summaryrefslogtreecommitdiffstats
path: root/services/sensorservice/Fusion.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'services/sensorservice/Fusion.cpp')
-rw-r--r--services/sensorservice/Fusion.cpp450
1 files changed, 450 insertions, 0 deletions
diff --git a/services/sensorservice/Fusion.cpp b/services/sensorservice/Fusion.cpp
new file mode 100644
index 0000000..b88a647
--- /dev/null
+++ b/services/sensorservice/Fusion.cpp
@@ -0,0 +1,450 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <stdio.h>
+
+#include <utils/Log.h>
+
+#include "Fusion.h"
+
+namespace android {
+
+// -----------------------------------------------------------------------
+
+/*
+ * gyroVAR gives the measured variance of the gyro's output per
+ * Hz (or variance at 1 Hz). This is an "intrinsic" parameter of the gyro,
+ * which is independent of the sampling frequency.
+ *
+ * The variance of gyro's output at a given sampling period can be
+ * calculated as:
+ * variance(T) = gyroVAR / T
+ *
+ * The variance of the INTEGRATED OUTPUT at a given sampling period can be
+ * calculated as:
+ * variance_integrate_output(T) = gyroVAR * T
+ *
+ */
+static const float gyroVAR = 1e-7; // (rad/s)^2 / Hz
+static const float biasVAR = 1e-8; // (rad/s)^2 / s (guessed)
+
+/*
+ * Standard deviations of accelerometer and magnetometer
+ */
+static const float accSTDEV = 0.05f; // m/s^2 (measured 0.08 / CDD 0.05)
+static const float magSTDEV = 0.5f; // uT (measured 0.7 / CDD 0.5)
+
+static const float SYMMETRY_TOLERANCE = 1e-10f;
+
+/*
+ * Accelerometer updates will not be performed near free fall to avoid
+ * ill-conditioning and div by zeros.
+ * Threshhold: 10% of g, in m/s^2
+ */
+static const float FREE_FALL_THRESHOLD = 0.981f;
+static const float FREE_FALL_THRESHOLD_SQ =
+ FREE_FALL_THRESHOLD*FREE_FALL_THRESHOLD;
+
+/*
+ * The geomagnetic-field should be between 30uT and 60uT.
+ * Fields strengths greater than this likely indicate a local magnetic
+ * disturbance which we do not want to update into the fused frame.
+ */
+static const float MAX_VALID_MAGNETIC_FIELD = 100; // uT
+static const float MAX_VALID_MAGNETIC_FIELD_SQ =
+ MAX_VALID_MAGNETIC_FIELD*MAX_VALID_MAGNETIC_FIELD;
+
+/*
+ * Values of the field smaller than this should be ignored in fusion to avoid
+ * ill-conditioning. This state can happen with anomalous local magnetic
+ * disturbances canceling the Earth field.
+ */
+static const float MIN_VALID_MAGNETIC_FIELD = 10; // uT
+static const float MIN_VALID_MAGNETIC_FIELD_SQ =
+ MIN_VALID_MAGNETIC_FIELD*MIN_VALID_MAGNETIC_FIELD;
+
+/*
+ * If the cross product of two vectors has magnitude squared less than this,
+ * we reject it as invalid due to alignment of the vectors.
+ * This threshold is used to check for the case where the magnetic field sample
+ * is parallel to the gravity field, which can happen in certain places due
+ * to magnetic field disturbances.
+ */
+static const float MIN_VALID_CROSS_PRODUCT_MAG = 1.0e-3;
+static const float MIN_VALID_CROSS_PRODUCT_MAG_SQ =
+ MIN_VALID_CROSS_PRODUCT_MAG*MIN_VALID_CROSS_PRODUCT_MAG;
+
+// -----------------------------------------------------------------------
+
+template <typename TYPE, size_t C, size_t R>
+static mat<TYPE, R, R> scaleCovariance(
+ const mat<TYPE, C, R>& A,
+ const mat<TYPE, C, C>& P) {
+ // A*P*transpose(A);
+ mat<TYPE, R, R> APAt;
+ for (size_t r=0 ; r<R ; r++) {
+ for (size_t j=r ; j<R ; j++) {
+ double apat(0);
+ for (size_t c=0 ; c<C ; c++) {
+ double v(A[c][r]*P[c][c]*0.5);
+ for (size_t k=c+1 ; k<C ; k++)
+ v += A[k][r] * P[c][k];
+ apat += 2 * v * A[c][j];
+ }
+ APAt[j][r] = apat;
+ APAt[r][j] = apat;
+ }
+ }
+ return APAt;
+}
+
+template <typename TYPE, typename OTHER_TYPE>
+static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) {
+ mat<TYPE, 3, 3> r;
+ r[0][0] = diag;
+ r[1][1] = diag;
+ r[2][2] = diag;
+ r[0][1] = p.z;
+ r[1][0] =-p.z;
+ r[0][2] =-p.y;
+ r[2][0] = p.y;
+ r[1][2] = p.x;
+ r[2][1] =-p.x;
+ return r;
+}
+
+
+template<typename TYPE, size_t SIZE>
+class Covariance {
+ mat<TYPE, SIZE, SIZE> mSumXX;
+ vec<TYPE, SIZE> mSumX;
+ size_t mN;
+public:
+ Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { }
+ void update(const vec<TYPE, SIZE>& x) {
+ mSumXX += x*transpose(x);
+ mSumX += x;
+ mN++;
+ }
+ mat<TYPE, SIZE, SIZE> operator()() const {
+ const float N = 1.0f / mN;
+ return mSumXX*N - (mSumX*transpose(mSumX))*(N*N);
+ }
+ void reset() {
+ mN = 0;
+ mSumXX = 0;
+ mSumX = 0;
+ }
+ size_t getCount() const {
+ return mN;
+ }
+};
+
+// -----------------------------------------------------------------------
+
+Fusion::Fusion() {
+ Phi[0][1] = 0;
+ Phi[1][1] = 1;
+
+ Ba.x = 0;
+ Ba.y = 0;
+ Ba.z = 1;
+
+ Bm.x = 0;
+ Bm.y = 1;
+ Bm.z = 0;
+
+ x0 = 0;
+ x1 = 0;
+
+ init();
+}
+
+void Fusion::init() {
+ mInitState = 0;
+
+ mGyroRate = 0;
+
+ mCount[0] = 0;
+ mCount[1] = 0;
+ mCount[2] = 0;
+
+ mData = 0;
+}
+
+void Fusion::initFusion(const vec4_t& q, float dT)
+{
+ // initial estimate: E{ x(t0) }
+ x0 = q;
+ x1 = 0;
+
+ // process noise covariance matrix: G.Q.Gt, with
+ //
+ // G = | -1 0 | Q = | q00 q10 |
+ // | 0 1 | | q01 q11 |
+ //
+ // q00 = sv^2.dt + 1/3.su^2.dt^3
+ // q10 = q01 = 1/2.su^2.dt^2
+ // q11 = su^2.dt
+ //
+
+ // variance of integrated output at 1/dT Hz
+ // (random drift)
+ const float q00 = gyroVAR * dT;
+
+ // variance of drift rate ramp
+ const float q11 = biasVAR * dT;
+
+ const float u = q11 / dT;
+ const float q10 = 0.5f*u*dT*dT;
+ const float q01 = q10;
+
+ GQGt[0][0] = q00; // rad^2
+ GQGt[1][0] = -q10;
+ GQGt[0][1] = -q01;
+ GQGt[1][1] = q11; // (rad/s)^2
+
+ // initial covariance: Var{ x(t0) }
+ // TODO: initialize P correctly
+ P = 0;
+}
+
+bool Fusion::hasEstimate() const {
+ return (mInitState == (MAG|ACC|GYRO));
+}
+
+bool Fusion::checkInitComplete(int what, const vec3_t& d, float dT) {
+ if (hasEstimate())
+ return true;
+
+ if (what == ACC) {
+ mData[0] += d * (1/length(d));
+ mCount[0]++;
+ mInitState |= ACC;
+ } else if (what == MAG) {
+ mData[1] += d * (1/length(d));
+ mCount[1]++;
+ mInitState |= MAG;
+ } else if (what == GYRO) {
+ mGyroRate = dT;
+ mData[2] += d*dT;
+ mCount[2]++;
+ if (mCount[2] == 64) {
+ // 64 samples is good enough to estimate the gyro drift and
+ // doesn't take too much time.
+ mInitState |= GYRO;
+ }
+ }
+
+ if (mInitState == (MAG|ACC|GYRO)) {
+ // Average all the values we collected so far
+ mData[0] *= 1.0f/mCount[0];
+ mData[1] *= 1.0f/mCount[1];
+ mData[2] *= 1.0f/mCount[2];
+
+ // calculate the MRPs from the data collection, this gives us
+ // a rough estimate of our initial state
+ mat33_t R;
+ vec3_t up(mData[0]);
+ vec3_t east(cross_product(mData[1], up));
+ east *= 1/length(east);
+ vec3_t north(cross_product(up, east));
+ R << east << north << up;
+ const vec4_t q = matrixToQuat(R);
+
+ initFusion(q, mGyroRate);
+ }
+
+ return false;
+}
+
+void Fusion::handleGyro(const vec3_t& w, float dT) {
+ if (!checkInitComplete(GYRO, w, dT))
+ return;
+
+ predict(w, dT);
+}
+
+status_t Fusion::handleAcc(const vec3_t& a) {
+ // ignore acceleration data if we're close to free-fall
+ if (length_squared(a) < FREE_FALL_THRESHOLD_SQ) {
+ return BAD_VALUE;
+ }
+
+ if (!checkInitComplete(ACC, a))
+ return BAD_VALUE;
+
+ const float l = 1/length(a);
+ update(a*l, Ba, accSTDEV*l);
+ return NO_ERROR;
+}
+
+status_t Fusion::handleMag(const vec3_t& m) {
+ // the geomagnetic-field should be between 30uT and 60uT
+ // reject if too large to avoid spurious magnetic sources
+ const float magFieldSq = length_squared(m);
+ if (magFieldSq > MAX_VALID_MAGNETIC_FIELD_SQ) {
+ return BAD_VALUE;
+ } else if (magFieldSq < MIN_VALID_MAGNETIC_FIELD_SQ) {
+ // Also reject if too small since we will get ill-defined (zero mag)
+ // cross-products below
+ return BAD_VALUE;
+ }
+
+ if (!checkInitComplete(MAG, m))
+ return BAD_VALUE;
+
+ // Orthogonalize the magnetic field to the gravity field, mapping it into
+ // tangent to Earth.
+ const vec3_t up( getRotationMatrix() * Ba );
+ const vec3_t east( cross_product(m, up) );
+
+ // If the m and up vectors align, the cross product magnitude will
+ // approach 0.
+ // Reject this case as well to avoid div by zero problems and
+ // ill-conditioning below.
+ if (length_squared(east) < MIN_VALID_CROSS_PRODUCT_MAG_SQ) {
+ return BAD_VALUE;
+ }
+
+ // If we have created an orthogonal magnetic field successfully,
+ // then pass it in as the update.
+ vec3_t north( cross_product(up, east) );
+
+ const float l = 1 / length(north);
+ north *= l;
+
+ update(north, Bm, magSTDEV*l);
+ return NO_ERROR;
+}
+
+void Fusion::checkState() {
+ // P needs to stay positive semidefinite or the fusion diverges. When we
+ // detect divergence, we reset the fusion.
+ // TODO(braun): Instead, find the reason for the divergence and fix it.
+
+ if (!isPositiveSemidefinite(P[0][0], SYMMETRY_TOLERANCE) ||
+ !isPositiveSemidefinite(P[1][1], SYMMETRY_TOLERANCE)) {
+ ALOGW("Sensor fusion diverged; resetting state.");
+ P = 0;
+ }
+}
+
+vec4_t Fusion::getAttitude() const {
+ return x0;
+}
+
+vec3_t Fusion::getBias() const {
+ return x1;
+}
+
+mat33_t Fusion::getRotationMatrix() const {
+ return quatToMatrix(x0);
+}
+
+mat34_t Fusion::getF(const vec4_t& q) {
+ mat34_t F;
+ F[0].x = q.w; F[1].x =-q.z; F[2].x = q.y;
+ F[0].y = q.z; F[1].y = q.w; F[2].y =-q.x;
+ F[0].z =-q.y; F[1].z = q.x; F[2].z = q.w;
+ F[0].w =-q.x; F[1].w =-q.y; F[2].w =-q.z;
+ return F;
+}
+
+void Fusion::predict(const vec3_t& w, float dT) {
+ const vec4_t q = x0;
+ const vec3_t b = x1;
+ const vec3_t we = w - b;
+ const vec4_t dq = getF(q)*((0.5f*dT)*we);
+ x0 = normalize_quat(q + dq);
+
+ // P(k+1) = Phi(k)*P(k)*Phi(k)' + G*Q(k)*G'
+ //
+ // G = | -I33 0 |
+ // | 0 I33 |
+ //
+ // Phi = | Phi00 Phi10 |
+ // | 0 1 |
+ //
+ // Phi00 = I33
+ // - [w]x * sin(||w||*dt)/||w||
+ // + [w]x^2 * (1-cos(||w||*dT))/||w||^2
+ //
+ // Phi10 = [w]x * (1 - cos(||w||*dt))/||w||^2
+ // - [w]x^2 * (||w||*dT - sin(||w||*dt))/||w||^3
+ // - I33*dT
+
+ const mat33_t I33(1);
+ const mat33_t I33dT(dT);
+ const mat33_t wx(crossMatrix(we, 0));
+ const mat33_t wx2(wx*wx);
+ const float lwedT = length(we)*dT;
+ const float ilwe = 1/length(we);
+ const float k0 = (1-cosf(lwedT))*(ilwe*ilwe);
+ const float k1 = sinf(lwedT);
+
+ Phi[0][0] = I33 - wx*(k1*ilwe) + wx2*k0;
+ Phi[1][0] = wx*k0 - I33dT - wx2*(ilwe*ilwe*ilwe)*(lwedT-k1);
+
+ P = Phi*P*transpose(Phi) + GQGt;
+
+ checkState();
+}
+
+void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) {
+ vec4_t q(x0);
+ // measured vector in body space: h(p) = A(p)*Bi
+ const mat33_t A(quatToMatrix(q));
+ const vec3_t Bb(A*Bi);
+
+ // Sensitivity matrix H = dh(p)/dp
+ // H = [ L 0 ]
+ const mat33_t L(crossMatrix(Bb, 0));
+
+ // gain...
+ // K = P*Ht / [H*P*Ht + R]
+ vec<mat33_t, 2> K;
+ const mat33_t R(sigma*sigma);
+ const mat33_t S(scaleCovariance(L, P[0][0]) + R);
+ const mat33_t Si(invert(S));
+ const mat33_t LtSi(transpose(L)*Si);
+ K[0] = P[0][0] * LtSi;
+ K[1] = transpose(P[1][0])*LtSi;
+
+ // update...
+ // P -= K*H*P;
+ const mat33_t K0L(K[0] * L);
+ const mat33_t K1L(K[1] * L);
+ P[0][0] -= K0L*P[0][0];
+ P[1][1] -= K1L*P[1][0];
+ P[1][0] -= K0L*P[1][0];
+ P[0][1] = transpose(P[1][0]);
+
+ const vec3_t e(z - Bb);
+ const vec3_t dq(K[0]*e);
+ const vec3_t db(K[1]*e);
+
+ q += getF(q)*(0.5f*dq);
+ x0 = normalize_quat(q);
+ x1 += db;
+
+ checkState();
+}
+
+// -----------------------------------------------------------------------
+
+}; // namespace android
+