1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.gesture;
import android.content.Context;
import android.content.res.Resources;
import android.util.Log;
import java.io.IOException;
import java.io.DataInputStream;
import java.io.BufferedInputStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
public class LetterRecognizer {
private static final String LOG_TAG = "LetterRecognizer";
public final static int LATIN_LOWERCASE = 0;
private SigmoidUnit[] mHiddenLayer;
private SigmoidUnit[] mOutputLayer;
private final String[] mClasses;
private final int mInputCount;
private static class SigmoidUnit {
final float[] mWeights;
SigmoidUnit(float[] weights) {
mWeights = weights;
}
private float compute(float[] inputs) {
float sum = 0;
final int count = inputs.length;
final float[] weights = mWeights;
for (int i = 0; i < count; i++) {
sum += inputs[i] * weights[i];
}
sum += weights[weights.length - 1];
return 1.0f / (float) (1 + Math.exp(-sum));
}
}
private LetterRecognizer(int numOfInput, int numOfHidden, String[] classes) {
mInputCount = (int)Math.sqrt(numOfInput);
mHiddenLayer = new SigmoidUnit[numOfHidden];
mClasses = classes;
mOutputLayer = new SigmoidUnit[classes.length];
}
public static LetterRecognizer getLetterRecognizer(Context context, int type) {
switch (type) {
case LATIN_LOWERCASE: {
return createFromResource(context, com.android.internal.R.raw.latin_lowercase);
}
}
return null;
}
public ArrayList<Prediction> recognize(Gesture gesture) {
return classify(GestureUtilities.spatialSampling(gesture, mInputCount));
}
private ArrayList<Prediction> classify(float[] vector) {
final float[] intermediateOutput = compute(mHiddenLayer, vector);
final float[] output = compute(mOutputLayer, intermediateOutput);
final ArrayList<Prediction> predictions = new ArrayList<Prediction>();
double sum = 0;
final String[] classes = mClasses;
final int count = classes.length;
for (int i = 0; i < count; i++) {
double score = output[i];
sum += score;
predictions.add(new Prediction(classes[i], score));
}
for (int i = 0; i < count; i++) {
predictions.get(i).score /= sum;
}
Collections.sort(predictions, new Comparator<Prediction>() {
public int compare(Prediction object1, Prediction object2) {
double score1 = object1.score;
double score2 = object2.score;
if (score1 > score2) {
return -1;
} else if (score1 < score2) {
return 1;
} else {
return 0;
}
}
});
return predictions;
}
private float[] compute(SigmoidUnit[] layer, float[] input) {
final float[] output = new float[layer.length];
final int count = layer.length;
for (int i = 0; i < count; i++) {
output[i] = layer[i].compute(input);
}
return output;
}
private static LetterRecognizer createFromResource(Context context, int resourceID) {
final Resources resources = context.getResources();
DataInputStream in = null;
LetterRecognizer classifier = null;
try {
in = new DataInputStream(new BufferedInputStream(resources.openRawResource(resourceID)));
final int iCount = in.readInt();
final int hCount = in.readInt();
final int oCount = in.readInt();
final String[] classes = new String[oCount];
for (int i = 0; i < classes.length; i++) {
classes[i] = in.readUTF();
}
classifier = new LetterRecognizer(iCount, hCount, classes);
SigmoidUnit[] hiddenLayer = new SigmoidUnit[hCount];
SigmoidUnit[] outputLayer = new SigmoidUnit[oCount];
for (int i = 0; i < hCount; i++) {
float[] weights = new float[iCount];
for (int j = 0; j < iCount; j++) {
weights[j] = in.readFloat();
}
hiddenLayer[i] = new SigmoidUnit(weights);
}
for (int i = 0; i < oCount; i++) {
float[] weights = new float[hCount];
for (int j = 0; j < hCount; j++) {
weights[j] = in.readFloat();
}
outputLayer[i] = new SigmoidUnit(weights);
}
classifier.mHiddenLayer = hiddenLayer;
classifier.mOutputLayer = outputLayer;
} catch (IOException e) {
Log.d(LOG_TAG, "Failed to load gestures:", e);
} finally {
GestureUtilities.closeStream(in);
}
return classifier;
}
}
|