusedWindowTargetsLocked(nsecs_t currentTime, const EventEntry* entry,
            nsecs_t* nextWakeupTime);
    int32_t findTouchedWindowTargetsLocked(nsecs_t currentTime, const MotionEntry* entry,
            nsecs_t* nextWakeupTime, bool* outConflictingPointerActions);

    void addWindowTargetLocked(const InputWindow* window, int32_t targetFlags,
            BitSet32 pointerIds);
    void addMonitoringTargetsLocked();
    void pokeUserActivityLocked(const EventEntry* eventEntry);
    bool checkInjectionPermission(const InputWindow* window, const InjectionState* injectionState);
    bool isWindowObscuredAtPointLocked(const InputWindow* window, int32_t x, int32_t y) const;
    bool isWindowFinishedWithPreviousInputLocked(const InputWindow* window);
    String8 getApplicationWindowLabelLocked(const InputApplication* application,
            const InputWindow* window);

    // Manage the dispatch cycle for a single connection.
    // These methods are deliberately not Interruptible because doing all of the work
    // with the mutex held makes it easier to ensure that connection invariants are maintained.
    // If needed, the methods post commands to run later once the critical bits are done.
    void prepareDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
            EventEntry* eventEntry, const InputTarget* inputTarget,
            bool resumeWithAppendedMotionSample);
    void startDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
    void finishDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
            bool handled);
    void startNextDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
    void abortBrokenDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
    void drainOutboundQueueLocked(Connection* connection);
    static int handleReceiveCallback(int receiveFd, int events, void* data);

    void synthesizeCancelationEventsForAllConnectionsLocked(
            InputState::CancelationOptions options, const char* reason);
    void synthesizeCancelationEventsForInputChannelLocked(const sp<InputChannel>& channel,
            InputState::CancelationOptions options, const char* reason);
    void synthesizeCancelationEventsForConnectionLocked(const sp<Connection>& connection,
            InputState::CancelationOptions options, const char* reason);

    // Splitting motion events across windows.
    MotionEntry* splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds);

    // Reset and drop everything the dispatcher is doing.
    void resetAndDropEverythingLocked(const char* reason);

    // Dump state.
    void dumpDispatchStateLocked(String8& dump);
    void logDispatchStateLocked();

    // Add or remove a connection to the mActiveConnections vector.
    void activateConnectionLocked(Connection* connection);
    void deactivateConnectionLocked(Connection* connection);

    // Interesting events that we might like to log or tell the framework about.
    void onDispatchCycleStartedLocked(
            nsecs_t currentTime, const sp<Connection>& connection);
    void onDispatchCycleFinishedLocked(
            nsecs_t currentTime, const sp<Connection>& connection, bool handled);
    void onDispatchCycleBrokenLocked(
            nsecs_t currentTime, const sp<Connection>& connection);
    void onANRLocked(
            nsecs_t currentTime, const InputApplication* application, const InputWindow* window,
            nsecs_t eventTime, nsecs_t waitStartTime);

    // Outbound policy interactions.
    void doNotifyConfigurationChangedInterruptible(CommandEntry* commandEntry);
    void doNotifyInputChannelBrokenLockedInterruptible(CommandEntry* commandEntry);
    void doNotifyANRLockedInterruptible(CommandEntry* commandEntry);
    void doInterceptKeyBeforeDispatchingLockedInterruptible(CommandEntry* commandEntry);
    void doDispatchCycleFinishedLockedInterruptible(CommandEntry* commandEntry);
    void doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry);
    void initializeKeyEvent(KeyEvent* event, const KeyEntry* entry);

    // Statistics gathering.
    void updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry,
            int32_t injectionResult, nsecs_t timeSpentWaitingForApplication);
};

/* Enqueues and dispatches input events, endlessly. */
class InputDispatcherThread : public Thread {
public:
    explicit InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher);
    ~InputDispatcherThread();

private:
    virtual bool threadLoop();

    sp<InputDispatcherInterface> mDispatcher;
};

} // namespace android

#endif // _UI_INPUT_DISPATCHER_H