summaryrefslogtreecommitdiffstats
path: root/opengl/libagl/primitives.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'opengl/libagl/primitives.cpp')
-rw-r--r--opengl/libagl/primitives.cpp1111
1 files changed, 1111 insertions, 0 deletions
diff --git a/opengl/libagl/primitives.cpp b/opengl/libagl/primitives.cpp
new file mode 100644
index 0000000..f164c02
--- /dev/null
+++ b/opengl/libagl/primitives.cpp
@@ -0,0 +1,1111 @@
+/* libs/opengles/primitives.cpp
+**
+** Copyright 2006, The Android Open Source Project
+**
+** Licensed under the Apache License, Version 2.0 (the "License");
+** you may not use this file except in compliance with the License.
+** You may obtain a copy of the License at
+**
+** http://www.apache.org/licenses/LICENSE-2.0
+**
+** Unless required by applicable law or agreed to in writing, software
+** distributed under the License is distributed on an "AS IS" BASIS,
+** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+** See the License for the specific language governing permissions and
+** limitations under the License.
+*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+
+#include "context.h"
+#include "primitives.h"
+#include "light.h"
+#include "matrix.h"
+#include "vertex.h"
+#include "fp.h"
+#include "TextureObjectManager.h"
+
+extern "C" void iterators0032(const void* that,
+ int32_t* it, int32_t c0, int32_t c1, int32_t c2);
+
+namespace android {
+
+// ----------------------------------------------------------------------------
+
+static void primitive_point(ogles_context_t* c, vertex_t* v);
+static void primitive_line(ogles_context_t* c, vertex_t* v0, vertex_t* v1);
+static void primitive_clip_triangle(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static void primitive_nop_point(ogles_context_t* c, vertex_t* v);
+static void primitive_nop_line(ogles_context_t* c, vertex_t* v0, vertex_t* v1);
+static void primitive_nop_triangle(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static inline bool cull_triangle(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static void lerp_triangle(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static void lerp_texcoords(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static void lerp_texcoords_w(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static void triangle(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static void clip_triangle(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2);
+
+static unsigned int clip_line(ogles_context_t* c,
+ vertex_t* s, vertex_t* p);
+
+// ----------------------------------------------------------------------------
+#if 0
+#pragma mark -
+#endif
+
+static void lightTriangleDarkSmooth(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ if (!(v0->flags & vertex_t::LIT)) {
+ v0->flags |= vertex_t::LIT;
+ const GLvoid* cp = c->arrays.color.element(
+ v0->index & vertex_cache_t::INDEX_MASK);
+ c->arrays.color.fetch(c, v0->color.v, cp);
+ }
+ if (!(v1->flags & vertex_t::LIT)) {
+ v1->flags |= vertex_t::LIT;
+ const GLvoid* cp = c->arrays.color.element(
+ v1->index & vertex_cache_t::INDEX_MASK);
+ c->arrays.color.fetch(c, v1->color.v, cp);
+ }
+ if(!(v2->flags & vertex_t::LIT)) {
+ v2->flags |= vertex_t::LIT;
+ const GLvoid* cp = c->arrays.color.element(
+ v2->index & vertex_cache_t::INDEX_MASK);
+ c->arrays.color.fetch(c, v2->color.v, cp);
+ }
+}
+
+static void lightTriangleDarkFlat(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ if (!(v2->flags & vertex_t::LIT)) {
+ v2->flags |= vertex_t::LIT;
+ const GLvoid* cp = c->arrays.color.element(
+ v2->index & vertex_cache_t::INDEX_MASK);
+ c->arrays.color.fetch(c, v2->color.v, cp);
+ }
+ // configure the rasterizer here, before we clip
+ c->rasterizer.procs.color4xv(c, v2->color.v);
+}
+
+static void lightTriangleSmooth(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ if (!(v0->flags & vertex_t::LIT))
+ c->lighting.lightVertex(c, v0);
+ if (!(v1->flags & vertex_t::LIT))
+ c->lighting.lightVertex(c, v1);
+ if(!(v2->flags & vertex_t::LIT))
+ c->lighting.lightVertex(c, v2);
+}
+
+static void lightTriangleFlat(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ if (!(v2->flags & vertex_t::LIT))
+ c->lighting.lightVertex(c, v2);
+ // configure the rasterizer here, before we clip
+ c->rasterizer.procs.color4xv(c, v2->color.v);
+}
+
+// The fog versions...
+
+static inline
+void lightVertexDarkSmoothFog(ogles_context_t* c, vertex_t* v)
+{
+ if (!(v->flags & vertex_t::LIT)) {
+ v->flags |= vertex_t::LIT;
+ v->fog = c->fog.fog(c, v->eye.z);
+ const GLvoid* cp = c->arrays.color.element(
+ v->index & vertex_cache_t::INDEX_MASK);
+ c->arrays.color.fetch(c, v->color.v, cp);
+ }
+}
+static inline
+void lightVertexDarkFlatFog(ogles_context_t* c, vertex_t* v)
+{
+ if (!(v->flags & vertex_t::LIT)) {
+ v->flags |= vertex_t::LIT;
+ v->fog = c->fog.fog(c, v->eye.z);
+ }
+}
+static inline
+void lightVertexSmoothFog(ogles_context_t* c, vertex_t* v)
+{
+ if (!(v->flags & vertex_t::LIT)) {
+ v->fog = c->fog.fog(c, v->eye.z);
+ c->lighting.lightVertex(c, v);
+ }
+}
+
+static void lightTriangleDarkSmoothFog(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ lightVertexDarkSmoothFog(c, v0);
+ lightVertexDarkSmoothFog(c, v1);
+ lightVertexDarkSmoothFog(c, v2);
+}
+
+static void lightTriangleDarkFlatFog(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ lightVertexDarkFlatFog(c, v0);
+ lightVertexDarkFlatFog(c, v1);
+ lightVertexDarkSmoothFog(c, v2);
+ // configure the rasterizer here, before we clip
+ c->rasterizer.procs.color4xv(c, v2->color.v);
+}
+
+static void lightTriangleSmoothFog(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ lightVertexSmoothFog(c, v0);
+ lightVertexSmoothFog(c, v1);
+ lightVertexSmoothFog(c, v2);
+}
+
+static void lightTriangleFlatFog(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ lightVertexDarkFlatFog(c, v0);
+ lightVertexDarkFlatFog(c, v1);
+ lightVertexSmoothFog(c, v2);
+ // configure the rasterizer here, before we clip
+ c->rasterizer.procs.color4xv(c, v2->color.v);
+}
+
+
+
+typedef void (*light_primitive_t)(ogles_context_t*,
+ vertex_t*, vertex_t*, vertex_t*);
+
+// fog 0x4, light 0x2, smooth 0x1
+static const light_primitive_t lightPrimitive[8] = {
+ lightTriangleDarkFlat, // no fog | dark | flat
+ lightTriangleDarkSmooth, // no fog | dark | smooth
+ lightTriangleFlat, // no fog | light | flat
+ lightTriangleSmooth, // no fog | light | smooth
+ lightTriangleDarkFlatFog, // fog | dark | flat
+ lightTriangleDarkSmoothFog, // fog | dark | smooth
+ lightTriangleFlatFog, // fog | light | flat
+ lightTriangleSmoothFog // fog | light | smooth
+};
+
+void ogles_validate_primitives(ogles_context_t* c)
+{
+ const uint32_t enables = c->rasterizer.state.enables;
+
+ // set up the lighting/shading/smoothing/fogging function
+ int index = enables & GGL_ENABLE_SMOOTH ? 0x1 : 0;
+ index |= c->lighting.enable ? 0x2 : 0;
+ index |= enables & GGL_ENABLE_FOG ? 0x4 : 0;
+ c->lighting.lightTriangle = lightPrimitive[index];
+
+ // set up the primitive renderers
+ if (ggl_likely(c->arrays.vertex.enable)) {
+ c->prims.renderPoint = primitive_point;
+ c->prims.renderLine = primitive_line;
+ c->prims.renderTriangle = primitive_clip_triangle;
+ } else {
+ c->prims.renderPoint = primitive_nop_point;
+ c->prims.renderLine = primitive_nop_line;
+ c->prims.renderTriangle = primitive_nop_triangle;
+ }
+}
+
+// ----------------------------------------------------------------------------
+
+void compute_iterators_t::initTriangle(
+ vertex_t const* v0, vertex_t const* v1, vertex_t const* v2)
+{
+ m_dx01 = v1->window.x - v0->window.x;
+ m_dy10 = v0->window.y - v1->window.y;
+ m_dx20 = v0->window.x - v2->window.x;
+ m_dy02 = v2->window.y - v0->window.y;
+ m_area = m_dx01*m_dy02 + (-m_dy10)*m_dx20;
+}
+
+void compute_iterators_t::initLine(
+ vertex_t const* v0, vertex_t const* v1)
+{
+ m_dx01 = m_dy02 = v1->window.x - v0->window.x;
+ m_dy10 = m_dx20 = v0->window.y - v1->window.y;
+ m_area = m_dx01*m_dy02 + (-m_dy10)*m_dx20;
+}
+
+void compute_iterators_t::initLerp(vertex_t const* v0, uint32_t enables)
+{
+ m_x0 = v0->window.x;
+ m_y0 = v0->window.y;
+ const GGLcoord area = (m_area + TRI_HALF) >> TRI_FRACTION_BITS;
+ const GGLcoord minArea = 2; // cannot be inverted
+ // triangles with an area smaller than 1.0 are not smooth-shaded
+
+ int q=0, s=0, d=0;
+ if (abs(area) >= minArea) {
+ // Here we do some voodoo magic, to compute a suitable scale
+ // factor for deltas/area:
+
+ // First compute the 1/area with full 32-bits precision,
+ // gglRecipQNormalized returns a number [-0.5, 0.5[ and an exponent.
+ d = gglRecipQNormalized(area, &q);
+
+ // Then compute the minimum left-shift to not overflow the muls
+ // below.
+ s = 32 - gglClz(abs(m_dy02)|abs(m_dy10)|abs(m_dx01)|abs(m_dx20));
+
+ // We'll keep 16-bits of precision for deltas/area. So we need
+ // to shift everything left an extra 15 bits.
+ s += 15;
+
+ // make sure all final shifts are not > 32, because gglMulx
+ // can't handle it.
+ if (s < q) s = q;
+ if (s > 32) {
+ d >>= 32-s;
+ s = 32;
+ }
+ }
+
+ m_dx01 = gglMulx(m_dx01, d, s);
+ m_dy10 = gglMulx(m_dy10, d, s);
+ m_dx20 = gglMulx(m_dx20, d, s);
+ m_dy02 = gglMulx(m_dy02, d, s);
+ m_area_scale = 32 + q - s;
+ m_scale = 0;
+
+ if (enables & GGL_ENABLE_TMUS) {
+ const int A = gglClz(abs(m_dy02)|abs(m_dy10)|abs(m_dx01)|abs(m_dx20));
+ const int B = gglClz(abs(m_x0)|abs(m_y0));
+ m_scale = max(0, 32 - (A + 16)) +
+ max(0, 32 - (B + TRI_FRACTION_BITS)) + 1;
+ }
+}
+
+int compute_iterators_t::iteratorsScale(GGLfixed* it,
+ int32_t c0, int32_t c1, int32_t c2) const
+{
+ int32_t dc01 = c1 - c0;
+ int32_t dc02 = c2 - c0;
+ const int A = gglClz(abs(c0));
+ const int B = gglClz(abs(dc01)|abs(dc02));
+ const int scale = min(A, B - m_scale) - 2;
+ if (scale >= 0) {
+ c0 <<= scale;
+ dc01 <<= scale;
+ dc02 <<= scale;
+ } else {
+ c0 >>= -scale;
+ dc01 >>= -scale;
+ dc02 >>= -scale;
+ }
+ const int s = m_area_scale;
+ int32_t dcdx = gglMulAddx(dc01, m_dy02, gglMulx(dc02, m_dy10, s), s);
+ int32_t dcdy = gglMulAddx(dc02, m_dx01, gglMulx(dc01, m_dx20, s), s);
+ int32_t c = c0 - (gglMulAddx(dcdx, m_x0,
+ gglMulx(dcdy, m_y0, TRI_FRACTION_BITS), TRI_FRACTION_BITS));
+ it[0] = c;
+ it[1] = dcdx;
+ it[2] = dcdy;
+ return scale;
+}
+
+void compute_iterators_t::iterators1616(GGLfixed* it,
+ GGLfixed c0, GGLfixed c1, GGLfixed c2) const
+{
+ const GGLfixed dc01 = c1 - c0;
+ const GGLfixed dc02 = c2 - c0;
+ // 16.16 x 16.16 == 32.32 --> 16.16
+ const int s = m_area_scale;
+ int32_t dcdx = gglMulAddx(dc01, m_dy02, gglMulx(dc02, m_dy10, s), s);
+ int32_t dcdy = gglMulAddx(dc02, m_dx01, gglMulx(dc01, m_dx20, s), s);
+ int32_t c = c0 - (gglMulAddx(dcdx, m_x0,
+ gglMulx(dcdy, m_y0, TRI_FRACTION_BITS), TRI_FRACTION_BITS));
+ it[0] = c;
+ it[1] = dcdx;
+ it[2] = dcdy;
+}
+
+void compute_iterators_t::iterators0032(int64_t* it,
+ int32_t c0, int32_t c1, int32_t c2) const
+{
+ const int s = m_area_scale - 16;
+ int32_t dc01 = (c1 - c0)>>s;
+ int32_t dc02 = (c2 - c0)>>s;
+ // 16.16 x 16.16 == 32.32
+ int64_t dcdx = gglMulii(dc01, m_dy02) + gglMulii(dc02, m_dy10);
+ int64_t dcdy = gglMulii(dc02, m_dx01) + gglMulii(dc01, m_dx20);
+ it[ 0] = (c0<<16) - ((dcdx*m_x0 + dcdy*m_y0)>>4);
+ it[ 1] = dcdx;
+ it[ 2] = dcdy;
+}
+
+#if defined(__arm__) && !defined(__thumb__)
+inline void compute_iterators_t::iterators0032(int32_t* it,
+ int32_t c0, int32_t c1, int32_t c2) const
+{
+ ::iterators0032(this, it, c0, c1, c2);
+}
+#else
+void compute_iterators_t::iterators0032(int32_t* it,
+ int32_t c0, int32_t c1, int32_t c2) const
+{
+ int64_t it64[3];
+ iterators0032(it, c0, c1, c2);
+ it[0] = it64[0];
+ it[1] = it64[1];
+ it[2] = it64[2];
+}
+#endif
+
+// ----------------------------------------------------------------------------
+
+static inline int32_t clampZ(GLfixed z) CONST;
+int32_t clampZ(GLfixed z) {
+ z = (z & ~(z>>31));
+ if (z >= 0x10000)
+ z = 0xFFFF;
+ return z;
+}
+
+static __attribute__((noinline))
+void fetch_texcoord_impl(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ vertex_t* const vtx[3] = { v0, v1, v2 };
+ array_t const * const texcoordArray = c->arrays.texture;
+
+ for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
+ if (!(c->rasterizer.state.texture[i].enable))
+ continue;
+
+ for (int j=0 ; j<3 ; j++) {
+ vertex_t* const v = vtx[j];
+ if (v->flags & vertex_t::TT)
+ continue;
+
+ // NOTE: here we could compute automatic texgen
+ // such as sphere/cube maps, instead of fetching them
+ // from the textcoord array.
+
+ vec4_t& coords = v->texture[i];
+ const GLubyte* tp = texcoordArray[i].element(
+ v->index & vertex_cache_t::INDEX_MASK);
+ texcoordArray[i].fetch(c, coords.v, tp);
+
+ // transform texture coordinates...
+ coords.Q = 0x10000;
+ const transform_t& tr = c->transforms.texture[i].transform;
+ if (ggl_unlikely(tr.ops)) {
+ c->arrays.tex_transform[i](&tr, &coords, &coords);
+ }
+
+ // divide by Q
+ const GGLfixed q = coords.Q;
+ if (ggl_unlikely(q != 0x10000)) {
+ const int32_t qinv = gglRecip28(q);
+ coords.S = gglMulx(coords.S, qinv, 28);
+ coords.T = gglMulx(coords.T, qinv, 28);
+ }
+ }
+ }
+ v0->flags |= vertex_t::TT;
+ v1->flags |= vertex_t::TT;
+ v2->flags |= vertex_t::TT;
+}
+
+inline void fetch_texcoord(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ const uint32_t enables = c->rasterizer.state.enables;
+ if (!(enables & GGL_ENABLE_TMUS))
+ return;
+
+ // Fetch & transform texture coordinates...
+ if (ggl_likely(v0->flags & v1->flags & v2->flags & vertex_t::TT)) {
+ // already done for all three vertices, bail...
+ return;
+ }
+ fetch_texcoord_impl(c, v0, v1, v2);
+}
+
+// ----------------------------------------------------------------------------
+#if 0
+#pragma mark -
+#pragma mark Point
+#endif
+
+void primitive_nop_point(ogles_context_t*, vertex_t*) {
+}
+
+void primitive_point(ogles_context_t* c, vertex_t* v)
+{
+ // lighting & clamping...
+ const uint32_t enables = c->rasterizer.state.enables;
+
+ if (ggl_unlikely(!(v->flags & vertex_t::LIT))) {
+ if (c->lighting.enable) {
+ c->lighting.lightVertex(c, v);
+ } else {
+ v->flags |= vertex_t::LIT;
+ const GLvoid* cp = c->arrays.color.element(
+ v->index & vertex_cache_t::INDEX_MASK);
+ c->arrays.color.fetch(c, v->color.v, cp);
+ }
+ if (enables & GGL_ENABLE_FOG) {
+ v->fog = c->fog.fog(c, v->eye.z);
+ }
+ }
+
+ // XXX: we don't need to do that each-time
+ // if color array and lighting not enabled
+ c->rasterizer.procs.color4xv(c, v->color.v);
+
+ // XXX: look into ES point-sprite extension
+ if (enables & GGL_ENABLE_TMUS) {
+ fetch_texcoord(c, v,v,v);
+ for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
+ if (!c->rasterizer.state.texture[i].enable)
+ continue;
+ int32_t itt[8];
+ itt[1] = itt[2] = itt[4] = itt[5] = 0;
+ itt[6] = itt[7] = 16; // XXX: check that
+ if (c->rasterizer.state.texture[i].s_wrap == GGL_CLAMP) {
+ int width = c->textures.tmu[i].texture->surface.width;
+ itt[0] = v->texture[i].S * width;
+ itt[6] = 0;
+ }
+ if (c->rasterizer.state.texture[i].t_wrap == GGL_CLAMP) {
+ int height = c->textures.tmu[i].texture->surface.height;
+ itt[3] = v->texture[i].T * height;
+ itt[7] = 0;
+ }
+ c->rasterizer.procs.texCoordGradScale8xv(c, i, itt);
+ }
+ }
+
+ if (enables & GGL_ENABLE_DEPTH_TEST) {
+ int32_t itz[3];
+ itz[0] = clampZ(v->window.z) * 0x00010001;
+ itz[1] = itz[2] = 0;
+ c->rasterizer.procs.zGrad3xv(c, itz);
+ }
+
+ if (enables & GGL_ENABLE_FOG) {
+ GLfixed itf[3];
+ itf[0] = v->fog;
+ itf[1] = itf[2] = 0;
+ c->rasterizer.procs.fogGrad3xv(c, itf);
+ }
+
+ // Render our point...
+ c->rasterizer.procs.pointx(c, v->window.v, c->point.size);
+}
+
+// ----------------------------------------------------------------------------
+#if 0
+#pragma mark -
+#pragma mark Line
+#endif
+
+void primitive_nop_line(ogles_context_t*, vertex_t*, vertex_t*) {
+}
+
+void primitive_line(ogles_context_t* c, vertex_t* v0, vertex_t* v1)
+{
+ // get texture coordinates
+ fetch_texcoord(c, v0, v1, v1);
+
+ // light/shade the vertices first (they're copied below)
+ c->lighting.lightTriangle(c, v0, v1, v1);
+
+ // clip the line if needed
+ if (ggl_unlikely((v0->flags | v1->flags) & vertex_t::CLIP_ALL)) {
+ unsigned int count = clip_line(c, v0, v1);
+ if (ggl_unlikely(count == 0))
+ return;
+ }
+
+ // compute iterators...
+ const uint32_t enables = c->rasterizer.state.enables;
+ const uint32_t mask = GGL_ENABLE_TMUS |
+ GGL_ENABLE_SMOOTH |
+ GGL_ENABLE_W |
+ GGL_ENABLE_FOG |
+ GGL_ENABLE_DEPTH_TEST;
+
+ if (ggl_unlikely(enables & mask)) {
+ c->lerp.initLine(v0, v1);
+ lerp_triangle(c, v0, v1, v0);
+ }
+
+ // render our line
+ c->rasterizer.procs.linex(c, v0->window.v, v1->window.v, c->line.width);
+}
+
+// ----------------------------------------------------------------------------
+#if 0
+#pragma mark -
+#pragma mark Triangle
+#endif
+
+void primitive_nop_triangle(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2) {
+}
+
+void primitive_clip_triangle(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ uint32_t cc = (v0->flags | v1->flags | v2->flags) & vertex_t::CLIP_ALL;
+ if (ggl_likely(!cc)) {
+ // code below must be as optimized as possible, this is the
+ // common code path.
+
+ // This triangle is not clipped, test if it's culled
+ // unclipped triangle...
+ c->lerp.initTriangle(v0, v1, v2);
+ if (cull_triangle(c, v0, v1, v2))
+ return; // culled!
+
+ // Fetch all texture coordinates if needed
+ fetch_texcoord(c, v0, v1, v2);
+
+ // light (or shade) our triangle!
+ c->lighting.lightTriangle(c, v0, v1, v2);
+
+ triangle(c, v0, v1, v2);
+ return;
+ }
+
+ // The assumption here is that we're not going to clip very often,
+ // and even more rarely will we clip a triangle that ends up
+ // being culled out. So it's okay to light the vertices here, even though
+ // in a few cases we won't render the triangle (if culled).
+
+ // Fetch texture coordinates...
+ fetch_texcoord(c, v0, v1, v2);
+
+ // light (or shade) our triangle!
+ c->lighting.lightTriangle(c, v0, v1, v2);
+
+ clip_triangle(c, v0, v1, v2);
+}
+
+// -----------------------------------------------------------------------
+
+void triangle(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ // compute iterators...
+ const uint32_t enables = c->rasterizer.state.enables;
+ const uint32_t mask = GGL_ENABLE_TMUS |
+ GGL_ENABLE_SMOOTH |
+ GGL_ENABLE_W |
+ GGL_ENABLE_FOG |
+ GGL_ENABLE_DEPTH_TEST;
+
+ if (ggl_likely(enables & mask))
+ lerp_triangle(c, v0, v1, v2);
+
+ c->rasterizer.procs.trianglex(c, v0->window.v, v1->window.v, v2->window.v);
+}
+
+void lerp_triangle(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ const uint32_t enables = c->rasterizer.state.enables;
+ c->lerp.initLerp(v0, enables);
+
+ // set up texture iterators
+ if (enables & GGL_ENABLE_TMUS) {
+ if (enables & GGL_ENABLE_W) {
+ lerp_texcoords_w(c, v0, v1, v2);
+ } else {
+ lerp_texcoords(c, v0, v1, v2);
+ }
+ }
+
+ // set up the color iterators
+ const compute_iterators_t& lerp = c->lerp;
+ if (enables & GGL_ENABLE_SMOOTH) {
+ GLfixed itc[12];
+ for (int i=0 ; i<4 ; i++) {
+ const GGLcolor c0 = v0->color.v[i] * 255;
+ const GGLcolor c1 = v1->color.v[i] * 255;
+ const GGLcolor c2 = v2->color.v[i] * 255;
+ lerp.iterators1616(&itc[i*3], c0, c1, c2);
+ }
+ c->rasterizer.procs.colorGrad12xv(c, itc);
+ }
+
+ if (enables & GGL_ENABLE_DEPTH_TEST) {
+ int32_t itz[3];
+ const int32_t v0z = clampZ(v0->window.z);
+ const int32_t v1z = clampZ(v1->window.z);
+ const int32_t v2z = clampZ(v2->window.z);
+ if (ggl_unlikely(c->polygonOffset.enable)) {
+ const int32_t units = (c->polygonOffset.units << 16);
+ const GLfixed factor = c->polygonOffset.factor;
+ if (factor) {
+ int64_t itz64[3];
+ lerp.iterators0032(itz64, v0z, v1z, v2z);
+ int64_t maxDepthSlope = max(itz64[1], itz64[2]);
+ itz[0] = uint32_t(itz64[0])
+ + uint32_t((maxDepthSlope*factor)>>16) + units;
+ itz[1] = uint32_t(itz64[1]);
+ itz[2] = uint32_t(itz64[2]);
+ } else {
+ lerp.iterators0032(itz, v0z, v1z, v2z);
+ itz[0] += units;
+ }
+ } else {
+ lerp.iterators0032(itz, v0z, v1z, v2z);
+ }
+ c->rasterizer.procs.zGrad3xv(c, itz);
+ }
+
+ if (ggl_unlikely(enables & GGL_ENABLE_FOG)) {
+ GLfixed itf[3];
+ lerp.iterators1616(itf, v0->fog, v1->fog, v2->fog);
+ c->rasterizer.procs.fogGrad3xv(c, itf);
+ }
+}
+
+
+static inline
+int compute_lod(ogles_context_t* c, int i,
+ int32_t s0, int32_t t0, int32_t s1, int32_t t1, int32_t s2, int32_t t2)
+{
+ // Compute mipmap level / primitive
+ // rho = sqrt( texelArea / area )
+ // lod = log2( rho )
+ // lod = log2( texelArea / area ) / 2
+ // lod = (log2( texelArea ) - log2( area )) / 2
+ const compute_iterators_t& lerp = c->lerp;
+ const GGLcoord area = abs(lerp.area());
+ const int w = c->textures.tmu[i].texture->surface.width;
+ const int h = c->textures.tmu[i].texture->surface.height;
+ const int shift = 16 + (16 - TRI_FRACTION_BITS);
+ int32_t texelArea = abs( gglMulx(s1-s0, t2-t0, shift) -
+ gglMulx(s2-s0, t1-t0, shift) )*w*h;
+ int log2TArea = (32-TRI_FRACTION_BITS -1) - gglClz(texelArea);
+ int log2Area = (32-TRI_FRACTION_BITS*2-1) - gglClz(area);
+ int lod = (log2TArea - log2Area + 1) >> 1;
+ return lod;
+}
+
+void lerp_texcoords(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ const compute_iterators_t& lerp = c->lerp;
+ int32_t itt[8] __attribute__((aligned(16)));
+ for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
+ const texture_t& tmu = c->rasterizer.state.texture[i];
+ if (!tmu.enable)
+ continue;
+
+ // compute the jacobians using block floating-point
+ int32_t s0 = v0->texture[i].S;
+ int32_t t0 = v0->texture[i].T;
+ int32_t s1 = v1->texture[i].S;
+ int32_t t1 = v1->texture[i].T;
+ int32_t s2 = v2->texture[i].S;
+ int32_t t2 = v2->texture[i].T;
+
+ const GLenum min_filter = c->textures.tmu[i].texture->min_filter;
+ if (ggl_unlikely(min_filter >= GL_NEAREST_MIPMAP_NEAREST)) {
+ int lod = compute_lod(c, i, s0, t0, s1, t1, s2, t2);
+ c->rasterizer.procs.bindTextureLod(c, i,
+ &c->textures.tmu[i].texture->mip(lod));
+ }
+
+ // premultiply (s,t) when clampling
+ if (tmu.s_wrap == GGL_CLAMP) {
+ const int width = tmu.surface.width;
+ s0 *= width;
+ s1 *= width;
+ s2 *= width;
+ }
+ if (tmu.t_wrap == GGL_CLAMP) {
+ const int height = tmu.surface.height;
+ t0 *= height;
+ t1 *= height;
+ t2 *= height;
+ }
+ itt[6] = -lerp.iteratorsScale(itt+0, s0, s1, s2);
+ itt[7] = -lerp.iteratorsScale(itt+3, t0, t1, t2);
+ c->rasterizer.procs.texCoordGradScale8xv(c, i, itt);
+ }
+}
+
+void lerp_texcoords_w(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ const compute_iterators_t& lerp = c->lerp;
+ int32_t itt[8] __attribute__((aligned(16)));
+ int32_t itw[3];
+
+ // compute W's scale to 2.30
+ int32_t w0 = v0->window.w;
+ int32_t w1 = v1->window.w;
+ int32_t w2 = v2->window.w;
+ int wscale = 32 - gglClz(w0|w1|w2);
+
+ // compute the jacobian using block floating-point
+ int sc = lerp.iteratorsScale(itw, w0, w1, w2);
+ sc += wscale - 16;
+ c->rasterizer.procs.wGrad3xv(c, itw);
+
+ for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
+ const texture_t& tmu = c->rasterizer.state.texture[i];
+ if (!tmu.enable)
+ continue;
+
+ // compute the jacobians using block floating-point
+ int32_t s0 = v0->texture[i].S;
+ int32_t t0 = v0->texture[i].T;
+ int32_t s1 = v1->texture[i].S;
+ int32_t t1 = v1->texture[i].T;
+ int32_t s2 = v2->texture[i].S;
+ int32_t t2 = v2->texture[i].T;
+
+ const GLenum min_filter = c->textures.tmu[i].texture->min_filter;
+ if (ggl_unlikely(min_filter >= GL_NEAREST_MIPMAP_NEAREST)) {
+ int lod = compute_lod(c, i, s0, t0, s1, t1, s2, t2);
+ c->rasterizer.procs.bindTextureLod(c, i,
+ &c->textures.tmu[i].texture->mip(lod));
+ }
+
+ // premultiply (s,t) when clampling
+ if (tmu.s_wrap == GGL_CLAMP) {
+ const int width = tmu.surface.width;
+ s0 *= width;
+ s1 *= width;
+ s2 *= width;
+ }
+ if (tmu.t_wrap == GGL_CLAMP) {
+ const int height = tmu.surface.height;
+ t0 *= height;
+ t1 *= height;
+ t2 *= height;
+ }
+
+ s0 = gglMulx(s0, w0, wscale);
+ t0 = gglMulx(t0, w0, wscale);
+ s1 = gglMulx(s1, w1, wscale);
+ t1 = gglMulx(t1, w1, wscale);
+ s2 = gglMulx(s2, w2, wscale);
+ t2 = gglMulx(t2, w2, wscale);
+
+ itt[6] = sc - lerp.iteratorsScale(itt+0, s0, s1, s2);
+ itt[7] = sc - lerp.iteratorsScale(itt+3, t0, t1, t2);
+ c->rasterizer.procs.texCoordGradScale8xv(c, i, itt);
+ }
+}
+
+
+static inline
+bool cull_triangle(ogles_context_t* c, vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ if (ggl_likely(c->cull.enable)) {
+ const GLenum winding = (c->lerp.area() > 0) ? GL_CW : GL_CCW;
+ const GLenum face = (winding == c->cull.frontFace) ? GL_FRONT : GL_BACK;
+ if (face == c->cull.cullFace)
+ return true; // culled!
+ }
+ return false;
+}
+
+static inline
+GLfixed frustumPlaneDist(int plane, const vec4_t& s)
+{
+ const GLfixed d = s.v[ plane >> 1 ];
+ return ((plane & 1) ? (s.w - d) : (s.w + d));
+}
+
+static inline
+int32_t clipDivide(GLfixed a, GLfixed b) {
+ // returns a 4.28 fixed-point
+ return gglMulDivi(1LU<<28, a, b);
+}
+
+void clip_triangle(ogles_context_t* c,
+ vertex_t* v0, vertex_t* v1, vertex_t* v2)
+{
+ uint32_t all_cc = (v0->flags | v1->flags | v2->flags) & vertex_t::CLIP_ALL;
+
+ vertex_t *p0, *p1, *p2;
+ const int MAX_CLIPPING_PLANES = 6 + OGLES_MAX_CLIP_PLANES;
+ const int MAX_VERTICES = 3;
+
+ // Temporary buffer to hold the new vertices. Each plane can add up to
+ // two new vertices (because the polygon is convex).
+ // We need one extra element, to handle an overflow case when
+ // the polygon degenerates into something non convex.
+ vertex_t buffer[MAX_CLIPPING_PLANES * 2 + 1]; // ~3KB
+ vertex_t* buf = buffer;
+
+ // original list of vertices (polygon to clip, in fact this
+ // function works with an arbitrary polygon).
+ vertex_t* in[3] = { v0, v1, v2 };
+
+ // output lists (we need 2, which we use back and forth)
+ // (maximum outpout list's size is MAX_CLIPPING_PLANES + MAX_VERTICES)
+ // 2 more elements for overflow when non convex polygons.
+ vertex_t* out[2][MAX_CLIPPING_PLANES + MAX_VERTICES + 2];
+ unsigned int outi = 0;
+
+ // current input list
+ vertex_t** ivl = in;
+
+ // 3 input vertices, 0 in the output list, first plane
+ unsigned int ic = 3;
+
+ // User clip-planes first, the clipping is always done in eye-coordinate
+ // this is basically the same algorithm than for the view-volume
+ // clipping, except for the computation of the distance (vertex, plane)
+ // and the fact that we need to compute the eye-coordinates of each
+ // new vertex we create.
+
+ if (ggl_unlikely(all_cc & vertex_t::USER_CLIP_ALL))
+ {
+ unsigned int plane = 0;
+ uint32_t cc = (all_cc & vertex_t::USER_CLIP_ALL) >> 8;
+ do {
+ if (cc & 1) {
+ // pointers to our output list (head and current)
+ vertex_t** const ovl = &out[outi][0];
+ vertex_t** output = ovl;
+ unsigned int oc = 0;
+ unsigned int sentinel = 0;
+ // previous vertex, compute distance to the plane
+ vertex_t* s = ivl[ic-1];
+ const vec4_t& equation = c->clipPlanes.plane[plane].equation;
+ GLfixed sd = dot4(equation.v, s->eye.v);
+ // clip each vertex against this plane...
+ for (unsigned int i=0 ; i<ic ; i++) {
+ vertex_t* p = ivl[i];
+ const GLfixed pd = dot4(equation.v, p->eye.v);
+ if (sd >= 0) {
+ if (pd >= 0) {
+ // both inside
+ *output++ = p;
+ oc++;
+ } else {
+ // s inside, p outside (exiting)
+ const GLfixed t = clipDivide(sd, sd-pd);
+ c->arrays.clipEye(c, buf, t, p, s);
+ *output++ = buf++;
+ oc++;
+ if (++sentinel >= 3)
+ return; // non-convex polygon!
+ }
+ } else {
+ if (pd >= 0) {
+ // s outside (entering)
+ if (pd) {
+ const GLfixed t = clipDivide(pd, pd-sd);
+ c->arrays.clipEye(c, buf, t, s, p);
+ *output++ = buf++;
+ oc++;
+ if (++sentinel >= 3)
+ return; // non-convex polygon!
+ }
+ *output++ = p;
+ oc++;
+ } else {
+ // both outside
+ }
+ }
+ s = p;
+ sd = pd;
+ }
+ // output list become the new input list
+ if (oc<3)
+ return; // less than 3 vertices left? we're done!
+ ivl = ovl;
+ ic = oc;
+ outi = 1-outi;
+ }
+ cc >>= 1;
+ plane++;
+ } while (cc);
+ }
+
+ // frustum clip-planes
+ if (all_cc & vertex_t::FRUSTUM_CLIP_ALL)
+ {
+ unsigned int plane = 0;
+ uint32_t cc = all_cc & vertex_t::FRUSTUM_CLIP_ALL;
+ do {
+ if (cc & 1) {
+ // pointers to our output list (head and current)
+ vertex_t** const ovl = &out[outi][0];
+ vertex_t** output = ovl;
+ unsigned int oc = 0;
+ unsigned int sentinel = 0;
+ // previous vertex, compute distance to the plane
+ vertex_t* s = ivl[ic-1];
+ GLfixed sd = frustumPlaneDist(plane, s->clip);
+ // clip each vertex against this plane...
+ for (unsigned int i=0 ; i<ic ; i++) {
+ vertex_t* p = ivl[i];
+ const GLfixed pd = frustumPlaneDist(plane, p->clip);
+ if (sd >= 0) {
+ if (pd >= 0) {
+ // both inside
+ *output++ = p;
+ oc++;
+ } else {
+ // s inside, p outside (exiting)
+ const GLfixed t = clipDivide(sd, sd-pd);
+ c->arrays.clipVertex(c, buf, t, p, s);
+ *output++ = buf++;
+ oc++;
+ if (++sentinel >= 3)
+ return; // non-convex polygon!
+ }
+ } else {
+ if (pd >= 0) {
+ // s outside (entering)
+ if (pd) {
+ const GLfixed t = clipDivide(pd, pd-sd);
+ c->arrays.clipVertex(c, buf, t, s, p);
+ *output++ = buf++;
+ oc++;
+ if (++sentinel >= 3)
+ return; // non-convex polygon!
+ }
+ *output++ = p;
+ oc++;
+ } else {
+ // both outside
+ }
+ }
+ s = p;
+ sd = pd;
+ }
+ // output list become the new input list
+ if (oc<3)
+ return; // less than 3 vertices left? we're done!
+ ivl = ovl;
+ ic = oc;
+ outi = 1-outi;
+ }
+ cc >>= 1;
+ plane++;
+ } while (cc);
+ }
+
+ // finally we can render our triangles...
+ p0 = ivl[0];
+ p1 = ivl[1];
+ for (unsigned int i=2 ; i<ic ; i++) {
+ p2 = ivl[i];
+ c->lerp.initTriangle(p0, p1, p2);
+ if (cull_triangle(c, p0, p1, p2)) {
+ p1 = p2;
+ continue; // culled!
+ }
+ triangle(c, p0, p1, p2);
+ p1 = p2;
+ }
+}
+
+unsigned int clip_line(ogles_context_t* c, vertex_t* s, vertex_t* p)
+{
+ const uint32_t all_cc = (s->flags | p->flags) & vertex_t::CLIP_ALL;
+
+ if (ggl_unlikely(all_cc & vertex_t::USER_CLIP_ALL))
+ {
+ unsigned int plane = 0;
+ uint32_t cc = (all_cc & vertex_t::USER_CLIP_ALL) >> 8;
+ do {
+ if (cc & 1) {
+ const vec4_t& equation = c->clipPlanes.plane[plane].equation;
+ const GLfixed sd = dot4(equation.v, s->eye.v);
+ const GLfixed pd = dot4(equation.v, p->eye.v);
+ if (sd >= 0) {
+ if (pd >= 0) {
+ // both inside
+ } else {
+ // s inside, p outside (exiting)
+ const GLfixed t = clipDivide(sd, sd-pd);
+ c->arrays.clipEye(c, p, t, p, s);
+ }
+ } else {
+ if (pd >= 0) {
+ // s outside (entering)
+ if (pd) {
+ const GLfixed t = clipDivide(pd, pd-sd);
+ c->arrays.clipEye(c, s, t, s, p);
+ }
+ } else {
+ // both outside
+ return 0;
+ }
+ }
+ }
+ cc >>= 1;
+ plane++;
+ } while (cc);
+ }
+
+ // frustum clip-planes
+ if (all_cc & vertex_t::FRUSTUM_CLIP_ALL)
+ {
+ unsigned int plane = 0;
+ uint32_t cc = all_cc & vertex_t::FRUSTUM_CLIP_ALL;
+ do {
+ if (cc & 1) {
+ const GLfixed sd = frustumPlaneDist(plane, s->clip);
+ const GLfixed pd = frustumPlaneDist(plane, p->clip);
+ if (sd >= 0) {
+ if (pd >= 0) {
+ // both inside
+ } else {
+ // s inside, p outside (exiting)
+ const GLfixed t = clipDivide(sd, sd-pd);
+ c->arrays.clipVertex(c, p, t, p, s);
+ }
+ } else {
+ if (pd >= 0) {
+ // s outside (entering)
+ if (pd) {
+ const GLfixed t = clipDivide(pd, pd-sd);
+ c->arrays.clipVertex(c, s, t, s, p);
+ }
+ } else {
+ // both outside
+ return 0;
+ }
+ }
+ }
+ cc >>= 1;
+ plane++;
+ } while (cc);
+ }
+
+ return 2;
+}
+
+
+}; // namespace android