1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
|
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.server;
import android.util.Log;
import android.view.Display;
import android.view.MotionEvent;
import android.view.Surface;
import android.view.WindowManagerPolicy;
public class InputDevice {
static final boolean DEBUG_POINTERS = false;
static final boolean DEBUG_HACKS = false;
/** Amount that trackball needs to move in order to generate a key event. */
static final int TRACKBALL_MOVEMENT_THRESHOLD = 6;
/** Maximum number of pointers we will track and report. */
static final int MAX_POINTERS = 10;
final int id;
final int classes;
final String name;
final AbsoluteInfo absX;
final AbsoluteInfo absY;
final AbsoluteInfo absPressure;
final AbsoluteInfo absSize;
long mKeyDownTime = 0;
int mMetaKeysState = 0;
// For use by KeyInputQueue for keeping track of the current touch
// data in the old non-multi-touch protocol.
final int[] curTouchVals = new int[MotionEvent.NUM_SAMPLE_DATA * 2];
final MotionState mAbs = new MotionState(0, 0);
final MotionState mRel = new MotionState(TRACKBALL_MOVEMENT_THRESHOLD,
TRACKBALL_MOVEMENT_THRESHOLD);
static class MotionState {
int xPrecision;
int yPrecision;
float xMoveScale;
float yMoveScale;
MotionEvent currentMove = null;
boolean changed = false;
long mDownTime = 0;
// The currently assigned pointer IDs, corresponding to the last data.
int[] mPointerIds = new int[MAX_POINTERS];
// This is the last generated pointer data, ordered to match
// mPointerIds.
int mLastNumPointers = 0;
final int[] mLastData = new int[MotionEvent.NUM_SAMPLE_DATA * MAX_POINTERS];
// This is the next set of pointer data being generated. It is not
// in any known order, and will be propagated in to mLastData
// as part of mapping it to the appropriate pointer IDs.
// Note that we have one extra sample of data here, to help clients
// avoid doing bounds checking.
int mNextNumPointers = 0;
final int[] mNextData = new int[(MotionEvent.NUM_SAMPLE_DATA * MAX_POINTERS)
+ MotionEvent.NUM_SAMPLE_DATA];
// Used to determine whether we dropped bad data, to avoid doing
// it repeatedly.
final boolean[] mDroppedBadPoint = new boolean[MAX_POINTERS];
// Used to perform averaging of reported coordinates, to smooth
// the data and filter out transients during a release.
static final int HISTORY_SIZE = 5;
int[] mHistoryDataStart = new int[MAX_POINTERS];
int[] mHistoryDataEnd = new int[MAX_POINTERS];
final int[] mHistoryData = new int[(MotionEvent.NUM_SAMPLE_DATA * MAX_POINTERS)
* HISTORY_SIZE];
final int[] mAveragedData = new int[MotionEvent.NUM_SAMPLE_DATA * MAX_POINTERS];
// Temporary data structures for doing the pointer ID mapping.
final int[] mLast2Next = new int[MAX_POINTERS];
final int[] mNext2Last = new int[MAX_POINTERS];
final long[] mNext2LastDistance = new long[MAX_POINTERS];
// Temporary data structure for generating the final motion data.
final float[] mReportData = new float[MotionEvent.NUM_SAMPLE_DATA * MAX_POINTERS];
// This is not used here, but can be used by callers for state tracking.
int mAddingPointerOffset = 0;
final boolean[] mDown = new boolean[MAX_POINTERS];
MotionState(int mx, int my) {
xPrecision = mx;
yPrecision = my;
xMoveScale = mx != 0 ? (1.0f/mx) : 1.0f;
yMoveScale = my != 0 ? (1.0f/my) : 1.0f;
for (int i=0; i<MAX_POINTERS; i++) {
mPointerIds[i] = i;
}
}
/**
* Special hack for devices that have bad screen data: if one of the
* points has moved more than a screen height from the last position,
* then drop it.
*/
void dropBadPoint(InputDevice dev) {
// We should always have absY, but let's be paranoid.
if (dev.absY == null) {
return;
}
// Don't do anything if a finger is going down or up. We run
// here before assigning pointer IDs, so there isn't a good
// way to do per-finger matching.
if (mNextNumPointers != mLastNumPointers) {
return;
}
// We consider a single movement across more than a 7/16 of
// the long size of the screen to be bad. This was a magic value
// determined by looking at the maximum distance it is feasible
// to actually move in one sample.
final int maxDy = ((dev.absY.maxValue-dev.absY.minValue)*7)/16;
// Look through all new points and see if any are farther than
// acceptable from all previous points.
for (int i=mNextNumPointers-1; i>=0; i--) {
final int ioff = i * MotionEvent.NUM_SAMPLE_DATA;
//final int x = mNextData[ioff + MotionEvent.SAMPLE_X];
final int y = mNextData[ioff + MotionEvent.SAMPLE_Y];
if (DEBUG_HACKS) Log.v("InputDevice", "Looking at next point #" + i + ": y=" + y);
boolean dropped = false;
if (!mDroppedBadPoint[i] && mLastNumPointers > 0) {
dropped = true;
int closestDy = -1;
int closestY = -1;
// We will drop this new point if it is sufficiently
// far away from -all- last points.
for (int j=mLastNumPointers-1; j>=0; j--) {
final int joff = j * MotionEvent.NUM_SAMPLE_DATA;
//int dx = x - mLastData[joff + MotionEvent.SAMPLE_X];
int dy = y - mLastData[joff + MotionEvent.SAMPLE_Y];
//if (dx < 0) dx = -dx;
if (dy < 0) dy = -dy;
if (DEBUG_HACKS) Log.v("InputDevice", "Comparing with last point #" + j
+ ": y=" + mLastData[joff] + " dy=" + dy);
if (dy < maxDy) {
dropped = false;
break;
} else if (closestDy < 0 || dy < closestDy) {
closestDy = dy;
closestY = mLastData[joff + MotionEvent.SAMPLE_Y];
}
}
if (dropped) {
dropped = true;
Log.i("InputDevice", "Dropping bad point #" + i
+ ": newY=" + y + " closestDy=" + closestDy
+ " maxDy=" + maxDy);
mNextData[ioff + MotionEvent.SAMPLE_Y] = closestY;
break;
}
}
mDroppedBadPoint[i] = dropped;
}
}
/**
* Special hack for devices that have bad screen data: aggregate and
* compute averages of the coordinate data, to reduce the amount of
* jitter seen by applications.
*/
int[] generateAveragedData(int upOrDownPointer, int lastNumPointers,
int nextNumPointers) {
final int numPointers = mLastNumPointers;
final int[] rawData = mLastData;
if (DEBUG_HACKS) Log.v("InputDevice", "lastNumPointers=" + lastNumPointers
+ " nextNumPointers=" + nextNumPointers
+ " numPointers=" + numPointers);
for (int i=0; i<numPointers; i++) {
final int ioff = i * MotionEvent.NUM_SAMPLE_DATA;
// We keep the average data in offsets based on the pointer
// ID, so we don't need to move it around as fingers are
// pressed and released.
final int p = mPointerIds[i];
final int poff = p * MotionEvent.NUM_SAMPLE_DATA * HISTORY_SIZE;
if (i == upOrDownPointer && lastNumPointers != nextNumPointers) {
if (lastNumPointers < nextNumPointers) {
// This pointer is going down. Clear its history
// and start fresh.
if (DEBUG_HACKS) Log.v("InputDevice", "Pointer down @ index "
+ upOrDownPointer + " id " + mPointerIds[i]);
mHistoryDataStart[i] = 0;
mHistoryDataEnd[i] = 0;
System.arraycopy(rawData, ioff, mHistoryData, poff,
MotionEvent.NUM_SAMPLE_DATA);
System.arraycopy(rawData, ioff, mAveragedData, ioff,
MotionEvent.NUM_SAMPLE_DATA);
continue;
} else {
// The pointer is going up. Just fall through to
// recompute the last averaged point (and don't add
// it as a new point to include in the average).
if (DEBUG_HACKS) Log.v("InputDevice", "Pointer up @ index "
+ upOrDownPointer + " id " + mPointerIds[i]);
}
} else {
int end = mHistoryDataEnd[i];
int eoff = poff + (end*MotionEvent.NUM_SAMPLE_DATA);
int oldX = mHistoryData[eoff + MotionEvent.SAMPLE_X];
int oldY = mHistoryData[eoff + MotionEvent.SAMPLE_Y];
int newX = rawData[ioff + MotionEvent.SAMPLE_X];
int newY = rawData[ioff + MotionEvent.SAMPLE_Y];
int dx = newX-oldX;
int dy = newY-oldY;
int delta = dx*dx + dy*dy;
if (DEBUG_HACKS) Log.v("InputDevice", "Delta from last: " + delta);
if (delta >= (75*75)) {
// Magic number, if moving farther than this, turn
// off filtering to avoid lag in response.
mHistoryDataStart[i] = 0;
mHistoryDataEnd[i] = 0;
System.arraycopy(rawData, ioff, mHistoryData, poff,
MotionEvent.NUM_SAMPLE_DATA);
System.arraycopy(rawData, ioff, mAveragedData, ioff,
MotionEvent.NUM_SAMPLE_DATA);
continue;
} else {
end++;
if (end >= HISTORY_SIZE) {
end -= HISTORY_SIZE;
}
mHistoryDataEnd[i] = end;
int noff = poff + (end*MotionEvent.NUM_SAMPLE_DATA);
mHistoryData[noff + MotionEvent.SAMPLE_X] = newX;
mHistoryData[noff + MotionEvent.SAMPLE_Y] = newY;
mHistoryData[noff + MotionEvent.SAMPLE_PRESSURE]
= rawData[ioff + MotionEvent.SAMPLE_PRESSURE];
int start = mHistoryDataStart[i];
if (end == start) {
start++;
if (start >= HISTORY_SIZE) {
start -= HISTORY_SIZE;
}
mHistoryDataStart[i] = start;
}
}
}
// Now compute the average.
int start = mHistoryDataStart[i];
int end = mHistoryDataEnd[i];
int x=0, y=0;
int totalPressure = 0;
while (start != end) {
int soff = poff + (start*MotionEvent.NUM_SAMPLE_DATA);
int pressure = mHistoryData[soff + MotionEvent.SAMPLE_PRESSURE];
if (pressure <= 0) pressure = 1;
x += mHistoryData[soff + MotionEvent.SAMPLE_X] * pressure;
y += mHistoryData[soff + MotionEvent.SAMPLE_Y] * pressure;
totalPressure += pressure;
start++;
if (start >= HISTORY_SIZE) start = 0;
}
int eoff = poff + (end*MotionEvent.NUM_SAMPLE_DATA);
int pressure = mHistoryData[eoff + MotionEvent.SAMPLE_PRESSURE];
if (pressure <= 0) pressure = 1;
x += mHistoryData[eoff + MotionEvent.SAMPLE_X] * pressure;
y += mHistoryData[eoff + MotionEvent.SAMPLE_Y] * pressure;
totalPressure += pressure;
x /= totalPressure;
y /= totalPressure;
if (DEBUG_HACKS) Log.v("InputDevice", "Averaging " + totalPressure
+ " weight: (" + x + "," + y + ")");
mAveragedData[ioff + MotionEvent.SAMPLE_X] = x;
mAveragedData[ioff + MotionEvent.SAMPLE_Y] = y;
}
return mAveragedData;
}
private boolean assignPointer(int nextIndex, boolean allowOverlap) {
final int lastNumPointers = mLastNumPointers;
final int[] next2Last = mNext2Last;
final long[] next2LastDistance = mNext2LastDistance;
final int[] last2Next = mLast2Next;
final int[] lastData = mLastData;
final int[] nextData = mNextData;
final int id = nextIndex * MotionEvent.NUM_SAMPLE_DATA;
if (DEBUG_POINTERS) Log.v("InputDevice", "assignPointer: nextIndex="
+ nextIndex + " dataOff=" + id);
final int x1 = nextData[id + MotionEvent.SAMPLE_X];
final int y1 = nextData[id + MotionEvent.SAMPLE_Y];
long bestDistance = -1;
int bestIndex = -1;
for (int j=0; j<lastNumPointers; j++) {
if (!allowOverlap && last2Next[j] < 0) {
continue;
}
final int jd = j * MotionEvent.NUM_SAMPLE_DATA;
final int xd = lastData[jd + MotionEvent.SAMPLE_X] - x1;
final int yd = lastData[jd + MotionEvent.SAMPLE_Y] - y1;
final long distance = xd*(long)xd + yd*(long)yd;
if (j == 0 || distance < bestDistance) {
bestDistance = distance;
bestIndex = j;
}
}
if (DEBUG_POINTERS) Log.v("InputDevice", "New index " + nextIndex
+ " best old index=" + bestIndex + " (distance="
+ bestDistance + ")");
next2Last[nextIndex] = bestIndex;
next2LastDistance[nextIndex] = bestDistance;
if (bestIndex < 0) {
return true;
}
if (last2Next[bestIndex] == -1) {
last2Next[bestIndex] = nextIndex;
return false;
}
if (DEBUG_POINTERS) Log.v("InputDevice", "Old index " + bestIndex
+ " has multiple best new pointers!");
last2Next[bestIndex] = -2;
return true;
}
private int updatePointerIdentifiers() {
final int[] lastData = mLastData;
final int[] nextData = mNextData;
final int nextNumPointers = mNextNumPointers;
final int lastNumPointers = mLastNumPointers;
if (nextNumPointers == 1 && lastNumPointers == 1) {
System.arraycopy(nextData, 0, lastData, 0,
MotionEvent.NUM_SAMPLE_DATA);
return -1;
}
// Clear our old state.
final int[] last2Next = mLast2Next;
for (int i=0; i<lastNumPointers; i++) {
last2Next[i] = -1;
}
if (DEBUG_POINTERS) Log.v("InputDevice",
"Update pointers: lastNumPointers=" + lastNumPointers
+ " nextNumPointers=" + nextNumPointers);
// Figure out the closes new points to the previous points.
final int[] next2Last = mNext2Last;
final long[] next2LastDistance = mNext2LastDistance;
boolean conflicts = false;
for (int i=0; i<nextNumPointers; i++) {
conflicts |= assignPointer(i, true);
}
// Resolve ambiguities in pointer mappings, when two or more
// new pointer locations find their best previous location is
// the same.
if (conflicts) {
if (DEBUG_POINTERS) Log.v("InputDevice", "Resolving conflicts");
for (int i=0; i<lastNumPointers; i++) {
if (last2Next[i] != -2) {
continue;
}
// Note that this algorithm is far from perfect. Ideally
// we should do something like the one described at
// http://portal.acm.org/citation.cfm?id=997856
if (DEBUG_POINTERS) Log.v("InputDevice",
"Resolving last index #" + i);
int numFound;
do {
numFound = 0;
long worstDistance = 0;
int worstJ = -1;
for (int j=0; j<nextNumPointers; j++) {
if (next2Last[j] != i) {
continue;
}
numFound++;
if (worstDistance < next2LastDistance[j]) {
worstDistance = next2LastDistance[j];
worstJ = j;
}
}
if (worstJ >= 0) {
if (DEBUG_POINTERS) Log.v("InputDevice",
"Worst new pointer: " + worstJ
+ " (distance=" + worstDistance + ")");
if (assignPointer(worstJ, false)) {
// In this case there is no last pointer
// remaining for this new one!
next2Last[worstJ] = -1;
}
}
} while (numFound > 2);
}
}
int retIndex = -1;
if (lastNumPointers < nextNumPointers) {
// We have one or more new pointers that are down. Create a
// new pointer identifier for one of them.
if (DEBUG_POINTERS) Log.v("InputDevice", "Adding new pointer");
int nextId = 0;
int i=0;
while (i < lastNumPointers) {
if (mPointerIds[i] > nextId) {
// Found a hole, insert the pointer here.
if (DEBUG_POINTERS) Log.v("InputDevice",
"Inserting new pointer at hole " + i);
System.arraycopy(mPointerIds, i, mPointerIds,
i+1, lastNumPointers-i);
System.arraycopy(lastData, i*MotionEvent.NUM_SAMPLE_DATA,
lastData, (i+1)*MotionEvent.NUM_SAMPLE_DATA,
(lastNumPointers-i)*MotionEvent.NUM_SAMPLE_DATA);
break;
}
i++;
nextId++;
}
if (DEBUG_POINTERS) Log.v("InputDevice",
"New pointer id " + nextId + " at index " + i);
mLastNumPointers++;
retIndex = i;
mPointerIds[i] = nextId;
// And assign this identifier to the first new pointer.
for (int j=0; j<nextNumPointers; j++) {
if (next2Last[j] < 0) {
if (DEBUG_POINTERS) Log.v("InputDevice",
"Assigning new id to new pointer index " + j);
next2Last[j] = i;
break;
}
}
}
// Propagate all of the current data into the appropriate
// location in the old data to match the pointer ID that was
// assigned to it.
for (int i=0; i<nextNumPointers; i++) {
int lastIndex = next2Last[i];
if (lastIndex >= 0) {
if (DEBUG_POINTERS) Log.v("InputDevice",
"Copying next pointer index " + i
+ " to last index " + lastIndex);
System.arraycopy(nextData, i*MotionEvent.NUM_SAMPLE_DATA,
lastData, lastIndex*MotionEvent.NUM_SAMPLE_DATA,
MotionEvent.NUM_SAMPLE_DATA);
}
}
if (lastNumPointers > nextNumPointers) {
// One or more pointers has gone up. Find the first one,
// and adjust accordingly.
if (DEBUG_POINTERS) Log.v("InputDevice", "Removing old pointer");
for (int i=0; i<lastNumPointers; i++) {
if (last2Next[i] == -1) {
if (DEBUG_POINTERS) Log.v("InputDevice",
"Removing old pointer at index " + i);
retIndex = i;
break;
}
}
}
return retIndex;
}
void removeOldPointer(int index) {
final int lastNumPointers = mLastNumPointers;
if (index >= 0 && index < lastNumPointers) {
System.arraycopy(mPointerIds, index+1, mPointerIds,
index, lastNumPointers-index-1);
System.arraycopy(mLastData, (index+1)*MotionEvent.NUM_SAMPLE_DATA,
mLastData, (index)*MotionEvent.NUM_SAMPLE_DATA,
(lastNumPointers-index-1)*MotionEvent.NUM_SAMPLE_DATA);
mLastNumPointers--;
}
}
MotionEvent generateAbsMotion(InputDevice device, long curTime,
long curTimeNano, Display display, int orientation,
int metaState) {
if (mNextNumPointers <= 0 && mLastNumPointers <= 0) {
return null;
}
final int lastNumPointers = mLastNumPointers;
final int nextNumPointers = mNextNumPointers;
if (mNextNumPointers > MAX_POINTERS) {
Log.w("InputDevice", "Number of pointers " + mNextNumPointers
+ " exceeded maximum of " + MAX_POINTERS);
mNextNumPointers = MAX_POINTERS;
}
int upOrDownPointer = updatePointerIdentifiers();
final float[] reportData = mReportData;
final int[] rawData;
if (KeyInputQueue.BAD_TOUCH_HACK) {
rawData = generateAveragedData(upOrDownPointer, lastNumPointers,
nextNumPointers);
} else {
rawData = mLastData;
}
final int numPointers = mLastNumPointers;
if (DEBUG_POINTERS) Log.v("InputDevice", "Processing "
+ numPointers + " pointers (going from " + lastNumPointers
+ " to " + nextNumPointers + ")");
for (int i=0; i<numPointers; i++) {
final int pos = i * MotionEvent.NUM_SAMPLE_DATA;
reportData[pos + MotionEvent.SAMPLE_X] = rawData[pos + MotionEvent.SAMPLE_X];
reportData[pos + MotionEvent.SAMPLE_Y] = rawData[pos + MotionEvent.SAMPLE_Y];
reportData[pos + MotionEvent.SAMPLE_PRESSURE] = rawData[pos + MotionEvent.SAMPLE_PRESSURE];
reportData[pos + MotionEvent.SAMPLE_SIZE] = rawData[pos + MotionEvent.SAMPLE_SIZE];
}
int action;
int edgeFlags = 0;
if (nextNumPointers != lastNumPointers) {
if (nextNumPointers > lastNumPointers) {
if (lastNumPointers == 0) {
action = MotionEvent.ACTION_DOWN;
mDownTime = curTime;
} else {
action = MotionEvent.ACTION_POINTER_DOWN
| (upOrDownPointer << MotionEvent.ACTION_POINTER_ID_SHIFT);
}
} else {
if (numPointers == 1) {
action = MotionEvent.ACTION_UP;
} else {
action = MotionEvent.ACTION_POINTER_UP
| (upOrDownPointer << MotionEvent.ACTION_POINTER_ID_SHIFT);
}
}
currentMove = null;
} else {
action = MotionEvent.ACTION_MOVE;
}
final int dispW = display.getWidth()-1;
final int dispH = display.getHeight()-1;
int w = dispW;
int h = dispH;
if (orientation == Surface.ROTATION_90
|| orientation == Surface.ROTATION_270) {
int tmp = w;
w = h;
h = tmp;
}
final AbsoluteInfo absX = device.absX;
final AbsoluteInfo absY = device.absY;
final AbsoluteInfo absPressure = device.absPressure;
final AbsoluteInfo absSize = device.absSize;
for (int i=0; i<numPointers; i++) {
final int j = i * MotionEvent.NUM_SAMPLE_DATA;
if (absX != null) {
reportData[j + MotionEvent.SAMPLE_X] =
((reportData[j + MotionEvent.SAMPLE_X]-absX.minValue)
/ absX.range) * w;
}
if (absY != null) {
reportData[j + MotionEvent.SAMPLE_Y] =
((reportData[j + MotionEvent.SAMPLE_Y]-absY.minValue)
/ absY.range) * h;
}
if (absPressure != null) {
reportData[j + MotionEvent.SAMPLE_PRESSURE] =
((reportData[j + MotionEvent.SAMPLE_PRESSURE]-absPressure.minValue)
/ (float)absPressure.range);
}
if (absSize != null) {
reportData[j + MotionEvent.SAMPLE_SIZE] =
((reportData[j + MotionEvent.SAMPLE_SIZE]-absSize.minValue)
/ (float)absSize.range);
}
switch (orientation) {
case Surface.ROTATION_90: {
final float temp = reportData[j + MotionEvent.SAMPLE_X];
reportData[j + MotionEvent.SAMPLE_X] = reportData[j + MotionEvent.SAMPLE_Y];
reportData[j + MotionEvent.SAMPLE_Y] = w-temp;
break;
}
case Surface.ROTATION_180: {
reportData[j + MotionEvent.SAMPLE_X] = w-reportData[j + MotionEvent.SAMPLE_X];
reportData[j + MotionEvent.SAMPLE_Y] = h-reportData[j + MotionEvent.SAMPLE_Y];
break;
}
case Surface.ROTATION_270: {
final float temp = reportData[j + MotionEvent.SAMPLE_X];
reportData[j + MotionEvent.SAMPLE_X] = h-reportData[j + MotionEvent.SAMPLE_Y];
reportData[j + MotionEvent.SAMPLE_Y] = temp;
break;
}
}
}
// We only consider the first pointer when computing the edge
// flags, since they are global to the event.
if (action == MotionEvent.ACTION_DOWN) {
if (reportData[MotionEvent.SAMPLE_X] <= 0) {
edgeFlags |= MotionEvent.EDGE_LEFT;
} else if (reportData[MotionEvent.SAMPLE_X] >= dispW) {
edgeFlags |= MotionEvent.EDGE_RIGHT;
}
if (reportData[MotionEvent.SAMPLE_Y] <= 0) {
edgeFlags |= MotionEvent.EDGE_TOP;
} else if (reportData[MotionEvent.SAMPLE_Y] >= dispH) {
edgeFlags |= MotionEvent.EDGE_BOTTOM;
}
}
if (currentMove != null) {
if (false) Log.i("InputDevice", "Adding batch x="
+ reportData[MotionEvent.SAMPLE_X]
+ " y=" + reportData[MotionEvent.SAMPLE_Y]
+ " to " + currentMove);
currentMove.addBatch(curTime, reportData, metaState);
if (WindowManagerPolicy.WATCH_POINTER) {
Log.i("KeyInputQueue", "Updating: " + currentMove);
}
return null;
}
MotionEvent me = MotionEvent.obtainNano(mDownTime, curTime,
curTimeNano, action, numPointers, mPointerIds, reportData,
metaState, xPrecision, yPrecision, device.id, edgeFlags);
if (action == MotionEvent.ACTION_MOVE) {
currentMove = me;
}
if (nextNumPointers < lastNumPointers) {
removeOldPointer(upOrDownPointer);
}
return me;
}
boolean hasMore() {
return mLastNumPointers != mNextNumPointers;
}
void finish() {
mNextNumPointers = mAddingPointerOffset = 0;
mNextData[MotionEvent.SAMPLE_PRESSURE] = 0;
}
MotionEvent generateRelMotion(InputDevice device, long curTime,
long curTimeNano, int orientation, int metaState) {
final float[] scaled = mReportData;
// For now we only support 1 pointer with relative motions.
scaled[MotionEvent.SAMPLE_X] = mNextData[MotionEvent.SAMPLE_X];
scaled[MotionEvent.SAMPLE_Y] = mNextData[MotionEvent.SAMPLE_Y];
scaled[MotionEvent.SAMPLE_PRESSURE] = 1.0f;
scaled[MotionEvent.SAMPLE_SIZE] = 0;
int edgeFlags = 0;
int action;
if (mNextNumPointers != mLastNumPointers) {
mNextData[MotionEvent.SAMPLE_X] =
mNextData[MotionEvent.SAMPLE_Y] = 0;
if (mNextNumPointers > 0 && mLastNumPointers == 0) {
action = MotionEvent.ACTION_DOWN;
mDownTime = curTime;
} else if (mNextNumPointers == 0) {
action = MotionEvent.ACTION_UP;
} else {
action = MotionEvent.ACTION_MOVE;
}
mLastNumPointers = mNextNumPointers;
currentMove = null;
} else {
action = MotionEvent.ACTION_MOVE;
}
scaled[MotionEvent.SAMPLE_X] *= xMoveScale;
scaled[MotionEvent.SAMPLE_Y] *= yMoveScale;
switch (orientation) {
case Surface.ROTATION_90: {
final float temp = scaled[MotionEvent.SAMPLE_X];
scaled[MotionEvent.SAMPLE_X] = scaled[MotionEvent.SAMPLE_Y];
scaled[MotionEvent.SAMPLE_Y] = -temp;
break;
}
case Surface.ROTATION_180: {
scaled[MotionEvent.SAMPLE_X] = -scaled[MotionEvent.SAMPLE_X];
scaled[MotionEvent.SAMPLE_Y] = -scaled[MotionEvent.SAMPLE_Y];
break;
}
case Surface.ROTATION_270: {
final float temp = scaled[MotionEvent.SAMPLE_X];
scaled[MotionEvent.SAMPLE_X] = -scaled[MotionEvent.SAMPLE_Y];
scaled[MotionEvent.SAMPLE_Y] = temp;
break;
}
}
if (currentMove != null) {
if (false) Log.i("InputDevice", "Adding batch x="
+ scaled[MotionEvent.SAMPLE_X]
+ " y=" + scaled[MotionEvent.SAMPLE_Y]
+ " to " + currentMove);
currentMove.addBatch(curTime, scaled, metaState);
if (WindowManagerPolicy.WATCH_POINTER) {
Log.i("KeyInputQueue", "Updating: " + currentMove);
}
return null;
}
MotionEvent me = MotionEvent.obtainNano(mDownTime, curTime,
curTimeNano, action, 1, mPointerIds, scaled, metaState,
xPrecision, yPrecision, device.id, edgeFlags);
if (action == MotionEvent.ACTION_MOVE) {
currentMove = me;
}
return me;
}
}
static class AbsoluteInfo {
int minValue;
int maxValue;
int range;
int flat;
int fuzz;
};
InputDevice(int _id, int _classes, String _name,
AbsoluteInfo _absX, AbsoluteInfo _absY,
AbsoluteInfo _absPressure, AbsoluteInfo _absSize) {
id = _id;
classes = _classes;
name = _name;
absX = _absX;
absY = _absY;
absPressure = _absPressure;
absSize = _absSize;
}
};
|