summaryrefslogtreecommitdiffstats
path: root/tools/layoutlib/bridge/src/android/graphics/Matrix.java
blob: 9e306718a5948b7111860dcd697f18ecd5142825 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.graphics;

import java.awt.geom.AffineTransform;
import java.awt.geom.NoninvertibleTransformException;


/**
 * A matrix implementation overridden by the LayoutLib bridge.
 */
public class Matrix extends _Original_Matrix {

    float mValues[] = new float[9];

    /**
     * Create an identity matrix
     */
    public Matrix() {
        reset();
    }

    /**
     * Create a matrix that is a (deep) copy of src
     * @param src The matrix to copy into this matrix
     */
    public Matrix(Matrix src) {
        set(src);
    }

    /**
     * Creates a Matrix object from the float array. The array becomes the internal storage
     * of the object.
     * @param data
     */
    private Matrix(float[] data) {
        assert data.length != 9;
        mValues = data;
    }

    //---------- Custom Methods

    /**
     * Adds the given transformation to the current Matrix
     * <p/>This in effect does this = this*matrix
     * @param matrix
     */
    private void addTransform(float[] matrix) {
        float[] tmp = new float[9];

        // first row
        tmp[0] = matrix[0] * mValues[0] + matrix[1] * mValues[3] + matrix[2] * mValues[6];
        tmp[1] = matrix[0] * mValues[1] + matrix[1] * mValues[4] + matrix[2] * mValues[7];
        tmp[2] = matrix[0] * mValues[2] + matrix[1] * mValues[5] + matrix[2] * mValues[8];

        // 2nd row
        tmp[3] = matrix[3] * mValues[0] + matrix[4] * mValues[3] + matrix[5] * mValues[6];
        tmp[4] = matrix[3] * mValues[1] + matrix[4] * mValues[4] + matrix[5] * mValues[7];
        tmp[5] = matrix[3] * mValues[2] + matrix[4] * mValues[5] + matrix[5] * mValues[8];

        // 3rd row
        tmp[6] = matrix[6] * mValues[0] + matrix[7] * mValues[3] + matrix[8] * mValues[6];
        tmp[7] = matrix[6] * mValues[1] + matrix[7] * mValues[4] + matrix[8] * mValues[7];
        tmp[8] = matrix[6] * mValues[2] + matrix[7] * mValues[5] + matrix[8] * mValues[8];

        // copy the result over to mValues
        mValues = tmp;
    }

    public AffineTransform getTransform() {
        // the AffineTransform constructor takes the value in a different order
        // for a matrix [ 0 1 2 ]
        //              [ 3 4 5 ]
        // the order is 0, 3, 1, 4, 2, 5...
        return new AffineTransform(mValues[0], mValues[3], mValues[1],
                mValues[4], mValues[2], mValues[5]);
    }

    public boolean hasPerspective() {
        return (mValues[6] != 0 || mValues[7] != 0 || mValues[8] != 1);
    }

    //----------

    /**
     * Returns true if the matrix is identity.
     * This maybe faster than testing if (getType() == 0)
     */
    @Override
    public boolean isIdentity() {
        for (int i = 0, k = 0; i < 3; i++) {
            for (int j = 0; j < 3; j++, k++) {
                if (mValues[k] != ((i==j) ? 1 : 0)) {
                    return false;
                }
            }
        }

        return true;
    }

    /**
     * Returns true if will map a rectangle to another rectangle. This can be
     * true if the matrix is identity, scale-only, or rotates a multiple of 90
     * degrees.
     */
    @Override
    public boolean rectStaysRect() {
        return (computeTypeMask() & kRectStaysRect_Mask) != 0;
    }

    /**
     * (deep) copy the src matrix into this matrix. If src is null, reset this
     * matrix to the identity matrix.
     */
    public void set(Matrix src) {
        if (src == null) {
            reset();
        } else {
            System.arraycopy(src.mValues, 0, mValues, 0, mValues.length);
        }
    }

    @Override
    public void set(_Original_Matrix src) {
        throw new UnsupportedOperationException("CALL TO PARENT FORBIDDEN");
    }

    /** Returns true if obj is a Matrix and its values equal our values.
    */
    @Override
    public boolean equals(Object obj) {
        if (obj != null && obj instanceof Matrix) {
            Matrix matrix = (Matrix)obj;
            for (int i = 0 ; i < 9 ; i++) {
                if (mValues[i] != matrix.mValues[i]) {
                    return false;
                }
            }

            return true;
        }

        return false;
    }

    /** Set the matrix to identity */
    @Override
    public void reset() {
        for (int i = 0, k = 0; i < 3; i++) {
            for (int j = 0; j < 3; j++, k++) {
                mValues[k] = ((i==j) ? 1 : 0);
            }
        }
    }

    /** Set the matrix to translate by (dx, dy). */
    @Override
    public void setTranslate(float dx, float dy) {
        mValues[0] = 1;
        mValues[1] = 0;
        mValues[2] = dx;
        mValues[3] = 0;
        mValues[4] = 1;
        mValues[5] = dy;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;
    }

    /**
     * Set the matrix to scale by sx and sy, with a pivot point at (px, py).
     * The pivot point is the coordinate that should remain unchanged by the
     * specified transformation.
     */
    @Override
    public void setScale(float sx, float sy, float px, float py) {
        // TODO: do it in one pass

        // translate so that the pivot is in 0,0
        mValues[0] = 1;
        mValues[1] = 0;
        mValues[2] = -px;
        mValues[3] = 0;
        mValues[4] = 1;
        mValues[5] = -py;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;

        // scale
        addTransform(new float[] { sx, 0, 0, 0, sy, 0, 0, 0, 1 });
        // translate back the pivot
        addTransform(new float[] { 1, 0, px, 0, 1, py, 0, 0, 1 });
    }

    /** Set the matrix to scale by sx and sy. */
    @Override
    public void setScale(float sx, float sy) {
        mValues[0] = sx;
        mValues[1] = 0;
        mValues[2] = 0;
        mValues[3] = 0;
        mValues[4] = sy;
        mValues[5] = 0;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;
    }

    /**
     * Set the matrix to rotate by the specified number of degrees, with a pivot
     * point at (px, py). The pivot point is the coordinate that should remain
     * unchanged by the specified transformation.
     */
    @Override
    public void setRotate(float degrees, float px, float py) {
        // TODO: do it in one pass

        // translate so that the pivot is in 0,0
        mValues[0] = 1;
        mValues[1] = 0;
        mValues[2] = -px;
        mValues[3] = 0;
        mValues[4] = 1;
        mValues[5] = -py;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;

        // scale
        double rad = Math.toRadians(degrees);
        float cos = (float)Math.cos(rad);
        float sin = (float)Math.sin(rad);
        addTransform(new float[] { cos, -sin, 0, sin, cos, 0, 0, 0, 1 });
        // translate back the pivot
        addTransform(new float[] { 1, 0, px, 0, 1, py, 0, 0, 1 });
    }

    /**
     * Set the matrix to rotate about (0,0) by the specified number of degrees.
     */
    @Override
    public void setRotate(float degrees) {
        double rad = Math.toRadians(degrees);
        float cos = (float)Math.cos(rad);
        float sin = (float)Math.sin(rad);

        mValues[0] = cos;
        mValues[1] = -sin;
        mValues[2] = 0;
        mValues[3] = sin;
        mValues[4] = cos;
        mValues[5] = 0;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;
    }

    /**
     * Set the matrix to rotate by the specified sine and cosine values, with a
     * pivot point at (px, py). The pivot point is the coordinate that should
     * remain unchanged by the specified transformation.
     */
    @Override
    public void setSinCos(float sinValue, float cosValue, float px, float py) {
        // TODO: do it in one pass

        // translate so that the pivot is in 0,0
        mValues[0] = 1;
        mValues[1] = 0;
        mValues[2] = -px;
        mValues[3] = 0;
        mValues[4] = 1;
        mValues[5] = -py;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;

        // scale
        addTransform(new float[] { cosValue, -sinValue, 0, sinValue, cosValue, 0, 0, 0, 1 });
        // translate back the pivot
        addTransform(new float[] { 1, 0, px, 0, 1, py, 0, 0, 1 });
    }

    /** Set the matrix to rotate by the specified sine and cosine values. */
    @Override
    public void setSinCos(float sinValue, float cosValue) {
        mValues[0] = cosValue;
        mValues[1] = -sinValue;
        mValues[2] = 0;
        mValues[3] = sinValue;
        mValues[4] = cosValue;
        mValues[5] = 0;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;
    }

    /**
     * Set the matrix to skew by sx and sy, with a pivot point at (px, py).
     * The pivot point is the coordinate that should remain unchanged by the
     * specified transformation.
     */
    @Override
    public void setSkew(float kx, float ky, float px, float py) {
        // TODO: do it in one pass

        // translate so that the pivot is in 0,0
        mValues[0] = 1;
        mValues[1] = 0;
        mValues[2] = -px;
        mValues[3] = 0;
        mValues[4] = 1;
        mValues[5] = -py;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;

        // scale
        addTransform(new float[] { 1, kx, 0, ky, 1, 0, 0, 0, 1 });
        // translate back the pivot
        addTransform(new float[] { 1, 0, px, 0, 1, py, 0, 0, 1 });
    }

    /** Set the matrix to skew by sx and sy. */
    @Override
    public void setSkew(float kx, float ky) {
        mValues[0] = 1;
        mValues[1] = kx;
        mValues[2] = -0;
        mValues[3] = ky;
        mValues[4] = 1;
        mValues[5] = 0;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;
    }

    /**
     * Set the matrix to the concatenation of the two specified matrices,
     * returning true if the the result can be represented. Either of the two
     * matrices may also be the target matrix. this = a * b
     */
    public boolean setConcat(Matrix a, Matrix b) {
        if (a == this) {
            preConcat(b);
        } else if (b == this) {
            postConcat(b);
        } else {
            Matrix tmp = new Matrix(b);
            tmp.addTransform(a.mValues);
            set(tmp);
        }

        return true;
    }

    @Override
    public boolean setConcat(_Original_Matrix a, _Original_Matrix b) {
        throw new UnsupportedOperationException("CALL TO PARENT FORBIDDEN");
    }

    /**
     * Preconcats the matrix with the specified translation.
     * M' = M * T(dx, dy)
     */
    @Override
    public boolean preTranslate(float dx, float dy) {
        // create a matrix that will be multiply by this
        Matrix m = new Matrix(new float[] { 1, 0, dx, 0, 1, dy, 0, 0, 1 });
        m.addTransform(this.mValues);

        System.arraycopy(m.mValues, 0, mValues, 0, 9);
        return true;
    }

    /**
     * Preconcats the matrix with the specified scale.
     * M' = M * S(sx, sy, px, py)
     */
    @Override
    public boolean preScale(float sx, float sy, float px, float py) {
        Matrix m = new Matrix();
        m.setScale(sx, sy, px, py);
        m.addTransform(mValues);
        set(m);

        return true;
    }

    /**
     * Preconcats the matrix with the specified scale.
     * M' = M * S(sx, sy)
     */
    @Override
    public boolean preScale(float sx, float sy) {
        Matrix m = new Matrix();
        m.setScale(sx, sy);
        m.addTransform(mValues);
        set(m);

        return true;
    }

    /**
     * Preconcats the matrix with the specified rotation.
     * M' = M * R(degrees, px, py)
     */
    @Override
    public boolean preRotate(float degrees, float px, float py) {
        Matrix m = new Matrix();
        m.setRotate(degrees, px, py);
        m.addTransform(mValues);
        set(m);

        return true;
    }

    /**
     * Preconcats the matrix with the specified rotation.
     * M' = M * R(degrees)
     */
    @Override
    public boolean preRotate(float degrees) {
        Matrix m = new Matrix();
        m.setRotate(degrees);
        m.addTransform(mValues);
        set(m);

        return true;
    }

    /**
     * Preconcats the matrix with the specified skew.
     * M' = M * K(kx, ky, px, py)
     */
    @Override
    public boolean preSkew(float kx, float ky, float px, float py) {
        Matrix m = new Matrix();
        m.setSkew(kx, ky, px, py);
        m.addTransform(mValues);
        set(m);

        return true;
    }

    /**
     * Preconcats the matrix with the specified skew.
     * M' = M * K(kx, ky)
     */
    @Override
    public boolean preSkew(float kx, float ky) {
        Matrix m = new Matrix();
        m.setSkew(kx, ky);
        m.addTransform(mValues);
        set(m);

        return true;
    }

    /**
     * Preconcats the matrix with the specified matrix.
     * M' = M * other
     */
    public boolean preConcat(Matrix other) {
        Matrix m = new Matrix(other);
        other.addTransform(mValues);
        set(m);

        return true;
    }

    @Override
    public boolean preConcat(_Original_Matrix other) {
        throw new UnsupportedOperationException("CALL TO PARENT FORBIDDEN");
    }

    /**
     * Postconcats the matrix with the specified translation.
     * M' = T(dx, dy) * M
     */
    @Override
    public boolean postTranslate(float dx, float dy) {
        addTransform(new float[] { 1, 0, dx, 0, 1, dy, 0, 0, 1 });
        return true;
    }

    /**
     * Postconcats the matrix with the specified scale.
     * M' = S(sx, sy, px, py) * M
     */
    @Override
    public boolean postScale(float sx, float sy, float px, float py) {
        // TODO: do it in one pass
        // translate so that the pivot is in 0,0
        addTransform(new float[] { 1, 0, -px, 0, 1, py, 0, 0, 1 });
        // scale
        addTransform(new float[] { sx, 0, 0, 0, sy, 0, 0, 0, 1 });
        // translate back the pivot
        addTransform(new float[] { 1, 0, px, 0, 1, py, 0, 0, 1 });

        return true;
    }

    /**
     * Postconcats the matrix with the specified scale.
     * M' = S(sx, sy) * M
     */
    @Override
    public boolean postScale(float sx, float sy) {
        addTransform(new float[] { sx, 0, 0, 0, sy, 0, 0, 0, 1 });
        return true;
    }

    /**
     * Postconcats the matrix with the specified rotation.
     * M' = R(degrees, px, py) * M
     */
    @Override
    public boolean postRotate(float degrees, float px, float py) {
        // TODO: do it in one pass
        // translate so that the pivot is in 0,0
        addTransform(new float[] { 1, 0, -px, 0, 1, py, 0, 0, 1 });
        // scale
        double rad = Math.toRadians(degrees);
        float cos = (float)Math.cos(rad);
        float sin = (float)Math.sin(rad);
        addTransform(new float[] { cos, -sin, 0, sin, cos, 0, 0, 0, 1 });
        // translate back the pivot
        addTransform(new float[] { 1, 0, px, 0, 1, py, 0, 0, 1 });

        return true;
    }

    /**
     * Postconcats the matrix with the specified rotation.
     * M' = R(degrees) * M
     */
    @Override
    public boolean postRotate(float degrees) {
        double rad = Math.toRadians(degrees);
        float cos = (float)Math.cos(rad);
        float sin = (float)Math.sin(rad);
        addTransform(new float[] { cos, -sin, 0, sin, cos, 0, 0, 0, 1 });

        return true;
    }

    /**
     * Postconcats the matrix with the specified skew.
     * M' = K(kx, ky, px, py) * M
     */
    @Override
    public boolean postSkew(float kx, float ky, float px, float py) {
        // TODO: do it in one pass
        // translate so that the pivot is in 0,0
        addTransform(new float[] { 1, 0, -px, 0, 1, py, 0, 0, 1 });
        // scale
        addTransform(new float[] { 1, kx, 0, ky, 1, 0, 0, 0, 1 });
        // translate back the pivot
        addTransform(new float[] { 1, 0, px, 0, 1, py, 0, 0, 1 });

        return true;
    }

    /**
     * Postconcats the matrix with the specified skew.
     * M' = K(kx, ky) * M
     */
    @Override
    public boolean postSkew(float kx, float ky) {
        addTransform(new float[] { 1, kx, 0, ky, 1, 0, 0, 0, 1 });

        return true;
    }

    /**
     * Postconcats the matrix with the specified matrix.
     * M' = other * M
     */
    public boolean postConcat(Matrix other) {
        addTransform(other.mValues);

        return true;
    }

    @Override
    public boolean postConcat(_Original_Matrix other) {
        throw new UnsupportedOperationException("CALL TO PARENT FORBIDDEN");
    }

    /** Controlls how the src rect should align into the dst rect for
        setRectToRect().
    */
    public enum ScaleToFit {
        /**
         * Scale in X and Y independently, so that src matches dst exactly.
         * This may change the aspect ratio of the src.
         */
        FILL    (0),
        /**
         * Compute a scale that will maintain the original src aspect ratio,
         * but will also ensure that src fits entirely inside dst. At least one
         * axis (X or Y) will fit exactly. START aligns the result to the
         * left and top edges of dst.
         */
        START   (1),
        /**
         * Compute a scale that will maintain the original src aspect ratio,
         * but will also ensure that src fits entirely inside dst. At least one
         * axis (X or Y) will fit exactly. The result is centered inside dst.
         */
        CENTER  (2),
        /**
         * Compute a scale that will maintain the original src aspect ratio,
         * but will also ensure that src fits entirely inside dst. At least one
         * axis (X or Y) will fit exactly. END aligns the result to the
         * right and bottom edges of dst.
         */
        END     (3);

        // the native values must match those in SkMatrix.h
        ScaleToFit(int nativeInt) {
            this.nativeInt = nativeInt;
        }
        final int nativeInt;
    }

    /**
     * Set the matrix to the scale and translate values that map the source
     * rectangle to the destination rectangle, returning true if the result
     * can be represented.
     *
     * @param src the source rectangle to map from.
     * @param dst the destination rectangle to map to.
     * @param stf the ScaleToFit option
     * @return true if the matrix can be represented by the rectangle mapping.
     */
    public boolean setRectToRect(RectF src, RectF dst, ScaleToFit stf) {
        if (dst == null || src == null) {
            throw new NullPointerException();
        }

        if (src.isEmpty()) {
            reset();
            return false;
        }

        if (dst.isEmpty()) {
            mValues[0] = mValues[1] = mValues[2] = mValues[3] = mValues[4] = mValues[5]
               = mValues[6] = mValues[7] = 0;
            mValues[8] = 1;
        } else {
            float    tx, sx = dst.width() / src.width();
            float    ty, sy = dst.height() / src.height();
            boolean  xLarger = false;

            if (stf != ScaleToFit.FILL) {
                if (sx > sy) {
                    xLarger = true;
                    sx = sy;
                } else {
                    sy = sx;
                }
            }

            tx = dst.left - src.left * sx;
            ty = dst.top - src.top * sy;
            if (stf == ScaleToFit.CENTER || stf == ScaleToFit.END) {
                float diff;

                if (xLarger) {
                    diff = dst.width() - src.width() * sy;
                } else {
                    diff = dst.height() - src.height() * sy;
                }

                if (stf == ScaleToFit.CENTER) {
                    diff = diff / 2;
                }

                if (xLarger) {
                    tx += diff;
                } else {
                    ty += diff;
                }
            }

            mValues[0] = sx;
            mValues[4] = sy;
            mValues[2] = tx;
            mValues[5] = ty;
            mValues[1]  = mValues[3] = mValues[6] = mValues[7] = 0;

        }
        // shared cleanup
        mValues[8] = 1;
        return true;
    }

    @Override
    public boolean setRectToRect(RectF src, RectF dst, _Original_Matrix.ScaleToFit stf) {
        throw new UnsupportedOperationException("CALL TO PARENT FORBIDDEN");
    }

    /**
     * Set the matrix such that the specified src points would map to the
     * specified dst points. The "points" are represented as an array of floats,
     * order [x0, y0, x1, y1, ...], where each "point" is 2 float values.
     *
     * @param src   The array of src [x,y] pairs (points)
     * @param srcIndex Index of the first pair of src values
     * @param dst   The array of dst [x,y] pairs (points)
     * @param dstIndex Index of the first pair of dst values
     * @param pointCount The number of pairs/points to be used. Must be [0..4]
     * @return true if the matrix was set to the specified transformation
     */
    @Override
    public boolean setPolyToPoly(float[] src, int srcIndex,
                                 float[] dst, int dstIndex,
                                 int pointCount) {
        if (pointCount > 4) {
            throw new IllegalArgumentException();
        }
        checkPointArrays(src, srcIndex, dst, dstIndex, pointCount);
        throw new UnsupportedOperationException("STUB NEEDED");
    }

    /**
     * If this matrix can be inverted, return true and if inverse is not null,
     * set inverse to be the inverse of this matrix. If this matrix cannot be
     * inverted, ignore inverse and return false.
     */
    public boolean invert(Matrix inverse) {
        if (inverse == null) {
            return false;
        }

        try {
            AffineTransform affineTransform = getTransform();
            AffineTransform inverseTransform = affineTransform.createInverse();
            inverse.mValues[0] = (float)inverseTransform.getScaleX();
            inverse.mValues[1] = (float)inverseTransform.getShearX();
            inverse.mValues[2] = (float)inverseTransform.getTranslateX();
            inverse.mValues[3] = (float)inverseTransform.getScaleX();
            inverse.mValues[4] = (float)inverseTransform.getShearY();
            inverse.mValues[5] = (float)inverseTransform.getTranslateY();

            return true;
        } catch (NoninvertibleTransformException e) {
            return false;
        }
    }

    @Override
    public boolean invert(_Original_Matrix inverse) {
        throw new UnsupportedOperationException("CALL TO PARENT FORBIDDEN");
    }

    /**
    * Apply this matrix to the array of 2D points specified by src, and write
     * the transformed points into the array of points specified by dst. The
     * two arrays represent their "points" as pairs of floats [x, y].
     *
     * @param dst   The array of dst points (x,y pairs)
     * @param dstIndex The index of the first [x,y] pair of dst floats
     * @param src   The array of src points (x,y pairs)
     * @param srcIndex The index of the first [x,y] pair of src floats
     * @param pointCount The number of points (x,y pairs) to transform
     */
    @Override
    public void mapPoints(float[] dst, int dstIndex, float[] src, int srcIndex,
                          int pointCount) {
        checkPointArrays(src, srcIndex, dst, dstIndex, pointCount);

        for (int i = 0 ; i < pointCount ; i++) {
            // just in case we are doing in place, we better put this in temp vars
            float x = mValues[0] * src[i + srcIndex] +
                      mValues[1] * src[i + srcIndex + 1] +
                      mValues[2];
            float y = mValues[3] * src[i + srcIndex] +
                      mValues[4] * src[i + srcIndex + 1] +
                      mValues[5];

            dst[i + dstIndex]     = x;
            dst[i + dstIndex + 1] = y;
        }
    }

    /**
    * Apply this matrix to the array of 2D vectors specified by src, and write
     * the transformed vectors into the array of vectors specified by dst. The
     * two arrays represent their "vectors" as pairs of floats [x, y].
     *
     * @param dst   The array of dst vectors (x,y pairs)
     * @param dstIndex The index of the first [x,y] pair of dst floats
     * @param src   The array of src vectors (x,y pairs)
     * @param srcIndex The index of the first [x,y] pair of src floats
     * @param vectorCount The number of vectors (x,y pairs) to transform
     */
    @Override
    public void mapVectors(float[] dst, int dstIndex, float[] src, int srcIndex,
                          int vectorCount) {
        checkPointArrays(src, srcIndex, dst, dstIndex, vectorCount);
        throw new UnsupportedOperationException("STUB NEEDED");
    }

    /**
     * Apply this matrix to the array of 2D points specified by src, and write
     * the transformed points into the array of points specified by dst. The
     * two arrays represent their "points" as pairs of floats [x, y].
     *
     * @param dst   The array of dst points (x,y pairs)
     * @param src   The array of src points (x,y pairs)
     */
    @Override
    public void mapPoints(float[] dst, float[] src) {
        if (dst.length != src.length) {
            throw new ArrayIndexOutOfBoundsException();
        }
        mapPoints(dst, 0, src, 0, dst.length >> 1);
    }

    /**
     * Apply this matrix to the array of 2D vectors specified by src, and write
     * the transformed vectors into the array of vectors specified by dst. The
     * two arrays represent their "vectors" as pairs of floats [x, y].
     *
     * @param dst   The array of dst vectors (x,y pairs)
     * @param src   The array of src vectors (x,y pairs)
     */
    @Override
    public void mapVectors(float[] dst, float[] src) {
        if (dst.length != src.length) {
            throw new ArrayIndexOutOfBoundsException();
        }
        mapVectors(dst, 0, src, 0, dst.length >> 1);
    }

    /**
     * Apply this matrix to the array of 2D points, and write the transformed
     * points back into the array
     *
     * @param pts The array [x0, y0, x1, y1, ...] of points to transform.
     */
    @Override
    public void mapPoints(float[] pts) {
        mapPoints(pts, 0, pts, 0, pts.length >> 1);
    }

    /**
     * Apply this matrix to the array of 2D vectors, and write the transformed
     * vectors back into the array.
     * @param vecs The array [x0, y0, x1, y1, ...] of vectors to transform.
     */
    @Override
    public void mapVectors(float[] vecs) {
        mapVectors(vecs, 0, vecs, 0, vecs.length >> 1);
    }

    /**
     * Apply this matrix to the src rectangle, and write the transformed
     * rectangle into dst. This is accomplished by transforming the 4 corners of
     * src, and then setting dst to the bounds of those points.
     *
     * @param dst Where the transformed rectangle is written.
     * @param src The original rectangle to be transformed.
     * @return the result of calling rectStaysRect()
     */
    @Override
    public boolean mapRect(RectF dst, RectF src) {
        if (dst == null || src == null) {
            throw new NullPointerException();
        }

        // array with 4 corners
        float[] corners = new float[] {
                src.left, src.top,
                src.right, src.top,
                src.right, src.bottom,
                src.left, src.bottom,
        };

        // apply the transform to them.
        mapPoints(corners);

        // now put the result in the rect. We take the min/max of Xs and min/max of Ys
        dst.left = Math.min(Math.min(corners[0], corners[2]), Math.min(corners[4], corners[6]));
        dst.right = Math.max(Math.max(corners[0], corners[2]), Math.max(corners[4], corners[6]));

        dst.top = Math.min(Math.min(corners[1], corners[3]), Math.min(corners[5], corners[7]));
        dst.bottom = Math.max(Math.max(corners[1], corners[3]), Math.max(corners[5], corners[7]));

        return rectStaysRect();
    }

    /**
     * Apply this matrix to the rectangle, and write the transformed rectangle
     * back into it. This is accomplished by transforming the 4 corners of rect,
     * and then setting it to the bounds of those points
     *
     * @param rect The rectangle to transform.
     * @return the result of calling rectStaysRect()
     */
    @Override
    public boolean mapRect(RectF rect) {
        return mapRect(rect, rect);
    }

    /**
     * Return the mean radius of a circle after it has been mapped by
     * this matrix. NOTE: in perspective this value assumes the circle
     * has its center at the origin.
     */
    @Override
    public float mapRadius(float radius) {
        throw new UnsupportedOperationException("STUB NEEDED");
    }

    /** Copy 9 values from the matrix into the array.
    */
    @Override
    public void getValues(float[] values) {
        if (values.length < 9) {
            throw new ArrayIndexOutOfBoundsException();
        }
        System.arraycopy(mValues, 0, values, 0, mValues.length);
    }

    /** Copy 9 values from the array into the matrix.
        Depending on the implementation of Matrix, these may be
        transformed into 16.16 integers in the Matrix, such that
        a subsequent call to getValues() will not yield exactly
        the same values.
    */
    @Override
    public void setValues(float[] values) {
        if (values.length < 9) {
            throw new ArrayIndexOutOfBoundsException();
        }
        System.arraycopy(values, 0, mValues, 0, mValues.length);
    }

    @SuppressWarnings("unused")
    private final static int kIdentity_Mask      = 0;
    private final static int kTranslate_Mask     = 0x01;  //!< set if the matrix has translation
    private final static int kScale_Mask         = 0x02;  //!< set if the matrix has X or Y scale
    private final static int kAffine_Mask        = 0x04;  //!< set if the matrix skews or rotates
    private final static int kPerspective_Mask   = 0x08;  //!< set if the matrix is in perspective
    private final static int kRectStaysRect_Mask = 0x10;
    @SuppressWarnings("unused")
    private final static int kUnknown_Mask       = 0x80;

    @SuppressWarnings("unused")
    private final static int kAllMasks           = kTranslate_Mask |
                                                     kScale_Mask |
                                                     kAffine_Mask |
                                                     kPerspective_Mask |
                                                     kRectStaysRect_Mask;

    // these guys align with the masks, so we can compute a mask from a variable 0/1
    @SuppressWarnings("unused")
    private final static int kTranslate_Shift = 0;
    @SuppressWarnings("unused")
    private final static int kScale_Shift = 1;
    @SuppressWarnings("unused")
    private final static int kAffine_Shift = 2;
    @SuppressWarnings("unused")
    private final static int kPerspective_Shift = 3;
    private final static int kRectStaysRect_Shift = 4;

    private int computeTypeMask() {
        int mask = 0;

        if (mValues[6] != 0. || mValues[7] != 0. || mValues[8] != 1.) {
            mask |= kPerspective_Mask;
        }

        if (mValues[2] != 0. || mValues[5] != 0.) {
            mask |= kTranslate_Mask;
        }

        float m00 = mValues[0];
        float m01 = mValues[1];
        float m10 = mValues[3];
        float m11 = mValues[4];

        if (m01 != 0. || m10 != 0.) {
            mask |= kAffine_Mask;
        }

        if (m00 != 1. || m11 != 1.) {
            mask |= kScale_Mask;
        }

        if ((mask & kPerspective_Mask) == 0) {
            // map non-zero to 1
            int im00 = m00 != 0 ? 1 : 0;
            int im01 = m01 != 0 ? 1 : 0;
            int im10 = m10 != 0 ? 1 : 0;
            int im11 = m11 != 0 ? 1 : 0;

            // record if the (p)rimary and (s)econdary diagonals are all 0 or
            // all non-zero (answer is 0 or 1)
            int dp0 = (im00 | im11) ^ 1;  // true if both are 0
            int dp1 = im00 & im11;        // true if both are 1
            int ds0 = (im01 | im10) ^ 1;  // true if both are 0
            int ds1 = im01 & im10;        // true if both are 1

            // return 1 if primary is 1 and secondary is 0 or
            // primary is 0 and secondary is 1
            mask |= ((dp0 & ds1) | (dp1 & ds0)) << kRectStaysRect_Shift;
        }

        return mask;
    }
}