1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
|
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.server.power;
import com.android.server.LightsService;
import com.android.server.TwilightService;
import com.android.server.TwilightService.TwilightState;
import android.animation.Animator;
import android.animation.ObjectAnimator;
import android.content.Context;
import android.content.res.Resources;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.hardware.SystemSensorManager;
import android.hardware.display.DisplayManager;
import android.os.AsyncTask;
import android.os.Handler;
import android.os.Looper;
import android.os.Message;
import android.os.PowerManager;
import android.os.SystemClock;
import android.text.format.DateUtils;
import android.util.FloatMath;
import android.util.Slog;
import android.util.Spline;
import android.util.TimeUtils;
import android.view.Display;
import java.io.PrintWriter;
import java.util.concurrent.Executor;
/**
* Controls the power state of the display.
*
* Handles the proximity sensor, light sensor, and animations between states
* including the screen off animation.
*
* This component acts independently of the rest of the power manager service.
* In particular, it does not share any state and it only communicates
* via asynchronous callbacks to inform the power manager that something has
* changed.
*
* Everything this class does internally is serialized on its handler although
* it may be accessed by other threads from the outside.
*
* Note that the power manager service guarantees that it will hold a suspend
* blocker as long as the display is not ready. So most of the work done here
* does not need to worry about holding a suspend blocker unless it happens
* independently of the display ready signal.
*
* For debugging, you can make the electron beam and brightness animations run
* slower by changing the "animator duration scale" option in Development Settings.
*/
final class DisplayPowerController {
private static final String TAG = "DisplayPowerController";
private static boolean DEBUG = false;
private static final boolean DEBUG_PRETEND_PROXIMITY_SENSOR_ABSENT = false;
private static final boolean DEBUG_PRETEND_LIGHT_SENSOR_ABSENT = false;
// If true, uses the electron beam on animation.
// We might want to turn this off if we cannot get a guarantee that the screen
// actually turns on and starts showing new content after the call to set the
// screen state returns. Playing the animation can also be somewhat slow.
private static final boolean USE_ELECTRON_BEAM_ON_ANIMATION = false;
// If true, enables the use of the screen auto-brightness adjustment setting.
private static final boolean USE_SCREEN_AUTO_BRIGHTNESS_ADJUSTMENT =
PowerManager.useScreenAutoBrightnessAdjustmentFeature();
// The maximum range of gamma adjustment possible using the screen
// auto-brightness adjustment setting.
private static final float SCREEN_AUTO_BRIGHTNESS_ADJUSTMENT_MAX_GAMMA = 3.0f;
// The minimum reduction in brightness when dimmed.
private static final int SCREEN_DIM_MINIMUM_REDUCTION = 10;
// If true, enables the use of the current time as an auto-brightness adjustment.
// The basic idea here is to expand the dynamic range of auto-brightness
// when it is especially dark outside. The light sensor tends to perform
// poorly at low light levels so we compensate for it by making an
// assumption about the environment.
private static final boolean USE_TWILIGHT_ADJUSTMENT =
PowerManager.useTwilightAdjustmentFeature();
// Specifies the maximum magnitude of the time of day adjustment.
private static final float TWILIGHT_ADJUSTMENT_MAX_GAMMA = 1.5f;
// The amount of time after or before sunrise over which to start adjusting
// the gamma. We want the change to happen gradually so that it is below the
// threshold of perceptibility and so that the adjustment has maximum effect
// well after dusk.
private static final long TWILIGHT_ADJUSTMENT_TIME = DateUtils.HOUR_IN_MILLIS * 2;
private static final int ELECTRON_BEAM_ON_ANIMATION_DURATION_MILLIS = 250;
private static final int ELECTRON_BEAM_OFF_ANIMATION_DURATION_MILLIS = 450;
private static final int MSG_UPDATE_POWER_STATE = 1;
private static final int MSG_PROXIMITY_SENSOR_DEBOUNCED = 2;
private static final int MSG_LIGHT_SENSOR_DEBOUNCED = 3;
private static final int PROXIMITY_UNKNOWN = -1;
private static final int PROXIMITY_NEGATIVE = 0;
private static final int PROXIMITY_POSITIVE = 1;
// Proximity sensor debounce delay in milliseconds for positive or negative transitions.
private static final int PROXIMITY_SENSOR_POSITIVE_DEBOUNCE_DELAY = 0;
private static final int PROXIMITY_SENSOR_NEGATIVE_DEBOUNCE_DELAY = 500;
// Trigger proximity if distance is less than 5 cm.
private static final float TYPICAL_PROXIMITY_THRESHOLD = 5.0f;
// Light sensor event rate in microseconds.
private static final int LIGHT_SENSOR_RATE = 1000000;
// Brightness animation ramp rate in brightness units per second.
private static final int BRIGHTNESS_RAMP_RATE_FAST = 200;
private static final int BRIGHTNESS_RAMP_RATE_SLOW = 40;
// Filter time constant in milliseconds for computing a moving
// average of light samples. Different constants are used
// to calculate the average light level when adapting to brighter or
// dimmer environments.
// This parameter only controls the filtering of light samples.
private static final long BRIGHTENING_LIGHT_TIME_CONSTANT = 600;
private static final long DIMMING_LIGHT_TIME_CONSTANT = 4000;
// Stability requirements in milliseconds for accepting a new brightness
// level. This is used for debouncing the light sensor. Different constants
// are used to debounce the light sensor when adapting to brighter or dimmer
// environments.
// This parameter controls how quickly brightness changes occur in response to
// an observed change in light level.
private static final long BRIGHTENING_LIGHT_DEBOUNCE = 2500;
private static final long DIMMING_LIGHT_DEBOUNCE = 10000;
private final Object mLock = new Object();
// Notifier for sending asynchronous notifications.
private final Notifier mNotifier;
// A suspend blocker.
private final SuspendBlocker mSuspendBlocker;
// Our handler.
private final DisplayControllerHandler mHandler;
// Asynchronous callbacks into the power manager service.
// Only invoked from the handler thread while no locks are held.
private final Callbacks mCallbacks;
private Handler mCallbackHandler;
// The lights service.
private final LightsService mLights;
// The twilight service.
private final TwilightService mTwilight;
// The display manager.
private final DisplayManager mDisplayManager;
// The sensor manager.
private final SensorManager mSensorManager;
// The proximity sensor, or null if not available or needed.
private Sensor mProximitySensor;
// The light sensor, or null if not available or needed.
private Sensor mLightSensor;
// The dim screen brightness.
private final int mScreenBrightnessDimConfig;
// The minimum allowed brightness.
private final int mScreenBrightnessRangeMinimum;
// The maximum allowed brightness.
private final int mScreenBrightnessRangeMaximum;
// True if auto-brightness should be used.
private boolean mUseSoftwareAutoBrightnessConfig;
// The auto-brightness spline adjustment.
// The brightness values have been scaled to a range of 0..1.
private Spline mScreenAutoBrightnessSpline;
// Amount of time to delay auto-brightness after screen on while waiting for
// the light sensor to warm-up in milliseconds.
// May be 0 if no warm-up is required.
private int mLightSensorWarmUpTimeConfig;
// True if we should fade the screen while turning it off, false if we should play
// a stylish electron beam animation instead.
private boolean mElectronBeamFadesConfig;
// The pending power request.
// Initially null until the first call to requestPowerState.
// Guarded by mLock.
private DisplayPowerRequest mPendingRequestLocked;
// True if a request has been made to wait for the proximity sensor to go negative.
// Guarded by mLock.
private boolean mPendingWaitForNegativeProximityLocked;
// True if the pending power request or wait for negative proximity flag
// has been changed since the last update occurred.
// Guarded by mLock.
private boolean mPendingRequestChangedLocked;
// Set to true when the important parts of the pending power request have been applied.
// The important parts are mainly the screen state. Brightness changes may occur
// concurrently.
// Guarded by mLock.
private boolean mDisplayReadyLocked;
// Set to true if a power state update is required.
// Guarded by mLock.
private boolean mPendingUpdatePowerStateLocked;
/* The following state must only be accessed by the handler thread. */
// The currently requested power state.
// The power controller will progressively update its internal state to match
// the requested power state. Initially null until the first update.
private DisplayPowerRequest mPowerRequest;
// The current power state.
// Must only be accessed on the handler thread.
private DisplayPowerState mPowerState;
// True if the device should wait for negative proximity sensor before
// waking up the screen. This is set to false as soon as a negative
// proximity sensor measurement is observed or when the device is forced to
// go to sleep by the user. While true, the screen remains off.
private boolean mWaitingForNegativeProximity;
// The actual proximity sensor threshold value.
private float mProximityThreshold;
// Set to true if the proximity sensor listener has been registered
// with the sensor manager.
private boolean mProximitySensorEnabled;
// The debounced proximity sensor state.
private int mProximity = PROXIMITY_UNKNOWN;
// The raw non-debounced proximity sensor state.
private int mPendingProximity = PROXIMITY_UNKNOWN;
private long mPendingProximityDebounceTime;
// True if the screen was turned off because of the proximity sensor.
// When the screen turns on again, we report user activity to the power manager.
private boolean mScreenOffBecauseOfProximity;
// True if the screen on is being blocked.
private boolean mScreenOnWasBlocked;
// The elapsed real time when the screen on was blocked.
private long mScreenOnBlockStartRealTime;
// Set to true if the light sensor is enabled.
private boolean mLightSensorEnabled;
// The time when the light sensor was enabled.
private long mLightSensorEnableTime;
// The currently accepted average light sensor value.
private float mLightMeasurement;
// True if the light sensor measurement is valid.
private boolean mLightMeasurementValid;
// The number of light sensor samples that have been collected since the
// last time a light sensor reading was accepted.
private int mRecentLightSamples;
// The moving average of recent light sensor values.
private float mRecentLightAverage;
// True if recent light samples are getting brighter than the previous
// stable light measurement.
private boolean mRecentLightBrightening;
// The time constant to use for filtering based on whether the
// light appears to be brightening or dimming.
private long mRecentLightTimeConstant;
// The most recent light sample.
private float mLastLightSample;
// The time of the most light recent sample.
private long mLastLightSampleTime;
// The time when we accumulated the first recent light sample into mRecentLightSamples.
private long mFirstRecentLightSampleTime;
// The upcoming debounce light sensor time.
// This is only valid when mLightMeasurementValue && mRecentLightSamples >= 1.
private long mPendingLightSensorDebounceTime;
// The screen brightness level that has been chosen by the auto-brightness
// algorithm. The actual brightness should ramp towards this value.
// We preserve this value even when we stop using the light sensor so
// that we can quickly revert to the previous auto-brightness level
// while the light sensor warms up.
// Use -1 if there is no current auto-brightness value available.
private int mScreenAutoBrightness = -1;
// The last screen auto-brightness gamma. (For printing in dump() only.)
private float mLastScreenAutoBrightnessGamma = 1.0f;
// True if the screen auto-brightness value is actually being used to
// set the display brightness.
private boolean mUsingScreenAutoBrightness;
// Animators.
private ObjectAnimator mElectronBeamOnAnimator;
private ObjectAnimator mElectronBeamOffAnimator;
private RampAnimator<DisplayPowerState> mScreenBrightnessRampAnimator;
// Twilight changed. We might recalculate auto-brightness values.
private boolean mTwilightChanged;
/**
* Creates the display power controller.
*/
public DisplayPowerController(Looper looper, Context context, Notifier notifier,
LightsService lights, TwilightService twilight, SuspendBlocker suspendBlocker,
Callbacks callbacks, Handler callbackHandler) {
mHandler = new DisplayControllerHandler(looper);
mNotifier = notifier;
mSuspendBlocker = suspendBlocker;
mCallbacks = callbacks;
mCallbackHandler = callbackHandler;
mLights = lights;
mTwilight = twilight;
mSensorManager = new SystemSensorManager(mHandler.getLooper());
mDisplayManager = (DisplayManager)context.getSystemService(Context.DISPLAY_SERVICE);
final Resources resources = context.getResources();
mScreenBrightnessDimConfig = clampAbsoluteBrightness(resources.getInteger(
com.android.internal.R.integer.config_screenBrightnessDim));
int screenBrightnessMinimum = Math.min(resources.getInteger(
com.android.internal.R.integer.config_screenBrightnessSettingMinimum),
mScreenBrightnessDimConfig);
mUseSoftwareAutoBrightnessConfig = resources.getBoolean(
com.android.internal.R.bool.config_automatic_brightness_available);
if (mUseSoftwareAutoBrightnessConfig) {
int[] lux = resources.getIntArray(
com.android.internal.R.array.config_autoBrightnessLevels);
int[] screenBrightness = resources.getIntArray(
com.android.internal.R.array.config_autoBrightnessLcdBacklightValues);
mScreenAutoBrightnessSpline = createAutoBrightnessSpline(lux, screenBrightness);
if (mScreenAutoBrightnessSpline == null) {
Slog.e(TAG, "Error in config.xml. config_autoBrightnessLcdBacklightValues "
+ "(size " + screenBrightness.length + ") "
+ "must be monotic and have exactly one more entry than "
+ "config_autoBrightnessLevels (size " + lux.length + ") "
+ "which must be strictly increasing. "
+ "Auto-brightness will be disabled.");
mUseSoftwareAutoBrightnessConfig = false;
} else {
if (screenBrightness[0] < screenBrightnessMinimum) {
screenBrightnessMinimum = screenBrightness[0];
}
}
mLightSensorWarmUpTimeConfig = resources.getInteger(
com.android.internal.R.integer.config_lightSensorWarmupTime);
}
mScreenBrightnessRangeMinimum = clampAbsoluteBrightness(screenBrightnessMinimum);
mScreenBrightnessRangeMaximum = PowerManager.BRIGHTNESS_ON;
mElectronBeamFadesConfig = resources.getBoolean(
com.android.internal.R.bool.config_animateScreenLights);
if (!DEBUG_PRETEND_PROXIMITY_SENSOR_ABSENT) {
mProximitySensor = mSensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY);
if (mProximitySensor != null) {
mProximityThreshold = Math.min(mProximitySensor.getMaximumRange(),
TYPICAL_PROXIMITY_THRESHOLD);
}
}
if (mUseSoftwareAutoBrightnessConfig
&& !DEBUG_PRETEND_LIGHT_SENSOR_ABSENT) {
mLightSensor = mSensorManager.getDefaultSensor(Sensor.TYPE_LIGHT);
}
if (mUseSoftwareAutoBrightnessConfig && USE_TWILIGHT_ADJUSTMENT) {
mTwilight.registerListener(mTwilightListener, mHandler);
}
}
private static Spline createAutoBrightnessSpline(int[] lux, int[] brightness) {
try {
final int n = brightness.length;
float[] x = new float[n];
float[] y = new float[n];
y[0] = normalizeAbsoluteBrightness(brightness[0]);
for (int i = 1; i < n; i++) {
x[i] = lux[i - 1];
y[i] = normalizeAbsoluteBrightness(brightness[i]);
}
Spline spline = Spline.createMonotoneCubicSpline(x, y);
if (DEBUG) {
Slog.d(TAG, "Auto-brightness spline: " + spline);
for (float v = 1f; v < lux[lux.length - 1] * 1.25f; v *= 1.25f) {
Slog.d(TAG, String.format(" %7.1f: %7.1f", v, spline.interpolate(v)));
}
}
return spline;
} catch (IllegalArgumentException ex) {
Slog.e(TAG, "Could not create auto-brightness spline.", ex);
return null;
}
}
/**
* Returns true if the proximity sensor screen-off function is available.
*/
public boolean isProximitySensorAvailable() {
return mProximitySensor != null;
}
/**
* Requests a new power state.
* The controller makes a copy of the provided object and then
* begins adjusting the power state to match what was requested.
*
* @param request The requested power state.
* @param waitForNegativeProximity If true, issues a request to wait for
* negative proximity before turning the screen back on, assuming the screen
* was turned off by the proximity sensor.
* @return True if display is ready, false if there are important changes that must
* be made asynchronously (such as turning the screen on), in which case the caller
* should grab a wake lock, watch for {@link Callbacks#onStateChanged()} then try
* the request again later until the state converges.
*/
public boolean requestPowerState(DisplayPowerRequest request,
boolean waitForNegativeProximity) {
if (DEBUG) {
Slog.d(TAG, "requestPowerState: "
+ request + ", waitForNegativeProximity=" + waitForNegativeProximity);
}
synchronized (mLock) {
boolean changed = false;
if (waitForNegativeProximity
&& !mPendingWaitForNegativeProximityLocked) {
mPendingWaitForNegativeProximityLocked = true;
changed = true;
}
if (mPendingRequestLocked == null) {
mPendingRequestLocked = new DisplayPowerRequest(request);
changed = true;
} else if (!mPendingRequestLocked.equals(request)) {
mPendingRequestLocked.copyFrom(request);
changed = true;
}
if (changed) {
mDisplayReadyLocked = false;
}
if (changed && !mPendingRequestChangedLocked) {
mPendingRequestChangedLocked = true;
sendUpdatePowerStateLocked();
}
return mDisplayReadyLocked;
}
}
private void sendUpdatePowerState() {
synchronized (mLock) {
sendUpdatePowerStateLocked();
}
}
private void sendUpdatePowerStateLocked() {
if (!mPendingUpdatePowerStateLocked) {
mPendingUpdatePowerStateLocked = true;
Message msg = mHandler.obtainMessage(MSG_UPDATE_POWER_STATE);
msg.setAsynchronous(true);
mHandler.sendMessage(msg);
}
}
private void initialize() {
final Executor executor = AsyncTask.THREAD_POOL_EXECUTOR;
Display display = mDisplayManager.getDisplay(Display.DEFAULT_DISPLAY);
mPowerState = new DisplayPowerState(
new ElectronBeam(display),
new PhotonicModulator(executor,
mLights.getLight(LightsService.LIGHT_ID_BACKLIGHT),
mSuspendBlocker));
mElectronBeamOnAnimator = ObjectAnimator.ofFloat(
mPowerState, DisplayPowerState.ELECTRON_BEAM_LEVEL, 0.0f, 1.0f);
mElectronBeamOnAnimator.setDuration(ELECTRON_BEAM_ON_ANIMATION_DURATION_MILLIS);
mElectronBeamOnAnimator.addListener(mAnimatorListener);
mElectronBeamOffAnimator = ObjectAnimator.ofFloat(
mPowerState, DisplayPowerState.ELECTRON_BEAM_LEVEL, 1.0f, 0.0f);
mElectronBeamOffAnimator.setDuration(ELECTRON_BEAM_OFF_ANIMATION_DURATION_MILLIS);
mElectronBeamOffAnimator.addListener(mAnimatorListener);
mScreenBrightnessRampAnimator = new RampAnimator<DisplayPowerState>(
mPowerState, DisplayPowerState.SCREEN_BRIGHTNESS);
}
private final Animator.AnimatorListener mAnimatorListener = new Animator.AnimatorListener() {
@Override
public void onAnimationStart(Animator animation) {
}
@Override
public void onAnimationEnd(Animator animation) {
sendUpdatePowerState();
}
@Override
public void onAnimationRepeat(Animator animation) {
}
@Override
public void onAnimationCancel(Animator animation) {
}
};
private void updatePowerState() {
// Update the power state request.
final boolean mustNotify;
boolean mustInitialize = false;
boolean updateAutoBrightness = mTwilightChanged;
mTwilightChanged = false;
synchronized (mLock) {
mPendingUpdatePowerStateLocked = false;
if (mPendingRequestLocked == null) {
return; // wait until first actual power request
}
if (mPowerRequest == null) {
mPowerRequest = new DisplayPowerRequest(mPendingRequestLocked);
mWaitingForNegativeProximity = mPendingWaitForNegativeProximityLocked;
mPendingWaitForNegativeProximityLocked = false;
mPendingRequestChangedLocked = false;
mustInitialize = true;
} else if (mPendingRequestChangedLocked) {
if (mPowerRequest.screenAutoBrightnessAdjustment
!= mPendingRequestLocked.screenAutoBrightnessAdjustment) {
updateAutoBrightness = true;
}
mPowerRequest.copyFrom(mPendingRequestLocked);
mWaitingForNegativeProximity |= mPendingWaitForNegativeProximityLocked;
mPendingWaitForNegativeProximityLocked = false;
mPendingRequestChangedLocked = false;
mDisplayReadyLocked = false;
}
mustNotify = !mDisplayReadyLocked;
}
// Initialize things the first time the power state is changed.
if (mustInitialize) {
initialize();
}
// Apply the proximity sensor.
if (mProximitySensor != null) {
if (mPowerRequest.useProximitySensor
&& mPowerRequest.screenState != DisplayPowerRequest.SCREEN_STATE_OFF) {
setProximitySensorEnabled(true);
if (!mScreenOffBecauseOfProximity
&& mProximity == PROXIMITY_POSITIVE) {
mScreenOffBecauseOfProximity = true;
sendOnProximityPositive();
setScreenOn(false);
}
} else if (mWaitingForNegativeProximity
&& mScreenOffBecauseOfProximity
&& mProximity == PROXIMITY_POSITIVE
&& mPowerRequest.screenState != DisplayPowerRequest.SCREEN_STATE_OFF) {
setProximitySensorEnabled(true);
} else {
setProximitySensorEnabled(false);
mWaitingForNegativeProximity = false;
}
if (mScreenOffBecauseOfProximity
&& mProximity != PROXIMITY_POSITIVE) {
mScreenOffBecauseOfProximity = false;
sendOnProximityNegative();
}
} else {
mWaitingForNegativeProximity = false;
}
// Turn on the light sensor if needed.
if (mLightSensor != null) {
setLightSensorEnabled(mPowerRequest.useAutoBrightness
&& wantScreenOn(mPowerRequest.screenState), updateAutoBrightness);
}
// Set the screen brightness.
if (wantScreenOn(mPowerRequest.screenState)) {
int target;
boolean slow;
if (mScreenAutoBrightness >= 0 && mLightSensorEnabled) {
// Use current auto-brightness value.
target = mScreenAutoBrightness;
slow = mUsingScreenAutoBrightness;
mUsingScreenAutoBrightness = true;
} else {
// Light sensor is disabled or not ready yet.
// Use the current brightness setting from the request, which is expected
// provide a nominal default value for the case where auto-brightness
// is not ready yet.
target = mPowerRequest.screenBrightness;
slow = false;
mUsingScreenAutoBrightness = false;
}
if (mPowerRequest.screenState == DisplayPowerRequest.SCREEN_STATE_DIM) {
// Screen is dimmed. Sets an upper bound on everything else.
target = Math.min(target - SCREEN_DIM_MINIMUM_REDUCTION,
mScreenBrightnessDimConfig);
slow = false;
}
animateScreenBrightness(clampScreenBrightness(target),
slow ? BRIGHTNESS_RAMP_RATE_SLOW : BRIGHTNESS_RAMP_RATE_FAST);
} else {
// Screen is off. Don't bother changing the brightness.
mUsingScreenAutoBrightness = false;
}
// Animate the screen on or off.
if (!mScreenOffBecauseOfProximity) {
if (wantScreenOn(mPowerRequest.screenState)) {
// Want screen on.
// Wait for previous off animation to complete beforehand.
// It is relatively short but if we cancel it and switch to the
// on animation immediately then the results are pretty ugly.
if (!mElectronBeamOffAnimator.isStarted()) {
// Turn the screen on. The contents of the screen may not yet
// be visible if the electron beam has not been dismissed because
// its last frame of animation is solid black.
setScreenOn(true);
if (mPowerRequest.blockScreenOn
&& mPowerState.getElectronBeamLevel() == 0.0f) {
blockScreenOn();
} else {
unblockScreenOn();
if (USE_ELECTRON_BEAM_ON_ANIMATION) {
if (!mElectronBeamOnAnimator.isStarted()) {
if (mPowerState.getElectronBeamLevel() == 1.0f) {
mPowerState.dismissElectronBeam();
} else if (mPowerState.prepareElectronBeam(
mElectronBeamFadesConfig ?
ElectronBeam.MODE_FADE :
ElectronBeam.MODE_WARM_UP)) {
mElectronBeamOnAnimator.start();
} else {
mElectronBeamOnAnimator.end();
}
}
} else {
mPowerState.setElectronBeamLevel(1.0f);
mPowerState.dismissElectronBeam();
}
}
}
} else {
// Want screen off.
// Wait for previous on animation to complete beforehand.
if (!mElectronBeamOnAnimator.isStarted()) {
if (!mElectronBeamOffAnimator.isStarted()) {
if (mPowerState.getElectronBeamLevel() == 0.0f) {
setScreenOn(false);
} else if (mPowerState.prepareElectronBeam(
mElectronBeamFadesConfig ?
ElectronBeam.MODE_FADE :
ElectronBeam.MODE_COOL_DOWN)
&& mPowerState.isScreenOn()) {
mElectronBeamOffAnimator.start();
} else {
mElectronBeamOffAnimator.end();
}
}
}
}
}
// Report whether the display is ready for use.
// We mostly care about the screen state here, ignoring brightness changes
// which will be handled asynchronously.
if (mustNotify
&& !mScreenOnWasBlocked
&& !mElectronBeamOnAnimator.isStarted()
&& !mElectronBeamOffAnimator.isStarted()
&& mPowerState.waitUntilClean(mCleanListener)) {
synchronized (mLock) {
if (!mPendingRequestChangedLocked) {
mDisplayReadyLocked = true;
if (DEBUG) {
Slog.d(TAG, "Display ready!");
}
}
}
sendOnStateChanged();
}
}
private void blockScreenOn() {
if (!mScreenOnWasBlocked) {
mScreenOnWasBlocked = true;
if (DEBUG) {
Slog.d(TAG, "Blocked screen on.");
mScreenOnBlockStartRealTime = SystemClock.elapsedRealtime();
}
}
}
private void unblockScreenOn() {
if (mScreenOnWasBlocked) {
mScreenOnWasBlocked = false;
if (DEBUG) {
Slog.d(TAG, "Unblocked screen on after " +
(SystemClock.elapsedRealtime() - mScreenOnBlockStartRealTime) + " ms");
}
}
}
private void setScreenOn(boolean on) {
if (!mPowerState.isScreenOn() == on) {
mPowerState.setScreenOn(on);
if (on) {
mNotifier.onScreenOn();
} else {
mNotifier.onScreenOff();
}
}
}
private int clampScreenBrightness(int value) {
return clamp(value, mScreenBrightnessRangeMinimum, mScreenBrightnessRangeMaximum);
}
private static int clampAbsoluteBrightness(int value) {
return clamp(value, PowerManager.BRIGHTNESS_OFF, PowerManager.BRIGHTNESS_ON);
}
private static int clamp(int value, int min, int max) {
if (value <= min) {
return min;
}
if (value >= max) {
return max;
}
return value;
}
private static float normalizeAbsoluteBrightness(int value) {
return (float)clampAbsoluteBrightness(value) / PowerManager.BRIGHTNESS_ON;
}
private void animateScreenBrightness(int target, int rate) {
if (mScreenBrightnessRampAnimator.animateTo(target, rate)) {
mNotifier.onScreenBrightness(target);
}
}
private final Runnable mCleanListener = new Runnable() {
@Override
public void run() {
sendUpdatePowerState();
}
};
private void setProximitySensorEnabled(boolean enable) {
if (enable) {
if (!mProximitySensorEnabled) {
mProximitySensorEnabled = true;
mPendingProximity = PROXIMITY_UNKNOWN;
mSensorManager.registerListener(mProximitySensorListener, mProximitySensor,
SensorManager.SENSOR_DELAY_NORMAL, mHandler);
}
} else {
if (mProximitySensorEnabled) {
mProximitySensorEnabled = false;
mProximity = PROXIMITY_UNKNOWN;
mHandler.removeMessages(MSG_PROXIMITY_SENSOR_DEBOUNCED);
mSensorManager.unregisterListener(mProximitySensorListener);
}
}
}
private void handleProximitySensorEvent(long time, boolean positive) {
if (mPendingProximity == PROXIMITY_NEGATIVE && !positive) {
return; // no change
}
if (mPendingProximity == PROXIMITY_POSITIVE && positive) {
return; // no change
}
// Only accept a proximity sensor reading if it remains
// stable for the entire debounce delay.
mHandler.removeMessages(MSG_PROXIMITY_SENSOR_DEBOUNCED);
if (positive) {
mPendingProximity = PROXIMITY_POSITIVE;
mPendingProximityDebounceTime = time + PROXIMITY_SENSOR_POSITIVE_DEBOUNCE_DELAY;
} else {
mPendingProximity = PROXIMITY_NEGATIVE;
mPendingProximityDebounceTime = time + PROXIMITY_SENSOR_NEGATIVE_DEBOUNCE_DELAY;
}
debounceProximitySensor();
}
private void debounceProximitySensor() {
if (mPendingProximity != PROXIMITY_UNKNOWN) {
final long now = SystemClock.uptimeMillis();
if (mPendingProximityDebounceTime <= now) {
mProximity = mPendingProximity;
sendUpdatePowerState();
} else {
Message msg = mHandler.obtainMessage(MSG_PROXIMITY_SENSOR_DEBOUNCED);
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, mPendingProximityDebounceTime);
}
}
}
private void setLightSensorEnabled(boolean enable, boolean updateAutoBrightness) {
if (enable) {
if (!mLightSensorEnabled) {
updateAutoBrightness = true;
mLightSensorEnabled = true;
mLightSensorEnableTime = SystemClock.uptimeMillis();
mSensorManager.registerListener(mLightSensorListener, mLightSensor,
LIGHT_SENSOR_RATE, mHandler);
}
} else {
if (mLightSensorEnabled) {
mLightSensorEnabled = false;
mLightMeasurementValid = false;
mHandler.removeMessages(MSG_LIGHT_SENSOR_DEBOUNCED);
mSensorManager.unregisterListener(mLightSensorListener);
}
}
if (updateAutoBrightness) {
updateAutoBrightness(false);
}
}
private void handleLightSensorEvent(long time, float lux) {
// Take the first few readings during the warm-up period and apply them
// immediately without debouncing.
if (!mLightMeasurementValid
|| (time - mLightSensorEnableTime) < mLightSensorWarmUpTimeConfig) {
mLightMeasurement = lux;
mLightMeasurementValid = true;
mRecentLightSamples = 0;
updateAutoBrightness(true);
}
// Update our moving average.
if (lux != mLightMeasurement && (mRecentLightSamples == 0
|| (lux < mLightMeasurement && mRecentLightBrightening)
|| (lux > mLightMeasurement && !mRecentLightBrightening))) {
// If the newest light sample doesn't seem to be going in the
// same general direction as recent samples, then start over.
setRecentLight(time, lux, lux > mLightMeasurement);
} else if (mRecentLightSamples >= 1) {
// Add the newest light sample to the moving average.
accumulateRecentLight(time, lux);
}
if (DEBUG) {
Slog.d(TAG, "handleLightSensorEvent: lux=" + lux
+ ", mLightMeasurementValid=" + mLightMeasurementValid
+ ", mLightMeasurement=" + mLightMeasurement
+ ", mRecentLightSamples=" + mRecentLightSamples
+ ", mRecentLightAverage=" + mRecentLightAverage
+ ", mRecentLightBrightening=" + mRecentLightBrightening
+ ", mRecentLightTimeConstant=" + mRecentLightTimeConstant
+ ", mFirstRecentLightSampleTime="
+ TimeUtils.formatUptime(mFirstRecentLightSampleTime)
+ ", mPendingLightSensorDebounceTime="
+ TimeUtils.formatUptime(mPendingLightSensorDebounceTime));
}
// Debounce.
mHandler.removeMessages(MSG_LIGHT_SENSOR_DEBOUNCED);
debounceLightSensor();
}
private void setRecentLight(long time, float lux, boolean brightening) {
mRecentLightBrightening = brightening;
mRecentLightTimeConstant = brightening ?
BRIGHTENING_LIGHT_TIME_CONSTANT : DIMMING_LIGHT_TIME_CONSTANT;
mRecentLightSamples = 1;
mRecentLightAverage = lux;
mLastLightSample = lux;
mLastLightSampleTime = time;
mFirstRecentLightSampleTime = time;
mPendingLightSensorDebounceTime = time + (brightening ?
BRIGHTENING_LIGHT_DEBOUNCE : DIMMING_LIGHT_DEBOUNCE);
}
private void accumulateRecentLight(long time, float lux) {
final long timeDelta = time - mLastLightSampleTime;
mRecentLightSamples += 1;
mRecentLightAverage += (lux - mRecentLightAverage) *
timeDelta / (mRecentLightTimeConstant + timeDelta);
mLastLightSample = lux;
mLastLightSampleTime = time;
}
private void debounceLightSensor() {
if (mLightMeasurementValid && mRecentLightSamples >= 1) {
final long now = SystemClock.uptimeMillis();
if (mPendingLightSensorDebounceTime <= now) {
accumulateRecentLight(now, mLastLightSample);
mLightMeasurement = mRecentLightAverage;
if (DEBUG) {
Slog.d(TAG, "debounceLightSensor: Accepted new measurement "
+ mLightMeasurement + " after "
+ (now - mFirstRecentLightSampleTime) + " ms based on "
+ mRecentLightSamples + " recent samples.");
}
updateAutoBrightness(true);
// Now that we have debounced the light sensor data, we have the
// option of either leaving the sensor in a debounced state or
// restarting the debounce cycle by setting mRecentLightSamples to 0.
//
// If we leave the sensor debounced, then new average light measurements
// may be accepted immediately as long as they are trending in the same
// direction as they were before. If the measurements start
// jittering or trending in the opposite direction then the debounce
// cycle will automatically be restarted. The benefit is that the
// auto-brightness control can be more responsive to changes over a
// broad range.
//
// For now, we choose to be more responsive and leave the following line
// commented out.
//
// mRecentLightSamples = 0;
} else {
Message msg = mHandler.obtainMessage(MSG_LIGHT_SENSOR_DEBOUNCED);
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, mPendingLightSensorDebounceTime);
}
}
}
private void updateAutoBrightness(boolean sendUpdate) {
if (!mLightMeasurementValid) {
return;
}
float value = mScreenAutoBrightnessSpline.interpolate(mLightMeasurement);
float gamma = 1.0f;
if (USE_SCREEN_AUTO_BRIGHTNESS_ADJUSTMENT
&& mPowerRequest.screenAutoBrightnessAdjustment != 0.0f) {
final float adjGamma = FloatMath.pow(SCREEN_AUTO_BRIGHTNESS_ADJUSTMENT_MAX_GAMMA,
Math.min(1.0f, Math.max(-1.0f,
-mPowerRequest.screenAutoBrightnessAdjustment)));
gamma *= adjGamma;
if (DEBUG) {
Slog.d(TAG, "updateAutoBrightness: adjGamma=" + adjGamma);
}
}
if (USE_TWILIGHT_ADJUSTMENT) {
TwilightState state = mTwilight.getCurrentState();
if (state != null && state.isNight()) {
final long now = System.currentTimeMillis();
final float earlyGamma =
getTwilightGamma(now, state.getYesterdaySunset(), state.getTodaySunrise());
final float lateGamma =
getTwilightGamma(now, state.getTodaySunset(), state.getTomorrowSunrise());
gamma *= earlyGamma * lateGamma;
if (DEBUG) {
Slog.d(TAG, "updateAutoBrightness: earlyGamma=" + earlyGamma
+ ", lateGamma=" + lateGamma);
}
}
}
if (gamma != 1.0f) {
final float in = value;
value = FloatMath.pow(value, gamma);
if (DEBUG) {
Slog.d(TAG, "updateAutoBrightness: gamma=" + gamma
+ ", in=" + in + ", out=" + value);
}
}
int newScreenAutoBrightness = clampScreenBrightness(
(int)Math.round(value * PowerManager.BRIGHTNESS_ON));
if (mScreenAutoBrightness != newScreenAutoBrightness) {
if (DEBUG) {
Slog.d(TAG, "updateAutoBrightness: mScreenAutoBrightness="
+ mScreenAutoBrightness + ", newScreenAutoBrightness="
+ newScreenAutoBrightness);
}
mScreenAutoBrightness = newScreenAutoBrightness;
mLastScreenAutoBrightnessGamma = gamma;
if (sendUpdate) {
sendUpdatePowerState();
}
}
}
private static float getTwilightGamma(long now, long lastSunset, long nextSunrise) {
if (lastSunset < 0 || nextSunrise < 0
|| now < lastSunset || now > nextSunrise) {
return 1.0f;
}
if (now < lastSunset + TWILIGHT_ADJUSTMENT_TIME) {
return lerp(1.0f, TWILIGHT_ADJUSTMENT_MAX_GAMMA,
(float)(now - lastSunset) / TWILIGHT_ADJUSTMENT_TIME);
}
if (now > nextSunrise - TWILIGHT_ADJUSTMENT_TIME) {
return lerp(1.0f, TWILIGHT_ADJUSTMENT_MAX_GAMMA,
(float)(nextSunrise - now) / TWILIGHT_ADJUSTMENT_TIME);
}
return TWILIGHT_ADJUSTMENT_MAX_GAMMA;
}
private static float lerp(float x, float y, float alpha) {
return x + (y - x) * alpha;
}
private void sendOnStateChanged() {
mCallbackHandler.post(mOnStateChangedRunnable);
}
private final Runnable mOnStateChangedRunnable = new Runnable() {
@Override
public void run() {
mCallbacks.onStateChanged();
}
};
private void sendOnProximityPositive() {
mCallbackHandler.post(mOnProximityPositiveRunnable);
}
private final Runnable mOnProximityPositiveRunnable = new Runnable() {
@Override
public void run() {
mCallbacks.onProximityPositive();
}
};
private void sendOnProximityNegative() {
mCallbackHandler.post(mOnProximityNegativeRunnable);
}
private final Runnable mOnProximityNegativeRunnable = new Runnable() {
@Override
public void run() {
mCallbacks.onProximityNegative();
}
};
public void dump(final PrintWriter pw) {
synchronized (mLock) {
pw.println();
pw.println("Display Controller Locked State:");
pw.println(" mDisplayReadyLocked=" + mDisplayReadyLocked);
pw.println(" mPendingRequestLocked=" + mPendingRequestLocked);
pw.println(" mPendingRequestChangedLocked=" + mPendingRequestChangedLocked);
pw.println(" mPendingWaitForNegativeProximityLocked="
+ mPendingWaitForNegativeProximityLocked);
pw.println(" mPendingUpdatePowerStateLocked=" + mPendingUpdatePowerStateLocked);
}
pw.println();
pw.println("Display Controller Configuration:");
pw.println(" mScreenBrightnessDimConfig=" + mScreenBrightnessDimConfig);
pw.println(" mScreenBrightnessRangeMinimum=" + mScreenBrightnessRangeMinimum);
pw.println(" mScreenBrightnessRangeMaximum=" + mScreenBrightnessRangeMaximum);
pw.println(" mUseSoftwareAutoBrightnessConfig="
+ mUseSoftwareAutoBrightnessConfig);
pw.println(" mScreenAutoBrightnessSpline=" + mScreenAutoBrightnessSpline);
pw.println(" mLightSensorWarmUpTimeConfig=" + mLightSensorWarmUpTimeConfig);
mHandler.runWithScissors(new Runnable() {
@Override
public void run() {
dumpLocal(pw);
}
}, 1000);
}
private void dumpLocal(PrintWriter pw) {
pw.println();
pw.println("Display Controller Thread State:");
pw.println(" mPowerRequest=" + mPowerRequest);
pw.println(" mWaitingForNegativeProximity=" + mWaitingForNegativeProximity);
pw.println(" mProximitySensor=" + mProximitySensor);
pw.println(" mProximitySensorEnabled=" + mProximitySensorEnabled);
pw.println(" mProximityThreshold=" + mProximityThreshold);
pw.println(" mProximity=" + proximityToString(mProximity));
pw.println(" mPendingProximity=" + proximityToString(mPendingProximity));
pw.println(" mPendingProximityDebounceTime="
+ TimeUtils.formatUptime(mPendingProximityDebounceTime));
pw.println(" mScreenOffBecauseOfProximity=" + mScreenOffBecauseOfProximity);
pw.println(" mLightSensor=" + mLightSensor);
pw.println(" mLightSensorEnabled=" + mLightSensorEnabled);
pw.println(" mLightSensorEnableTime="
+ TimeUtils.formatUptime(mLightSensorEnableTime));
pw.println(" mLightMeasurement=" + mLightMeasurement);
pw.println(" mLightMeasurementValid=" + mLightMeasurementValid);
pw.println(" mLastLightSample=" + mLastLightSample);
pw.println(" mLastLightSampleTime="
+ TimeUtils.formatUptime(mLastLightSampleTime));
pw.println(" mRecentLightSamples=" + mRecentLightSamples);
pw.println(" mRecentLightAverage=" + mRecentLightAverage);
pw.println(" mRecentLightBrightening=" + mRecentLightBrightening);
pw.println(" mRecentLightTimeConstant=" + mRecentLightTimeConstant);
pw.println(" mFirstRecentLightSampleTime="
+ TimeUtils.formatUptime(mFirstRecentLightSampleTime));
pw.println(" mPendingLightSensorDebounceTime="
+ TimeUtils.formatUptime(mPendingLightSensorDebounceTime));
pw.println(" mScreenAutoBrightness=" + mScreenAutoBrightness);
pw.println(" mUsingScreenAutoBrightness=" + mUsingScreenAutoBrightness);
pw.println(" mLastScreenAutoBrightnessGamma=" + mLastScreenAutoBrightnessGamma);
pw.println(" mTwilight.getCurrentState()=" + mTwilight.getCurrentState());
if (mElectronBeamOnAnimator != null) {
pw.println(" mElectronBeamOnAnimator.isStarted()=" +
mElectronBeamOnAnimator.isStarted());
}
if (mElectronBeamOffAnimator != null) {
pw.println(" mElectronBeamOffAnimator.isStarted()=" +
mElectronBeamOffAnimator.isStarted());
}
if (mPowerState != null) {
mPowerState.dump(pw);
}
}
private static String proximityToString(int state) {
switch (state) {
case PROXIMITY_UNKNOWN:
return "Unknown";
case PROXIMITY_NEGATIVE:
return "Negative";
case PROXIMITY_POSITIVE:
return "Positive";
default:
return Integer.toString(state);
}
}
private static boolean wantScreenOn(int state) {
switch (state) {
case DisplayPowerRequest.SCREEN_STATE_BRIGHT:
case DisplayPowerRequest.SCREEN_STATE_DIM:
return true;
}
return false;
}
/**
* Asynchronous callbacks from the power controller to the power manager service.
*/
public interface Callbacks {
void onStateChanged();
void onProximityPositive();
void onProximityNegative();
}
private final class DisplayControllerHandler extends Handler {
public DisplayControllerHandler(Looper looper) {
super(looper, null, true /*async*/);
}
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case MSG_UPDATE_POWER_STATE:
updatePowerState();
break;
case MSG_PROXIMITY_SENSOR_DEBOUNCED:
debounceProximitySensor();
break;
case MSG_LIGHT_SENSOR_DEBOUNCED:
debounceLightSensor();
break;
}
}
}
private final SensorEventListener mProximitySensorListener = new SensorEventListener() {
@Override
public void onSensorChanged(SensorEvent event) {
if (mProximitySensorEnabled) {
final long time = SystemClock.uptimeMillis();
final float distance = event.values[0];
boolean positive = distance >= 0.0f && distance < mProximityThreshold;
handleProximitySensorEvent(time, positive);
}
}
@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
// Not used.
}
};
private final SensorEventListener mLightSensorListener = new SensorEventListener() {
@Override
public void onSensorChanged(SensorEvent event) {
if (mLightSensorEnabled) {
final long time = SystemClock.uptimeMillis();
final float lux = event.values[0];
handleLightSensorEvent(time, lux);
}
}
@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
// Not used.
}
};
private final TwilightService.TwilightListener mTwilightListener =
new TwilightService.TwilightListener() {
@Override
public void onTwilightStateChanged() {
mTwilightChanged = true;
updatePowerState();
}
};
}
|