summaryrefslogtreecommitdiffstats
path: root/libs/gui/BufferQueueConsumer.cpp
blob: 36e3c06a5a9f8d317487aecdbfa18f2aaaf21143 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/*
 * Copyright 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <inttypes.h>

#define LOG_TAG "BufferQueueConsumer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0

#include <gui/BufferItem.h>
#include <gui/BufferQueueConsumer.h>
#include <gui/BufferQueueCore.h>
#include <gui/IConsumerListener.h>
#include <gui/IProducerListener.h>

namespace android {

BufferQueueConsumer::BufferQueueConsumer(const sp<BufferQueueCore>& core) :
    mCore(core),
    mSlots(core->mSlots),
    mConsumerName() {}

BufferQueueConsumer::~BufferQueueConsumer() {}

status_t BufferQueueConsumer::acquireBuffer(BufferItem* outBuffer,
        nsecs_t expectedPresent) {
    ATRACE_CALL();
    Mutex::Autolock lock(mCore->mMutex);

    // Check that the consumer doesn't currently have the maximum number of
    // buffers acquired. We allow the max buffer count to be exceeded by one
    // buffer so that the consumer can successfully set up the newly acquired
    // buffer before releasing the old one.
    int numAcquiredBuffers = 0;
    for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
        if (mSlots[s].mBufferState == BufferSlot::ACQUIRED) {
            ++numAcquiredBuffers;
        }
    }
    if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) {
        BQ_LOGE("acquireBuffer: max acquired buffer count reached: %d (max %d)",
                numAcquiredBuffers, mCore->mMaxAcquiredBufferCount);
        return INVALID_OPERATION;
    }

    // Check if the queue is empty.
    // In asynchronous mode the list is guaranteed to be one buffer deep,
    // while in synchronous mode we use the oldest buffer.
    if (mCore->mQueue.empty()) {
        return NO_BUFFER_AVAILABLE;
    }

    BufferQueueCore::Fifo::iterator front(mCore->mQueue.begin());

    // If expectedPresent is specified, we may not want to return a buffer yet.
    // If it's specified and there's more than one buffer queued, we may want
    // to drop a buffer.
    if (expectedPresent != 0) {
        const int MAX_REASONABLE_NSEC = 1000000000ULL; // 1 second

        // The 'expectedPresent' argument indicates when the buffer is expected
        // to be presented on-screen. If the buffer's desired present time is
        // earlier (less) than expectedPresent -- meaning it will be displayed
        // on time or possibly late if we show it as soon as possible -- we
        // acquire and return it. If we don't want to display it until after the
        // expectedPresent time, we return PRESENT_LATER without acquiring it.
        //
        // To be safe, we don't defer acquisition if expectedPresent is more
        // than one second in the future beyond the desired present time
        // (i.e., we'd be holding the buffer for a long time).
        //
        // NOTE: Code assumes monotonic time values from the system clock
        // are positive.

        // Start by checking to see if we can drop frames. We skip this check if
        // the timestamps are being auto-generated by Surface. If the app isn't
        // generating timestamps explicitly, it probably doesn't want frames to
        // be discarded based on them.
        while (mCore->mQueue.size() > 1 && !mCore->mQueue[0].mIsAutoTimestamp) {
            // If entry[1] is timely, drop entry[0] (and repeat). We apply an
            // additional criterion here: we only drop the earlier buffer if our
            // desiredPresent falls within +/- 1 second of the expected present.
            // Otherwise, bogus desiredPresent times (e.g., 0 or a small
            // relative timestamp), which normally mean "ignore the timestamp
            // and acquire immediately", would cause us to drop frames.
            //
            // We may want to add an additional criterion: don't drop the
            // earlier buffer if entry[1]'s fence hasn't signaled yet.
            const BufferItem& bufferItem(mCore->mQueue[1]);
            nsecs_t desiredPresent = bufferItem.mTimestamp;
            if (desiredPresent < expectedPresent - MAX_REASONABLE_NSEC ||
                    desiredPresent > expectedPresent) {
                // This buffer is set to display in the near future, or
                // desiredPresent is garbage. Either way we don't want to drop
                // the previous buffer just to get this on the screen sooner.
                BQ_LOGV("acquireBuffer: nodrop desire=%" PRId64 " expect=%"
                        PRId64 " (%" PRId64 ") now=%" PRId64,
                        desiredPresent, expectedPresent,
                        desiredPresent - expectedPresent,
                        systemTime(CLOCK_MONOTONIC));
                break;
            }

            BQ_LOGV("acquireBuffer: drop desire=%" PRId64 " expect=%" PRId64
                    " size=%zu",
                    desiredPresent, expectedPresent, mCore->mQueue.size());
            if (mCore->stillTracking(front)) {
                // Front buffer is still in mSlots, so mark the slot as free
                mSlots[front->mSlot].mBufferState = BufferSlot::FREE;
            }
            mCore->mQueue.erase(front);
            front = mCore->mQueue.begin();
        }

        // See if the front buffer is due
        nsecs_t desiredPresent = front->mTimestamp;
        if (desiredPresent > expectedPresent &&
                desiredPresent < expectedPresent + MAX_REASONABLE_NSEC) {
            BQ_LOGV("acquireBuffer: defer desire=%" PRId64 " expect=%" PRId64
                    " (%" PRId64 ") now=%" PRId64,
                    desiredPresent, expectedPresent,
                    desiredPresent - expectedPresent,
                    systemTime(CLOCK_MONOTONIC));
            return PRESENT_LATER;
        }

        BQ_LOGV("acquireBuffer: accept desire=%" PRId64 " expect=%" PRId64 " "
                "(%" PRId64 ") now=%" PRId64, desiredPresent, expectedPresent,
                desiredPresent - expectedPresent,
                systemTime(CLOCK_MONOTONIC));
    }

    int slot = front->mSlot;
    *outBuffer = *front;
    ATRACE_BUFFER_INDEX(slot);

    BQ_LOGV("acquireBuffer: acquiring { slot=%d/%" PRIu64 " buffer=%p }",
            slot, front->mFrameNumber, front->mGraphicBuffer->handle);
    // If the front buffer is still being tracked, update its slot state
    if (mCore->stillTracking(front)) {
        mSlots[slot].mAcquireCalled = true;
        mSlots[slot].mNeedsCleanupOnRelease = false;
        mSlots[slot].mBufferState = BufferSlot::ACQUIRED;
        mSlots[slot].mFence = Fence::NO_FENCE;
    }

    // If the buffer has previously been acquired by the consumer, set
    // mGraphicBuffer to NULL to avoid unnecessarily remapping this buffer
    // on the consumer side
    if (outBuffer->mAcquireCalled) {
        outBuffer->mGraphicBuffer = NULL;
    }

    mCore->mQueue.erase(front);

    // We might have freed a slot while dropping old buffers, or the producer
    // may be blocked waiting for the number of buffers in the queue to
    // decrease.
    mCore->mDequeueCondition.broadcast();

    ATRACE_INT(mCore->mConsumerName.string(), mCore->mQueue.size());

    return NO_ERROR;
}

status_t BufferQueueConsumer::detachBuffer(int slot) {
    ATRACE_CALL();
    ATRACE_BUFFER_INDEX(slot);
    BQ_LOGV("detachBuffer(C): slot %d", slot);
    Mutex::Autolock lock(mCore->mMutex);

    if (mCore->mIsAbandoned) {
        BQ_LOGE("detachBuffer(C): BufferQueue has been abandoned");
        return NO_INIT;
    }

    if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) {
        BQ_LOGE("detachBuffer(C): slot index %d out of range [0, %d)",
                slot, BufferQueueDefs::NUM_BUFFER_SLOTS);
        return BAD_VALUE;
    } else if (mSlots[slot].mBufferState != BufferSlot::ACQUIRED) {
        BQ_LOGE("detachBuffer(C): slot %d is not owned by the consumer "
                "(state = %d)", slot, mSlots[slot].mBufferState);
        return BAD_VALUE;
    }

    mCore->freeBufferLocked(slot);
    mCore->mDequeueCondition.broadcast();

    return NO_ERROR;
}

status_t BufferQueueConsumer::attachBuffer(int* outSlot,
        const sp<android::GraphicBuffer>& buffer) {
    ATRACE_CALL();

    if (outSlot == NULL) {
        BQ_LOGE("attachBuffer(P): outSlot must not be NULL");
        return BAD_VALUE;
    } else if (buffer == NULL) {
        BQ_LOGE("attachBuffer(P): cannot attach NULL buffer");
        return BAD_VALUE;
    }

    Mutex::Autolock lock(mCore->mMutex);

    // Make sure we don't have too many acquired buffers and find a free slot
    // to put the buffer into (the oldest if there are multiple).
    int numAcquiredBuffers = 0;
    int found = BufferQueueCore::INVALID_BUFFER_SLOT;
    for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
        if (mSlots[s].mBufferState == BufferSlot::ACQUIRED) {
            ++numAcquiredBuffers;
        } else if (mSlots[s].mBufferState == BufferSlot::FREE) {
            if (found == BufferQueueCore::INVALID_BUFFER_SLOT ||
                    mSlots[s].mFrameNumber < mSlots[found].mFrameNumber) {
                found = s;
            }
        }
    }

    if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) {
        BQ_LOGE("attachBuffer(P): max acquired buffer count reached: %d "
                "(max %d)", numAcquiredBuffers,
                mCore->mMaxAcquiredBufferCount);
        return INVALID_OPERATION;
    }
    if (found == BufferQueueCore::INVALID_BUFFER_SLOT) {
        BQ_LOGE("attachBuffer(P): could not find free buffer slot");
        return NO_MEMORY;
    }

    *outSlot = found;
    ATRACE_BUFFER_INDEX(*outSlot);
    BQ_LOGV("attachBuffer(C): returning slot %d", *outSlot);

    mSlots[*outSlot].mGraphicBuffer = buffer;
    mSlots[*outSlot].mBufferState = BufferSlot::ACQUIRED;
    mSlots[*outSlot].mAttachedByConsumer = true;
    mSlots[*outSlot].mNeedsCleanupOnRelease = false;
    mSlots[*outSlot].mFence = Fence::NO_FENCE;
    mSlots[*outSlot].mFrameNumber = 0;

    // mAcquireCalled tells BufferQueue that it doesn't need to send a valid
    // GraphicBuffer pointer on the next acquireBuffer call, which decreases
    // Binder traffic by not un/flattening the GraphicBuffer. However, it
    // requires that the consumer maintain a cached copy of the slot <--> buffer
    // mappings, which is why the consumer doesn't need the valid pointer on
    // acquire.
    //
    // The StreamSplitter is one of the primary users of the attach/detach
    // logic, and while it is running, all buffers it acquires are immediately
    // detached, and all buffers it eventually releases are ones that were
    // attached (as opposed to having been obtained from acquireBuffer), so it
    // doesn't make sense to maintain the slot/buffer mappings, which would
    // become invalid for every buffer during detach/attach. By setting this to
    // false, the valid GraphicBuffer pointer will always be sent with acquire
    // for attached buffers.
    mSlots[*outSlot].mAcquireCalled = false;

    return NO_ERROR;
}

status_t BufferQueueConsumer::releaseBuffer(int slot, uint64_t frameNumber,
        const sp<Fence>& releaseFence, EGLDisplay eglDisplay,
        EGLSyncKHR eglFence) {
    ATRACE_CALL();
    ATRACE_BUFFER_INDEX(slot);

    if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS ||
            releaseFence == NULL) {
        return BAD_VALUE;
    }

    sp<IProducerListener> listener;
    { // Autolock scope
        Mutex::Autolock lock(mCore->mMutex);

        // If the frame number has changed because the buffer has been reallocated,
        // we can ignore this releaseBuffer for the old buffer
        if (frameNumber != mSlots[slot].mFrameNumber) {
            return STALE_BUFFER_SLOT;
        }

        // Make sure this buffer hasn't been queued while acquired by the consumer
        BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin());
        while (current != mCore->mQueue.end()) {
            if (current->mSlot == slot) {
                BQ_LOGE("releaseBuffer: buffer slot %d pending release is "
                        "currently queued", slot);
                return BAD_VALUE;
            }
            ++current;
        }

        if (mSlots[slot].mBufferState == BufferSlot::ACQUIRED) {
            mSlots[slot].mEglDisplay = eglDisplay;
            mSlots[slot].mEglFence = eglFence;
            mSlots[slot].mFence = releaseFence;
            mSlots[slot].mBufferState = BufferSlot::FREE;
            listener = mCore->mConnectedProducerListener;
            BQ_LOGV("releaseBuffer: releasing slot %d", slot);
        } else if (mSlots[slot].mNeedsCleanupOnRelease) {
            BQ_LOGV("releaseBuffer: releasing a stale buffer slot %d "
                    "(state = %d)", slot, mSlots[slot].mBufferState);
            mSlots[slot].mNeedsCleanupOnRelease = false;
            return STALE_BUFFER_SLOT;
        } else {
            BQ_LOGV("releaseBuffer: attempted to release buffer slot %d "
                    "but its state was %d", slot, mSlots[slot].mBufferState);
            return BAD_VALUE;
        }

        mCore->mDequeueCondition.broadcast();
    } // Autolock scope

    // Call back without lock held
    if (listener != NULL) {
        listener->onBufferReleased();
    }

    return NO_ERROR;
}

status_t BufferQueueConsumer::connect(
        const sp<IConsumerListener>& consumerListener, bool controlledByApp) {
    ATRACE_CALL();

    if (consumerListener == NULL) {
        BQ_LOGE("connect(C): consumerListener may not be NULL");
        return BAD_VALUE;
    }

    BQ_LOGV("connect(C): controlledByApp=%s",
            controlledByApp ? "true" : "false");

    Mutex::Autolock lock(mCore->mMutex);

    if (mCore->mIsAbandoned) {
        BQ_LOGE("connect(C): BufferQueue has been abandoned");
        return NO_INIT;
    }

    mCore->mConsumerListener = consumerListener;
    mCore->mConsumerControlledByApp = controlledByApp;

    return NO_ERROR;
}

status_t BufferQueueConsumer::disconnect() {
    ATRACE_CALL();

    BQ_LOGV("disconnect(C)");

    Mutex::Autolock lock(mCore->mMutex);

    if (mCore->mConsumerListener == NULL) {
        BQ_LOGE("disconnect(C): no consumer is connected");
        return BAD_VALUE;
    }

    mCore->mIsAbandoned = true;
    mCore->mConsumerListener = NULL;
    mCore->mQueue.clear();
    mCore->freeAllBuffersLocked();
    mCore->mDequeueCondition.broadcast();
    return NO_ERROR;
}

status_t BufferQueueConsumer::getReleasedBuffers(uint64_t *outSlotMask) {
    ATRACE_CALL();

    if (outSlotMask == NULL) {
        BQ_LOGE("getReleasedBuffers: outSlotMask may not be NULL");
        return BAD_VALUE;
    }

    Mutex::Autolock lock(mCore->mMutex);

    if (mCore->mIsAbandoned) {
        BQ_LOGE("getReleasedBuffers: BufferQueue has been abandoned");
        return NO_INIT;
    }

    uint64_t mask = 0;
    for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
        if (!mSlots[s].mAcquireCalled) {
            mask |= (1ULL << s);
        }
    }

    // Remove from the mask queued buffers for which acquire has been called,
    // since the consumer will not receive their buffer addresses and so must
    // retain their cached information
    BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin());
    while (current != mCore->mQueue.end()) {
        if (current->mAcquireCalled) {
            mask &= ~(1ULL << current->mSlot);
        }
        ++current;
    }

    BQ_LOGV("getReleasedBuffers: returning mask %#" PRIx64, mask);
    *outSlotMask = mask;
    return NO_ERROR;
}

status_t BufferQueueConsumer::setDefaultBufferSize(uint32_t width,
        uint32_t height) {
    ATRACE_CALL();

    if (width == 0 || height == 0) {
        BQ_LOGV("setDefaultBufferSize: dimensions cannot be 0 (width=%u "
                "height=%u)", width, height);
        return BAD_VALUE;
    }

    BQ_LOGV("setDefaultBufferSize: width=%u height=%u", width, height);

    Mutex::Autolock lock(mCore->mMutex);
    mCore->mDefaultWidth = width;
    mCore->mDefaultHeight = height;
    return NO_ERROR;
}

status_t BufferQueueConsumer::setDefaultMaxBufferCount(int bufferCount) {
    ATRACE_CALL();
    Mutex::Autolock lock(mCore->mMutex);
    return mCore->setDefaultMaxBufferCountLocked(bufferCount);
}

status_t BufferQueueConsumer::disableAsyncBuffer() {
    ATRACE_CALL();

    Mutex::Autolock lock(mCore->mMutex);

    if (mCore->mConsumerListener != NULL) {
        BQ_LOGE("disableAsyncBuffer: consumer already connected");
        return INVALID_OPERATION;
    }

    BQ_LOGV("disableAsyncBuffer");
    mCore->mUseAsyncBuffer = false;
    return NO_ERROR;
}

status_t BufferQueueConsumer::setMaxAcquiredBufferCount(
        int maxAcquiredBuffers) {
    ATRACE_CALL();

    if (maxAcquiredBuffers < 1 ||
            maxAcquiredBuffers > BufferQueueCore::MAX_MAX_ACQUIRED_BUFFERS) {
        BQ_LOGE("setMaxAcquiredBufferCount: invalid count %d",
                maxAcquiredBuffers);
        return BAD_VALUE;
    }

    Mutex::Autolock lock(mCore->mMutex);

    if (mCore->mConnectedApi != BufferQueueCore::NO_CONNECTED_API) {
        BQ_LOGE("setMaxAcquiredBufferCount: producer is already connected");
        return INVALID_OPERATION;
    }

    BQ_LOGV("setMaxAcquiredBufferCount: %d", maxAcquiredBuffers);
    mCore->mMaxAcquiredBufferCount = maxAcquiredBuffers;
    return NO_ERROR;
}

void BufferQueueConsumer::setConsumerName(const String8& name) {
    ATRACE_CALL();
    BQ_LOGV("setConsumerName: '%s'", name.string());
    Mutex::Autolock lock(mCore->mMutex);
    mCore->mConsumerName = name;
    mConsumerName = name;
}

status_t BufferQueueConsumer::setDefaultBufferFormat(uint32_t defaultFormat) {
    ATRACE_CALL();
    BQ_LOGV("setDefaultBufferFormat: %u", defaultFormat);
    Mutex::Autolock lock(mCore->mMutex);
    mCore->mDefaultBufferFormat = defaultFormat;
    return NO_ERROR;
}

status_t BufferQueueConsumer::setConsumerUsageBits(uint32_t usage) {
    ATRACE_CALL();
    BQ_LOGV("setConsumerUsageBits: %#x", usage);
    Mutex::Autolock lock(mCore->mMutex);
    mCore->mConsumerUsageBits = usage;
    return NO_ERROR;
}

status_t BufferQueueConsumer::setTransformHint(uint32_t hint) {
    ATRACE_CALL();
    BQ_LOGV("setTransformHint: %#x", hint);
    Mutex::Autolock lock(mCore->mMutex);
    mCore->mTransformHint = hint;
    return NO_ERROR;
}

sp<NativeHandle> BufferQueueConsumer::getSidebandStream() const {
    return mCore->mSidebandStream;
}

void BufferQueueConsumer::dump(String8& result, const char* prefix) const {
    mCore->dump(result, prefix);
}

} // namespace android