1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
|
//
// Copyright 2010 The Android Open Source Project
//
// The input dispatcher.
//
#define LOG_TAG "InputDispatcher"
//#define LOG_NDEBUG 0
// Log detailed debug messages about each inbound event notification to the dispatcher.
#define DEBUG_INBOUND_EVENT_DETAILS 0
// Log detailed debug messages about each outbound event processed by the dispatcher.
#define DEBUG_OUTBOUND_EVENT_DETAILS 0
// Log debug messages about batching.
#define DEBUG_BATCHING 0
// Log debug messages about the dispatch cycle.
#define DEBUG_DISPATCH_CYCLE 0
// Log debug messages about registrations.
#define DEBUG_REGISTRATION 0
// Log debug messages about performance statistics.
#define DEBUG_PERFORMANCE_STATISTICS 0
// Log debug messages about input event injection.
#define DEBUG_INJECTION 0
// Log debug messages about input event throttling.
#define DEBUG_THROTTLING 0
// Log debug messages about input focus tracking.
#define DEBUG_FOCUS 0
// Log debug messages about the app switch latency optimization.
#define DEBUG_APP_SWITCH 0
#include <cutils/log.h>
#include <ui/InputDispatcher.h>
#include <ui/PowerManager.h>
#include <stddef.h>
#include <unistd.h>
#include <errno.h>
#include <limits.h>
namespace android {
// Delay between reporting long touch events to the power manager.
const nsecs_t EVENT_IGNORE_DURATION = 300 * 1000000LL; // 300 ms
// Default input dispatching timeout if there is no focused application or paused window
// from which to determine an appropriate dispatching timeout.
const nsecs_t DEFAULT_INPUT_DISPATCHING_TIMEOUT = 5000 * 1000000LL; // 5 sec
// Amount of time to allow for all pending events to be processed when an app switch
// key is on the way. This is used to preempt input dispatch and drop input events
// when an application takes too long to respond and the user has pressed an app switch key.
const nsecs_t APP_SWITCH_TIMEOUT = 500 * 1000000LL; // 0.5sec
static inline nsecs_t now() {
return systemTime(SYSTEM_TIME_MONOTONIC);
}
static inline const char* toString(bool value) {
return value ? "true" : "false";
}
static inline int32_t getMotionEventActionPointerIndex(int32_t action) {
return (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK)
>> AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
}
static bool isValidKeyAction(int32_t action) {
switch (action) {
case AKEY_EVENT_ACTION_DOWN:
case AKEY_EVENT_ACTION_UP:
return true;
default:
return false;
}
}
static bool validateKeyEvent(int32_t action) {
if (! isValidKeyAction(action)) {
LOGE("Key event has invalid action code 0x%x", action);
return false;
}
return true;
}
static bool isValidMotionAction(int32_t action) {
switch (action & AMOTION_EVENT_ACTION_MASK) {
case AMOTION_EVENT_ACTION_DOWN:
case AMOTION_EVENT_ACTION_UP:
case AMOTION_EVENT_ACTION_CANCEL:
case AMOTION_EVENT_ACTION_MOVE:
case AMOTION_EVENT_ACTION_POINTER_DOWN:
case AMOTION_EVENT_ACTION_POINTER_UP:
case AMOTION_EVENT_ACTION_OUTSIDE:
return true;
default:
return false;
}
}
static bool validateMotionEvent(int32_t action, size_t pointerCount,
const int32_t* pointerIds) {
if (! isValidMotionAction(action)) {
LOGE("Motion event has invalid action code 0x%x", action);
return false;
}
if (pointerCount < 1 || pointerCount > MAX_POINTERS) {
LOGE("Motion event has invalid pointer count %d; value must be between 1 and %d.",
pointerCount, MAX_POINTERS);
return false;
}
for (size_t i = 0; i < pointerCount; i++) {
if (pointerIds[i] < 0 || pointerIds[i] > MAX_POINTER_ID) {
LOGE("Motion event has invalid pointer id %d; value must be between 0 and %d",
pointerIds[i], MAX_POINTER_ID);
return false;
}
}
return true;
}
// --- InputWindow ---
bool InputWindow::visibleFrameIntersects(const InputWindow* other) const {
return visibleFrameRight > other->visibleFrameLeft
&& visibleFrameLeft < other->visibleFrameRight
&& visibleFrameBottom > other->visibleFrameTop
&& visibleFrameTop < other->visibleFrameBottom;
}
bool InputWindow::touchableAreaContainsPoint(int32_t x, int32_t y) const {
return x >= touchableAreaLeft && x <= touchableAreaRight
&& y >= touchableAreaTop && y <= touchableAreaBottom;
}
// --- InputDispatcher ---
InputDispatcher::InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy) :
mPolicy(policy),
mPendingEvent(NULL), mAppSwitchDueTime(LONG_LONG_MAX),
mDispatchEnabled(true), mDispatchFrozen(false),
mFocusedWindow(NULL),
mFocusedApplication(NULL),
mCurrentInputTargetsValid(false),
mInputTargetWaitCause(INPUT_TARGET_WAIT_CAUSE_NONE) {
mLooper = new Looper(false);
mInboundQueue.headSentinel.refCount = -1;
mInboundQueue.headSentinel.type = EventEntry::TYPE_SENTINEL;
mInboundQueue.headSentinel.eventTime = LONG_LONG_MIN;
mInboundQueue.tailSentinel.refCount = -1;
mInboundQueue.tailSentinel.type = EventEntry::TYPE_SENTINEL;
mInboundQueue.tailSentinel.eventTime = LONG_LONG_MAX;
mKeyRepeatState.lastKeyEntry = NULL;
int32_t maxEventsPerSecond = policy->getMaxEventsPerSecond();
mThrottleState.minTimeBetweenEvents = 1000000000LL / maxEventsPerSecond;
mThrottleState.lastDeviceId = -1;
#if DEBUG_THROTTLING
mThrottleState.originalSampleCount = 0;
LOGD("Throttling - Max events per second = %d", maxEventsPerSecond);
#endif
}
InputDispatcher::~InputDispatcher() {
{ // acquire lock
AutoMutex _l(mLock);
resetKeyRepeatLocked();
releasePendingEventLocked();
drainInboundQueueLocked();
}
while (mConnectionsByReceiveFd.size() != 0) {
unregisterInputChannel(mConnectionsByReceiveFd.valueAt(0)->inputChannel);
}
}
void InputDispatcher::dispatchOnce() {
nsecs_t keyRepeatTimeout = mPolicy->getKeyRepeatTimeout();
nsecs_t keyRepeatDelay = mPolicy->getKeyRepeatDelay();
nsecs_t nextWakeupTime = LONG_LONG_MAX;
{ // acquire lock
AutoMutex _l(mLock);
dispatchOnceInnerLocked(keyRepeatTimeout, keyRepeatDelay, & nextWakeupTime);
if (runCommandsLockedInterruptible()) {
nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately
}
} // release lock
// Wait for callback or timeout or wake. (make sure we round up, not down)
nsecs_t currentTime = now();
int32_t timeoutMillis;
if (nextWakeupTime > currentTime) {
uint64_t timeout = uint64_t(nextWakeupTime - currentTime);
timeout = (timeout + 999999LL) / 1000000LL;
timeoutMillis = timeout > INT_MAX ? -1 : int32_t(timeout);
} else {
timeoutMillis = 0;
}
mLooper->pollOnce(timeoutMillis);
}
void InputDispatcher::dispatchOnceInnerLocked(nsecs_t keyRepeatTimeout,
nsecs_t keyRepeatDelay, nsecs_t* nextWakeupTime) {
nsecs_t currentTime = now();
// Reset the key repeat timer whenever we disallow key events, even if the next event
// is not a key. This is to ensure that we abort a key repeat if the device is just coming
// out of sleep.
if (keyRepeatTimeout < 0) {
resetKeyRepeatLocked();
}
// If dispatching is disabled, drop all events in the queue.
if (! mDispatchEnabled) {
if (mPendingEvent || ! mInboundQueue.isEmpty()) {
LOGI("Dropping pending events because input dispatch is disabled.");
releasePendingEventLocked();
drainInboundQueueLocked();
}
return;
}
// If dispatching is frozen, do not process timeouts or try to deliver any new events.
if (mDispatchFrozen) {
#if DEBUG_FOCUS
LOGD("Dispatch frozen. Waiting some more.");
#endif
return;
}
// Optimize latency of app switches.
// Essentially we start a short timeout when an app switch key (HOME / ENDCALL) has
// been pressed. When it expires, we preempt dispatch and drop all other pending events.
bool isAppSwitchDue = mAppSwitchDueTime <= currentTime;
if (mAppSwitchDueTime < *nextWakeupTime) {
*nextWakeupTime = mAppSwitchDueTime;
}
// Ready to start a new event.
// If we don't already have a pending event, go grab one.
if (! mPendingEvent) {
if (mInboundQueue.isEmpty()) {
if (isAppSwitchDue) {
// The inbound queue is empty so the app switch key we were waiting
// for will never arrive. Stop waiting for it.
resetPendingAppSwitchLocked(false);
isAppSwitchDue = false;
}
// Synthesize a key repeat if appropriate.
if (mKeyRepeatState.lastKeyEntry) {
if (currentTime >= mKeyRepeatState.nextRepeatTime) {
mPendingEvent = synthesizeKeyRepeatLocked(currentTime, keyRepeatDelay);
} else {
if (mKeyRepeatState.nextRepeatTime < *nextWakeupTime) {
*nextWakeupTime = mKeyRepeatState.nextRepeatTime;
}
}
}
if (! mPendingEvent) {
return;
}
} else {
// Inbound queue has at least one entry.
EventEntry* entry = mInboundQueue.headSentinel.next;
// Throttle the entry if it is a move event and there are no
// other events behind it in the queue. Due to movement batching, additional
// samples may be appended to this event by the time the throttling timeout
// expires.
// TODO Make this smarter and consider throttling per device independently.
if (entry->type == EventEntry::TYPE_MOTION) {
MotionEntry* motionEntry = static_cast<MotionEntry*>(entry);
int32_t deviceId = motionEntry->deviceId;
uint32_t source = motionEntry->source;
if (! isAppSwitchDue
&& motionEntry->next == & mInboundQueue.tailSentinel // exactly one event
&& motionEntry->action == AMOTION_EVENT_ACTION_MOVE
&& deviceId == mThrottleState.lastDeviceId
&& source == mThrottleState.lastSource) {
nsecs_t nextTime = mThrottleState.lastEventTime
+ mThrottleState.minTimeBetweenEvents;
if (currentTime < nextTime) {
// Throttle it!
#if DEBUG_THROTTLING
LOGD("Throttling - Delaying motion event for "
"device 0x%x, source 0x%08x by up to %0.3fms.",
deviceId, source, (nextTime - currentTime) * 0.000001);
#endif
if (nextTime < *nextWakeupTime) {
*nextWakeupTime = nextTime;
}
if (mThrottleState.originalSampleCount == 0) {
mThrottleState.originalSampleCount =
motionEntry->countSamples();
}
return;
}
}
#if DEBUG_THROTTLING
if (mThrottleState.originalSampleCount != 0) {
uint32_t count = motionEntry->countSamples();
LOGD("Throttling - Motion event sample count grew by %d from %d to %d.",
count - mThrottleState.originalSampleCount,
mThrottleState.originalSampleCount, count);
mThrottleState.originalSampleCount = 0;
}
#endif
mThrottleState.lastEventTime = entry->eventTime < currentTime
? entry->eventTime : currentTime;
mThrottleState.lastDeviceId = deviceId;
mThrottleState.lastSource = source;
}
mInboundQueue.dequeue(entry);
mPendingEvent = entry;
}
}
// Now we have an event to dispatch.
assert(mPendingEvent != NULL);
bool done = false;
switch (mPendingEvent->type) {
case EventEntry::TYPE_CONFIGURATION_CHANGED: {
ConfigurationChangedEntry* typedEntry =
static_cast<ConfigurationChangedEntry*>(mPendingEvent);
done = dispatchConfigurationChangedLocked(currentTime, typedEntry);
break;
}
case EventEntry::TYPE_KEY: {
KeyEntry* typedEntry = static_cast<KeyEntry*>(mPendingEvent);
bool appSwitchKey = isAppSwitchKey(typedEntry->keyCode);
bool dropEvent = isAppSwitchDue && ! appSwitchKey;
done = dispatchKeyLocked(currentTime, typedEntry, keyRepeatTimeout, dropEvent,
nextWakeupTime);
if (done) {
if (dropEvent) {
LOGI("Dropped key because of pending overdue app switch.");
} else if (appSwitchKey) {
resetPendingAppSwitchLocked(true);
}
}
break;
}
case EventEntry::TYPE_MOTION: {
MotionEntry* typedEntry = static_cast<MotionEntry*>(mPendingEvent);
bool dropEvent = isAppSwitchDue;
done = dispatchMotionLocked(currentTime, typedEntry, dropEvent, nextWakeupTime);
if (done) {
if (dropEvent) {
LOGI("Dropped motion because of pending overdue app switch.");
}
}
break;
}
default:
assert(false);
break;
}
if (done) {
releasePendingEventLocked();
*nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately
}
}
bool InputDispatcher::enqueueInboundEventLocked(EventEntry* entry) {
bool needWake = mInboundQueue.isEmpty();
mInboundQueue.enqueueAtTail(entry);
switch (entry->type) {
case EventEntry::TYPE_KEY:
needWake |= detectPendingAppSwitchLocked(static_cast<KeyEntry*>(entry));
break;
}
return needWake;
}
bool InputDispatcher::isAppSwitchKey(int32_t keyCode) {
return keyCode == AKEYCODE_HOME || keyCode == AKEYCODE_ENDCALL;
}
bool InputDispatcher::isAppSwitchPendingLocked() {
return mAppSwitchDueTime != LONG_LONG_MAX;
}
bool InputDispatcher::detectPendingAppSwitchLocked(KeyEntry* inboundKeyEntry) {
if (inboundKeyEntry->action == AKEY_EVENT_ACTION_UP
&& ! (inboundKeyEntry->flags & AKEY_EVENT_FLAG_CANCELED)
&& isAppSwitchKey(inboundKeyEntry->keyCode)
&& isEventFromReliableSourceLocked(inboundKeyEntry)) {
#if DEBUG_APP_SWITCH
LOGD("App switch is pending!");
#endif
mAppSwitchDueTime = inboundKeyEntry->eventTime + APP_SWITCH_TIMEOUT;
return true; // need wake
}
return false;
}
void InputDispatcher::resetPendingAppSwitchLocked(bool handled) {
mAppSwitchDueTime = LONG_LONG_MAX;
#if DEBUG_APP_SWITCH
if (handled) {
LOGD("App switch has arrived.");
} else {
LOGD("App switch was abandoned.");
}
#endif
}
bool InputDispatcher::runCommandsLockedInterruptible() {
if (mCommandQueue.isEmpty()) {
return false;
}
do {
CommandEntry* commandEntry = mCommandQueue.dequeueAtHead();
Command command = commandEntry->command;
(this->*command)(commandEntry); // commands are implicitly 'LockedInterruptible'
commandEntry->connection.clear();
mAllocator.releaseCommandEntry(commandEntry);
} while (! mCommandQueue.isEmpty());
return true;
}
InputDispatcher::CommandEntry* InputDispatcher::postCommandLocked(Command command) {
CommandEntry* commandEntry = mAllocator.obtainCommandEntry(command);
mCommandQueue.enqueueAtTail(commandEntry);
return commandEntry;
}
void InputDispatcher::drainInboundQueueLocked() {
while (! mInboundQueue.isEmpty()) {
EventEntry* entry = mInboundQueue.dequeueAtHead();
releaseInboundEventLocked(entry);
}
}
void InputDispatcher::releasePendingEventLocked() {
if (mPendingEvent) {
releaseInboundEventLocked(mPendingEvent);
mPendingEvent = NULL;
}
}
void InputDispatcher::releaseInboundEventLocked(EventEntry* entry) {
InjectionState* injectionState = entry->injectionState;
if (injectionState && injectionState->injectionResult == INPUT_EVENT_INJECTION_PENDING) {
#if DEBUG_DISPATCH_CYCLE
LOGD("Injected inbound event was dropped.");
#endif
setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED);
}
mAllocator.releaseEventEntry(entry);
}
bool InputDispatcher::isEventFromReliableSourceLocked(EventEntry* entry) {
InjectionState* injectionState = entry->injectionState;
return ! injectionState
|| injectionState->injectorUid == 0
|| mPolicy->checkInjectEventsPermissionNonReentrant(
injectionState->injectorPid, injectionState->injectorUid);
}
void InputDispatcher::resetKeyRepeatLocked() {
if (mKeyRepeatState.lastKeyEntry) {
mAllocator.releaseKeyEntry(mKeyRepeatState.lastKeyEntry);
mKeyRepeatState.lastKeyEntry = NULL;
}
}
InputDispatcher::KeyEntry* InputDispatcher::synthesizeKeyRepeatLocked(
nsecs_t currentTime, nsecs_t keyRepeatDelay) {
KeyEntry* entry = mKeyRepeatState.lastKeyEntry;
// Reuse the repeated key entry if it is otherwise unreferenced.
uint32_t policyFlags = entry->policyFlags & POLICY_FLAG_RAW_MASK;
if (entry->refCount == 1) {
mAllocator.recycleKeyEntry(entry);
entry->eventTime = currentTime;
entry->policyFlags = policyFlags;
entry->repeatCount += 1;
} else {
KeyEntry* newEntry = mAllocator.obtainKeyEntry(currentTime,
entry->deviceId, entry->source, policyFlags,
entry->action, entry->flags, entry->keyCode, entry->scanCode,
entry->metaState, entry->repeatCount + 1, entry->downTime);
mKeyRepeatState.lastKeyEntry = newEntry;
mAllocator.releaseKeyEntry(entry);
entry = newEntry;
}
entry->syntheticRepeat = true;
// Increment reference count since we keep a reference to the event in
// mKeyRepeatState.lastKeyEntry in addition to the one we return.
entry->refCount += 1;
if (entry->repeatCount == 1) {
entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS;
}
mKeyRepeatState.nextRepeatTime = currentTime + keyRepeatDelay;
return entry;
}
bool InputDispatcher::dispatchConfigurationChangedLocked(
nsecs_t currentTime, ConfigurationChangedEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
LOGD("dispatchConfigurationChanged - eventTime=%lld", entry->eventTime);
#endif
// Reset key repeating in case a keyboard device was added or removed or something.
resetKeyRepeatLocked();
// Enqueue a command to run outside the lock to tell the policy that the configuration changed.
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doNotifyConfigurationChangedInterruptible);
commandEntry->eventTime = entry->eventTime;
return true;
}
bool InputDispatcher::dispatchKeyLocked(
nsecs_t currentTime, KeyEntry* entry, nsecs_t keyRepeatTimeout,
bool dropEvent, nsecs_t* nextWakeupTime) {
// Give the policy a chance to intercept the key.
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN) {
bool trusted;
if (! dropEvent && mFocusedWindow) {
trusted = checkInjectionPermission(mFocusedWindow, entry->injectionState);
} else {
trusted = isEventFromReliableSourceLocked(entry);
}
if (trusted) {
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible);
if (! dropEvent && mFocusedWindow) {
commandEntry->inputChannel = mFocusedWindow->inputChannel;
}
commandEntry->keyEntry = entry;
entry->refCount += 1;
return false; // wait for the command to run
} else {
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
}
} else if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_SKIP) {
resetTargetsLocked();
setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_SUCCEEDED);
return true;
}
// Clean up if dropping the event.
if (dropEvent) {
resetTargetsLocked();
setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED);
return true;
}
// Preprocessing.
if (! entry->dispatchInProgress) {
logOutboundKeyDetailsLocked("dispatchKey - ", entry);
if (entry->repeatCount == 0
&& entry->action == AKEY_EVENT_ACTION_DOWN
&& ! entry->isInjected()) {
if (mKeyRepeatState.lastKeyEntry
&& mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode) {
// We have seen two identical key downs in a row which indicates that the device
// driver is automatically generating key repeats itself. We take note of the
// repeat here, but we disable our own next key repeat timer since it is clear that
// we will not need to synthesize key repeats ourselves.
entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1;
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves
} else {
// Not a repeat. Save key down state in case we do see a repeat later.
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = entry->eventTime + keyRepeatTimeout;
}
mKeyRepeatState.lastKeyEntry = entry;
entry->refCount += 1;
} else if (! entry->syntheticRepeat) {
resetKeyRepeatLocked();
}
entry->dispatchInProgress = true;
resetTargetsLocked();
}
// Identify targets.
if (! mCurrentInputTargetsValid) {
int32_t injectionResult = findFocusedWindowTargetsLocked(currentTime,
entry, nextWakeupTime);
if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
return false;
}
setInjectionResultLocked(entry, injectionResult);
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
return true;
}
addMonitoringTargetsLocked();
commitTargetsLocked();
}
// Dispatch the key.
dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false);
// Poke user activity.
if (shouldPokeUserActivityForCurrentInputTargetsLocked()) {
pokeUserActivityLocked(entry->eventTime, POWER_MANAGER_BUTTON_EVENT);
}
return true;
}
void InputDispatcher::logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
LOGD("%seventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, "
"action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, "
"downTime=%lld",
prefix,
entry->eventTime, entry->deviceId, entry->source, entry->policyFlags,
entry->action, entry->flags, entry->keyCode, entry->scanCode, entry->metaState,
entry->downTime);
#endif
}
bool InputDispatcher::dispatchMotionLocked(
nsecs_t currentTime, MotionEntry* entry, bool dropEvent, nsecs_t* nextWakeupTime) {
// Clean up if dropping the event.
if (dropEvent) {
resetTargetsLocked();
setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED);
return true;
}
// Preprocessing.
if (! entry->dispatchInProgress) {
logOutboundMotionDetailsLocked("dispatchMotion - ", entry);
entry->dispatchInProgress = true;
resetTargetsLocked();
}
bool isPointerEvent = entry->source & AINPUT_SOURCE_CLASS_POINTER;
// Identify targets.
if (! mCurrentInputTargetsValid) {
int32_t injectionResult;
if (isPointerEvent) {
// Pointer event. (eg. touchscreen)
injectionResult = findTouchedWindowTargetsLocked(currentTime,
entry, nextWakeupTime);
} else {
// Non touch event. (eg. trackball)
injectionResult = findFocusedWindowTargetsLocked(currentTime,
entry, nextWakeupTime);
}
if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
return false;
}
setInjectionResultLocked(entry, injectionResult);
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
return true;
}
addMonitoringTargetsLocked();
commitTargetsLocked();
}
// Dispatch the motion.
dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false);
// Poke user activity.
if (shouldPokeUserActivityForCurrentInputTargetsLocked()) {
int32_t eventType;
if (isPointerEvent) {
switch (entry->action) {
case AMOTION_EVENT_ACTION_DOWN:
eventType = POWER_MANAGER_TOUCH_EVENT;
break;
case AMOTION_EVENT_ACTION_UP:
eventType = POWER_MANAGER_TOUCH_UP_EVENT;
break;
default:
if (entry->eventTime - entry->downTime >= EVENT_IGNORE_DURATION) {
eventType = POWER_MANAGER_TOUCH_EVENT;
} else {
eventType = POWER_MANAGER_LONG_TOUCH_EVENT;
}
break;
}
} else {
eventType = POWER_MANAGER_BUTTON_EVENT;
}
pokeUserActivityLocked(entry->eventTime, eventType);
}
return true;
}
void InputDispatcher::logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
LOGD("%seventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, "
"action=0x%x, flags=0x%x, "
"metaState=0x%x, edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%lld",
prefix,
entry->eventTime, entry->deviceId, entry->source, entry->policyFlags,
entry->action, entry->flags,
entry->metaState, entry->edgeFlags, entry->xPrecision, entry->yPrecision,
entry->downTime);
// Print the most recent sample that we have available, this may change due to batching.
size_t sampleCount = 1;
const MotionSample* sample = & entry->firstSample;
for (; sample->next != NULL; sample = sample->next) {
sampleCount += 1;
}
for (uint32_t i = 0; i < entry->pointerCount; i++) {
LOGD(" Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, "
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
"orientation=%f",
i, entry->pointerIds[i],
sample->pointerCoords[i].x, sample->pointerCoords[i].y,
sample->pointerCoords[i].pressure, sample->pointerCoords[i].size,
sample->pointerCoords[i].touchMajor, sample->pointerCoords[i].touchMinor,
sample->pointerCoords[i].toolMajor, sample->pointerCoords[i].toolMinor,
sample->pointerCoords[i].orientation);
}
// Keep in mind that due to batching, it is possible for the number of samples actually
// dispatched to change before the application finally consumed them.
if (entry->action == AMOTION_EVENT_ACTION_MOVE) {
LOGD(" ... Total movement samples currently batched %d ...", sampleCount);
}
#endif
}
void InputDispatcher::dispatchEventToCurrentInputTargetsLocked(nsecs_t currentTime,
EventEntry* eventEntry, bool resumeWithAppendedMotionSample) {
#if DEBUG_DISPATCH_CYCLE
LOGD("dispatchEventToCurrentInputTargets - "
"resumeWithAppendedMotionSample=%s",
toString(resumeWithAppendedMotionSample));
#endif
assert(eventEntry->dispatchInProgress); // should already have been set to true
for (size_t i = 0; i < mCurrentInputTargets.size(); i++) {
const InputTarget& inputTarget = mCurrentInputTargets.itemAt(i);
ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel);
if (connectionIndex >= 0) {
sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
prepareDispatchCycleLocked(currentTime, connection, eventEntry, & inputTarget,
resumeWithAppendedMotionSample);
} else {
LOGW("Framework requested delivery of an input event to channel '%s' but it "
"is not registered with the input dispatcher.",
inputTarget.inputChannel->getName().string());
}
}
}
void InputDispatcher::resetTargetsLocked() {
mCurrentInputTargetsValid = false;
mCurrentInputTargets.clear();
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE;
}
void InputDispatcher::commitTargetsLocked() {
mCurrentInputTargetsValid = true;
}
int32_t InputDispatcher::handleTargetsNotReadyLocked(nsecs_t currentTime,
const EventEntry* entry, const InputApplication* application, const InputWindow* window,
nsecs_t* nextWakeupTime) {
if (application == NULL && window == NULL) {
if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY) {
#if DEBUG_FOCUS
LOGD("Waiting for system to become ready for input.");
#endif
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY;
mInputTargetWaitStartTime = currentTime;
mInputTargetWaitTimeoutTime = LONG_LONG_MAX;
mInputTargetWaitTimeoutExpired = false;
}
} else {
if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) {
#if DEBUG_FOCUS
LOGD("Waiting for application to become ready for input: %s",
getApplicationWindowLabelLocked(application, window).string());
#endif
nsecs_t timeout = window ? window->dispatchingTimeout :
application ? application->dispatchingTimeout : DEFAULT_INPUT_DISPATCHING_TIMEOUT;
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY;
mInputTargetWaitStartTime = currentTime;
mInputTargetWaitTimeoutTime = currentTime + timeout;
mInputTargetWaitTimeoutExpired = false;
}
}
if (mInputTargetWaitTimeoutExpired) {
return INPUT_EVENT_INJECTION_TIMED_OUT;
}
if (currentTime >= mInputTargetWaitTimeoutTime) {
onANRLocked(currentTime, application, window, entry->eventTime, mInputTargetWaitStartTime);
// Force poll loop to wake up immediately on next iteration once we get the
// ANR response back from the policy.
*nextWakeupTime = LONG_LONG_MIN;
return INPUT_EVENT_INJECTION_PENDING;
} else {
// Force poll loop to wake up when timeout is due.
if (mInputTargetWaitTimeoutTime < *nextWakeupTime) {
*nextWakeupTime = mInputTargetWaitTimeoutTime;
}
return INPUT_EVENT_INJECTION_PENDING;
}
}
void InputDispatcher::resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout,
const sp<InputChannel>& inputChannel) {
if (newTimeout > 0) {
// Extend the timeout.
mInputTargetWaitTimeoutTime = now() + newTimeout;
} else {
// Give up.
mInputTargetWaitTimeoutExpired = true;
// Release the touch targets.
mTouchState.reset();
// Input state will not be realistic. Mark it out of sync.
if (inputChannel.get()) {
ssize_t connectionIndex = getConnectionIndexLocked(inputChannel);
if (connectionIndex >= 0) {
sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
connection->inputState.setOutOfSync();
}
}
}
}
nsecs_t InputDispatcher::getTimeSpentWaitingForApplicationLocked(
nsecs_t currentTime) {
if (mInputTargetWaitCause == INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) {
return currentTime - mInputTargetWaitStartTime;
}
return 0;
}
void InputDispatcher::resetANRTimeoutsLocked() {
#if DEBUG_FOCUS
LOGD("Resetting ANR timeouts.");
#endif
// Reset input target wait timeout.
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE;
}
int32_t InputDispatcher::findFocusedWindowTargetsLocked(nsecs_t currentTime,
const EventEntry* entry, nsecs_t* nextWakeupTime) {
mCurrentInputTargets.clear();
int32_t injectionResult;
// If there is no currently focused window and no focused application
// then drop the event.
if (! mFocusedWindow) {
if (mFocusedApplication) {
#if DEBUG_FOCUS
LOGD("Waiting because there is no focused window but there is a "
"focused application that may eventually add a window: %s.",
getApplicationWindowLabelLocked(mFocusedApplication, NULL).string());
#endif
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
mFocusedApplication, NULL, nextWakeupTime);
goto Unresponsive;
}
LOGI("Dropping event because there is no focused window or focused application.");
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
// Check permissions.
if (! checkInjectionPermission(mFocusedWindow, entry->injectionState)) {
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
goto Failed;
}
// If the currently focused window is paused then keep waiting.
if (mFocusedWindow->paused) {
#if DEBUG_FOCUS
LOGD("Waiting because focused window is paused.");
#endif
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
mFocusedApplication, mFocusedWindow, nextWakeupTime);
goto Unresponsive;
}
// If the currently focused window is still working on previous events then keep waiting.
if (! isWindowFinishedWithPreviousInputLocked(mFocusedWindow)) {
#if DEBUG_FOCUS
LOGD("Waiting because focused window still processing previous input.");
#endif
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
mFocusedApplication, mFocusedWindow, nextWakeupTime);
goto Unresponsive;
}
// Success! Output targets.
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
addWindowTargetLocked(mFocusedWindow, InputTarget::FLAG_FOREGROUND, BitSet32(0));
// Done.
Failed:
Unresponsive:
nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime);
updateDispatchStatisticsLocked(currentTime, entry,
injectionResult, timeSpentWaitingForApplication);
#if DEBUG_FOCUS
LOGD("findFocusedWindow finished: injectionResult=%d, "
"timeSpendWaitingForApplication=%0.1fms",
injectionResult, timeSpentWaitingForApplication / 1000000.0);
#endif
return injectionResult;
}
int32_t InputDispatcher::findTouchedWindowTargetsLocked(nsecs_t currentTime,
const MotionEntry* entry, nsecs_t* nextWakeupTime) {
enum InjectionPermission {
INJECTION_PERMISSION_UNKNOWN,
INJECTION_PERMISSION_GRANTED,
INJECTION_PERMISSION_DENIED
};
mCurrentInputTargets.clear();
nsecs_t startTime = now();
// For security reasons, we defer updating the touch state until we are sure that
// event injection will be allowed.
//
// FIXME In the original code, screenWasOff could never be set to true.
// The reason is that the POLICY_FLAG_WOKE_HERE
// and POLICY_FLAG_BRIGHT_HERE flags were set only when preprocessing raw
// EV_KEY, EV_REL and EV_ABS events. As it happens, the touch event was
// actually enqueued using the policyFlags that appeared in the final EV_SYN
// events upon which no preprocessing took place. So policyFlags was always 0.
// In the new native input dispatcher we're a bit more careful about event
// preprocessing so the touches we receive can actually have non-zero policyFlags.
// Unfortunately we obtain undesirable behavior.
//
// Here's what happens:
//
// When the device dims in anticipation of going to sleep, touches
// in windows which have FLAG_TOUCHABLE_WHEN_WAKING cause
// the device to brighten and reset the user activity timer.
// Touches on other windows (such as the launcher window)
// are dropped. Then after a moment, the device goes to sleep. Oops.
//
// Also notice how screenWasOff was being initialized using POLICY_FLAG_BRIGHT_HERE
// instead of POLICY_FLAG_WOKE_HERE...
//
bool screenWasOff = false; // original policy: policyFlags & POLICY_FLAG_BRIGHT_HERE;
int32_t action = entry->action;
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
// Update the touch state as needed based on the properties of the touch event.
int32_t injectionResult = INPUT_EVENT_INJECTION_PENDING;
InjectionPermission injectionPermission = INJECTION_PERMISSION_UNKNOWN;
if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
mTempTouchState.reset();
mTempTouchState.down = true;
} else {
mTempTouchState.copyFrom(mTouchState);
}
bool isSplit = mTempTouchState.split && mTempTouchState.down;
if (maskedAction == AMOTION_EVENT_ACTION_DOWN
|| (isSplit && maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN)) {
/* Case 1: New splittable pointer going down. */
int32_t pointerIndex = getMotionEventActionPointerIndex(action);
int32_t x = int32_t(entry->firstSample.pointerCoords[pointerIndex].x);
int32_t y = int32_t(entry->firstSample.pointerCoords[pointerIndex].y);
const InputWindow* newTouchedWindow = NULL;
const InputWindow* topErrorWindow = NULL;
// Traverse windows from front to back to find touched window and outside targets.
size_t numWindows = mWindows.size();
for (size_t i = 0; i < numWindows; i++) {
const InputWindow* window = & mWindows.editItemAt(i);
int32_t flags = window->layoutParamsFlags;
if (flags & InputWindow::FLAG_SYSTEM_ERROR) {
if (! topErrorWindow) {
topErrorWindow = window;
}
}
if (window->visible) {
if (! (flags & InputWindow::FLAG_NOT_TOUCHABLE)) {
bool isTouchModal = (flags & (InputWindow::FLAG_NOT_FOCUSABLE
| InputWindow::FLAG_NOT_TOUCH_MODAL)) == 0;
if (isTouchModal || window->touchableAreaContainsPoint(x, y)) {
if (! screenWasOff || flags & InputWindow::FLAG_TOUCHABLE_WHEN_WAKING) {
newTouchedWindow = window;
}
break; // found touched window, exit window loop
}
}
if (maskedAction == AMOTION_EVENT_ACTION_DOWN
&& (flags & InputWindow::FLAG_WATCH_OUTSIDE_TOUCH)) {
mTempTouchState.addOrUpdateWindow(window,
InputTarget::FLAG_OUTSIDE, BitSet32(0));
}
}
}
// If there is an error window but it is not taking focus (typically because
// it is invisible) then wait for it. Any other focused window may in
// fact be in ANR state.
if (topErrorWindow && newTouchedWindow != topErrorWindow) {
#if DEBUG_FOCUS
LOGD("Waiting because system error window is pending.");
#endif
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
NULL, NULL, nextWakeupTime);
injectionPermission = INJECTION_PERMISSION_UNKNOWN;
goto Unresponsive;
}
// Figure out whether splitting will be allowed for this window.
if (newTouchedWindow
&& (newTouchedWindow->layoutParamsFlags & InputWindow::FLAG_SPLIT_TOUCH)) {
// New window supports splitting.
isSplit = true;
} else if (isSplit) {
// New window does not support splitting but we have already split events.
// Assign the pointer to the first foreground window we find.
// (May be NULL which is why we put this code block before the next check.)
newTouchedWindow = mTempTouchState.getFirstForegroundWindow();
}
int32_t targetFlags = InputTarget::FLAG_FOREGROUND;
if (isSplit) {
targetFlags |= InputTarget::FLAG_SPLIT;
}
// If we did not find a touched window then fail.
if (! newTouchedWindow) {
if (mFocusedApplication) {
#if DEBUG_FOCUS
LOGD("Waiting because there is no touched window but there is a "
"focused application that may eventually add a new window: %s.",
getApplicationWindowLabelLocked(mFocusedApplication, NULL).string());
#endif
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
mFocusedApplication, NULL, nextWakeupTime);
goto Unresponsive;
}
LOGI("Dropping event because there is no touched window or focused application.");
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
// Update the temporary touch state.
BitSet32 pointerIds;
if (isSplit) {
uint32_t pointerId = entry->pointerIds[pointerIndex];
pointerIds.markBit(pointerId);
}
mTempTouchState.addOrUpdateWindow(newTouchedWindow, targetFlags, pointerIds);
} else {
/* Case 2: Pointer move, up, cancel or non-splittable pointer down. */
// If the pointer is not currently down, then ignore the event.
if (! mTempTouchState.down) {
LOGI("Dropping event because the pointer is not down.");
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
}
// Check permission to inject into all touched foreground windows and ensure there
// is at least one touched foreground window.
{
bool haveForegroundWindow = false;
for (size_t i = 0; i < mTempTouchState.windows.size(); i++) {
const TouchedWindow& touchedWindow = mTempTouchState.windows[i];
if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) {
haveForegroundWindow = true;
if (! checkInjectionPermission(touchedWindow.window, entry->injectionState)) {
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
injectionPermission = INJECTION_PERMISSION_DENIED;
goto Failed;
}
}
}
if (! haveForegroundWindow) {
#if DEBUG_INPUT_DISPATCHER_POLICY
LOGD("Dropping event because there is no touched foreground window to receive it.");
#endif
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
// Permission granted to injection into all touched foreground windows.
injectionPermission = INJECTION_PERMISSION_GRANTED;
}
// Ensure all touched foreground windows are ready for new input.
for (size_t i = 0; i < mTempTouchState.windows.size(); i++) {
const TouchedWindow& touchedWindow = mTempTouchState.windows[i];
if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) {
// If the touched window is paused then keep waiting.
if (touchedWindow.window->paused) {
#if DEBUG_INPUT_DISPATCHER_POLICY
LOGD("Waiting because touched window is paused.");
#endif
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
NULL, touchedWindow.window, nextWakeupTime);
goto Unresponsive;
}
// If the touched window is still working on previous events then keep waiting.
if (! isWindowFinishedWithPreviousInputLocked(touchedWindow.window)) {
#if DEBUG_FOCUS
LOGD("Waiting because touched window still processing previous input.");
#endif
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
NULL, touchedWindow.window, nextWakeupTime);
goto Unresponsive;
}
}
}
// If this is the first pointer going down and the touched window has a wallpaper
// then also add the touched wallpaper windows so they are locked in for the duration
// of the touch gesture.
if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
const InputWindow* foregroundWindow = mTempTouchState.getFirstForegroundWindow();
if (foregroundWindow->hasWallpaper) {
for (size_t i = 0; i < mWindows.size(); i++) {
const InputWindow* window = & mWindows[i];
if (window->layoutParamsType == InputWindow::TYPE_WALLPAPER) {
mTempTouchState.addOrUpdateWindow(window, 0, BitSet32(0));
}
}
}
}
// If a touched window has been obscured at any point during the touch gesture, set
// the appropriate flag so we remember it for the entire gesture.
for (size_t i = 0; i < mTempTouchState.windows.size(); i++) {
TouchedWindow& touchedWindow = mTempTouchState.windows.editItemAt(i);
if ((touchedWindow.targetFlags & InputTarget::FLAG_WINDOW_IS_OBSCURED) == 0) {
if (isWindowObscuredLocked(touchedWindow.window)) {
touchedWindow.targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
}
}
}
// Success! Output targets.
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
for (size_t i = 0; i < mTempTouchState.windows.size(); i++) {
const TouchedWindow& touchedWindow = mTempTouchState.windows.itemAt(i);
addWindowTargetLocked(touchedWindow.window, touchedWindow.targetFlags,
touchedWindow.pointerIds);
}
// Drop the outside touch window since we will not care about them in the next iteration.
mTempTouchState.removeOutsideTouchWindows();
Failed:
// Check injection permission once and for all.
if (injectionPermission == INJECTION_PERMISSION_UNKNOWN) {
if (checkInjectionPermission(NULL, entry->injectionState)) {
injectionPermission = INJECTION_PERMISSION_GRANTED;
} else {
injectionPermission = INJECTION_PERMISSION_DENIED;
}
}
// Update final pieces of touch state if the injector had permission.
if (injectionPermission == INJECTION_PERMISSION_GRANTED) {
if (maskedAction == AMOTION_EVENT_ACTION_UP
|| maskedAction == AMOTION_EVENT_ACTION_CANCEL) {
// All pointers up or canceled.
mTempTouchState.reset();
} else if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
// First pointer went down.
if (mTouchState.down) {
LOGW("Pointer down received while already down.");
}
} else if (maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
// One pointer went up.
if (isSplit) {
int32_t pointerIndex = getMotionEventActionPointerIndex(action);
uint32_t pointerId = entry->pointerIds[pointerIndex];
for (size_t i = 0; i < mTempTouchState.windows.size(); ) {
TouchedWindow& touchedWindow = mTempTouchState.windows.editItemAt(i);
if (touchedWindow.targetFlags & InputTarget::FLAG_SPLIT) {
touchedWindow.pointerIds.clearBit(pointerId);
if (touchedWindow.pointerIds.isEmpty()) {
mTempTouchState.windows.removeAt(i);
continue;
}
}
i += 1;
}
}
}
// Save changes to touch state.
mTouchState.copyFrom(mTempTouchState);
} else {
#if DEBUG_FOCUS
LOGD("Not updating touch focus because injection was denied.");
#endif
}
Unresponsive:
nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime);
updateDispatchStatisticsLocked(currentTime, entry,
injectionResult, timeSpentWaitingForApplication);
#if DEBUG_FOCUS
LOGD("findTouchedWindow finished: injectionResult=%d, injectionPermission=%d, "
"timeSpentWaitingForApplication=%0.1fms",
injectionResult, injectionPermission, timeSpentWaitingForApplication / 1000000.0);
#endif
return injectionResult;
}
void InputDispatcher::addWindowTargetLocked(const InputWindow* window, int32_t targetFlags,
BitSet32 pointerIds) {
mCurrentInputTargets.push();
InputTarget& target = mCurrentInputTargets.editTop();
target.inputChannel = window->inputChannel;
target.flags = targetFlags;
target.xOffset = - window->frameLeft;
target.yOffset = - window->frameTop;
target.windowType = window->layoutParamsType;
target.pointerIds = pointerIds;
}
void InputDispatcher::addMonitoringTargetsLocked() {
for (size_t i = 0; i < mMonitoringChannels.size(); i++) {
mCurrentInputTargets.push();
InputTarget& target = mCurrentInputTargets.editTop();
target.inputChannel = mMonitoringChannels[i];
target.flags = 0;
target.xOffset = 0;
target.yOffset = 0;
target.windowType = InputWindow::TYPE_SYSTEM_OVERLAY;
}
}
bool InputDispatcher::checkInjectionPermission(const InputWindow* window,
const InjectionState* injectionState) {
if (injectionState
&& injectionState->injectorUid > 0
&& (window == NULL || window->ownerUid != injectionState->injectorUid)) {
bool result = mPolicy->checkInjectEventsPermissionNonReentrant(
injectionState->injectorPid, injectionState->injectorUid);
if (! result) {
if (window) {
LOGW("Permission denied: injecting event from pid %d uid %d to window "
"with input channel %s owned by uid %d",
injectionState->injectorPid, injectionState->injectorUid,
window->inputChannel->getName().string(),
window->ownerUid);
} else {
LOGW("Permission denied: injecting event from pid %d uid %d",
injectionState->injectorPid, injectionState->injectorUid);
}
return false;
}
}
return true;
}
bool InputDispatcher::isWindowObscuredLocked(const InputWindow* window) {
size_t numWindows = mWindows.size();
for (size_t i = 0; i < numWindows; i++) {
const InputWindow* other = & mWindows.itemAt(i);
if (other == window) {
break;
}
if (other->visible && window->visibleFrameIntersects(other)) {
return true;
}
}
return false;
}
bool InputDispatcher::isWindowFinishedWithPreviousInputLocked(const InputWindow* window) {
ssize_t connectionIndex = getConnectionIndexLocked(window->inputChannel);
if (connectionIndex >= 0) {
sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
return connection->outboundQueue.isEmpty();
} else {
return true;
}
}
String8 InputDispatcher::getApplicationWindowLabelLocked(const InputApplication* application,
const InputWindow* window) {
if (application) {
if (window) {
String8 label(application->name);
label.append(" - ");
label.append(window->name);
return label;
} else {
return application->name;
}
} else if (window) {
return window->name;
} else {
return String8("<unknown application or window>");
}
}
bool InputDispatcher::shouldPokeUserActivityForCurrentInputTargetsLocked() {
for (size_t i = 0; i < mCurrentInputTargets.size(); i++) {
if (mCurrentInputTargets[i].windowType == InputWindow::TYPE_KEYGUARD) {
return false;
}
}
return true;
}
void InputDispatcher::pokeUserActivityLocked(nsecs_t eventTime, int32_t eventType) {
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doPokeUserActivityLockedInterruptible);
commandEntry->eventTime = eventTime;
commandEntry->userActivityEventType = eventType;
}
void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget,
bool resumeWithAppendedMotionSample) {
#if DEBUG_DISPATCH_CYCLE
LOGD("channel '%s' ~ prepareDispatchCycle - flags=%d, "
"xOffset=%f, yOffset=%f, "
"windowType=%d, pointerIds=0x%x, "
"resumeWithAppendedMotionSample=%s",
connection->getInputChannelName(), inputTarget->flags,
inputTarget->xOffset, inputTarget->yOffset,
inputTarget->windowType, inputTarget->pointerIds.value,
toString(resumeWithAppendedMotionSample));
#endif
// Make sure we are never called for streaming when splitting across multiple windows.
bool isSplit = inputTarget->flags & InputTarget::FLAG_SPLIT;
assert(! (resumeWithAppendedMotionSample && isSplit));
// Skip this event if the connection status is not normal.
// We don't want to enqueue additional outbound events if the connection is broken.
if (connection->status != Connection::STATUS_NORMAL) {
LOGW("channel '%s' ~ Dropping event because the channel status is %s",
connection->getInputChannelName(), connection->getStatusLabel());
return;
}
// Split a motion event if needed.
if (isSplit) {
assert(eventEntry->type == EventEntry::TYPE_MOTION);
MotionEntry* originalMotionEntry = static_cast<MotionEntry*>(eventEntry);
if (inputTarget->pointerIds.count() != originalMotionEntry->pointerCount) {
MotionEntry* splitMotionEntry = splitMotionEvent(
originalMotionEntry, inputTarget->pointerIds);
#if DEBUG_FOCUS
LOGD("channel '%s' ~ Split motion event.",
connection->getInputChannelName());
logOutboundMotionDetailsLocked(" ", splitMotionEntry);
#endif
eventEntry = splitMotionEntry;
}
}
// Resume the dispatch cycle with a freshly appended motion sample.
// First we check that the last dispatch entry in the outbound queue is for the same
// motion event to which we appended the motion sample. If we find such a dispatch
// entry, and if it is currently in progress then we try to stream the new sample.
bool wasEmpty = connection->outboundQueue.isEmpty();
if (! wasEmpty && resumeWithAppendedMotionSample) {
DispatchEntry* motionEventDispatchEntry =
connection->findQueuedDispatchEntryForEvent(eventEntry);
if (motionEventDispatchEntry) {
// If the dispatch entry is not in progress, then we must be busy dispatching an
// earlier event. Not a problem, the motion event is on the outbound queue and will
// be dispatched later.
if (! motionEventDispatchEntry->inProgress) {
#if DEBUG_BATCHING
LOGD("channel '%s' ~ Not streaming because the motion event has "
"not yet been dispatched. "
"(Waiting for earlier events to be consumed.)",
connection->getInputChannelName());
#endif
return;
}
// If the dispatch entry is in progress but it already has a tail of pending
// motion samples, then it must mean that the shared memory buffer filled up.
// Not a problem, when this dispatch cycle is finished, we will eventually start
// a new dispatch cycle to process the tail and that tail includes the newly
// appended motion sample.
if (motionEventDispatchEntry->tailMotionSample) {
#if DEBUG_BATCHING
LOGD("channel '%s' ~ Not streaming because no new samples can "
"be appended to the motion event in this dispatch cycle. "
"(Waiting for next dispatch cycle to start.)",
connection->getInputChannelName());
#endif
return;
}
// The dispatch entry is in progress and is still potentially open for streaming.
// Try to stream the new motion sample. This might fail if the consumer has already
// consumed the motion event (or if the channel is broken).
MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry);
MotionSample* appendedMotionSample = motionEntry->lastSample;
status_t status = connection->inputPublisher.appendMotionSample(
appendedMotionSample->eventTime, appendedMotionSample->pointerCoords);
if (status == OK) {
#if DEBUG_BATCHING
LOGD("channel '%s' ~ Successfully streamed new motion sample.",
connection->getInputChannelName());
#endif
return;
}
#if DEBUG_BATCHING
if (status == NO_MEMORY) {
LOGD("channel '%s' ~ Could not append motion sample to currently "
"dispatched move event because the shared memory buffer is full. "
"(Waiting for next dispatch cycle to start.)",
connection->getInputChannelName());
} else if (status == status_t(FAILED_TRANSACTION)) {
LOGD("channel '%s' ~ Could not append motion sample to currently "
"dispatched move event because the event has already been consumed. "
"(Waiting for next dispatch cycle to start.)",
connection->getInputChannelName());
} else {
LOGD("channel '%s' ~ Could not append motion sample to currently "
"dispatched move event due to an error, status=%d. "
"(Waiting for next dispatch cycle to start.)",
connection->getInputChannelName(), status);
}
#endif
// Failed to stream. Start a new tail of pending motion samples to dispatch
// in the next cycle.
motionEventDispatchEntry->tailMotionSample = appendedMotionSample;
return;
}
}
// Bring the input state back in line with reality in case it drifted off during an ANR.
if (connection->inputState.isOutOfSync()) {
mTempCancelationEvents.clear();
connection->inputState.synthesizeCancelationEvents(& mAllocator, mTempCancelationEvents);
connection->inputState.resetOutOfSync();
if (! mTempCancelationEvents.isEmpty()) {
LOGI("channel '%s' ~ Generated %d cancelation events to bring channel back in sync "
"with reality.",
connection->getInputChannelName(), mTempCancelationEvents.size());
for (size_t i = 0; i < mTempCancelationEvents.size(); i++) {
EventEntry* cancelationEventEntry = mTempCancelationEvents.itemAt(i);
switch (cancelationEventEntry->type) {
case EventEntry::TYPE_KEY:
logOutboundKeyDetailsLocked(" ",
static_cast<KeyEntry*>(cancelationEventEntry));
break;
case EventEntry::TYPE_MOTION:
logOutboundMotionDetailsLocked(" ",
static_cast<MotionEntry*>(cancelationEventEntry));
break;
}
DispatchEntry* cancelationDispatchEntry =
mAllocator.obtainDispatchEntry(cancelationEventEntry,
0, inputTarget->xOffset, inputTarget->yOffset); // increments ref
connection->outboundQueue.enqueueAtTail(cancelationDispatchEntry);
mAllocator.releaseEventEntry(cancelationEventEntry);
}
}
}
// This is a new event.
// Enqueue a new dispatch entry onto the outbound queue for this connection.
DispatchEntry* dispatchEntry = mAllocator.obtainDispatchEntry(eventEntry, // increments ref
inputTarget->flags, inputTarget->xOffset, inputTarget->yOffset);
if (dispatchEntry->hasForegroundTarget()) {
incrementPendingForegroundDispatchesLocked(eventEntry);
}
// Handle the case where we could not stream a new motion sample because the consumer has
// already consumed the motion event (otherwise the corresponding dispatch entry would
// still be in the outbound queue for this connection). We set the head motion sample
// to the list starting with the newly appended motion sample.
if (resumeWithAppendedMotionSample) {
#if DEBUG_BATCHING
LOGD("channel '%s' ~ Preparing a new dispatch cycle for additional motion samples "
"that cannot be streamed because the motion event has already been consumed.",
connection->getInputChannelName());
#endif
MotionSample* appendedMotionSample = static_cast<MotionEntry*>(eventEntry)->lastSample;
dispatchEntry->headMotionSample = appendedMotionSample;
}
// Enqueue the dispatch entry.
connection->outboundQueue.enqueueAtTail(dispatchEntry);
// If the outbound queue was previously empty, start the dispatch cycle going.
if (wasEmpty) {
activateConnectionLocked(connection.get());
startDispatchCycleLocked(currentTime, connection);
}
}
void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection) {
#if DEBUG_DISPATCH_CYCLE
LOGD("channel '%s' ~ startDispatchCycle",
connection->getInputChannelName());
#endif
assert(connection->status == Connection::STATUS_NORMAL);
assert(! connection->outboundQueue.isEmpty());
DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next;
assert(! dispatchEntry->inProgress);
// Mark the dispatch entry as in progress.
dispatchEntry->inProgress = true;
// Update the connection's input state.
EventEntry* eventEntry = dispatchEntry->eventEntry;
InputState::Consistency consistency = connection->inputState.trackEvent(eventEntry);
#if FILTER_INPUT_EVENTS
// Filter out inconsistent sequences of input events.
// The input system may drop or inject events in a way that could violate implicit
// invariants on input state and potentially cause an application to crash
// or think that a key or pointer is stuck down. Technically we make no guarantees
// of consistency but it would be nice to improve on this where possible.
// XXX: This code is a proof of concept only. Not ready for prime time.
if (consistency == InputState::TOLERABLE) {
#if DEBUG_DISPATCH_CYCLE
LOGD("channel '%s' ~ Sending an event that is inconsistent with the connection's "
"current input state but that is likely to be tolerated by the application.",
connection->getInputChannelName());
#endif
} else if (consistency == InputState::BROKEN) {
LOGI("channel '%s' ~ Dropping an event that is inconsistent with the connection's "
"current input state and that is likely to cause the application to crash.",
connection->getInputChannelName());
startNextDispatchCycleLocked(currentTime, connection);
return;
}
#endif
// Publish the event.
status_t status;
switch (eventEntry->type) {
case EventEntry::TYPE_KEY: {
KeyEntry* keyEntry = static_cast<KeyEntry*>(eventEntry);
// Apply target flags.
int32_t action = keyEntry->action;
int32_t flags = keyEntry->flags;
// Publish the key event.
status = connection->inputPublisher.publishKeyEvent(keyEntry->deviceId, keyEntry->source,
action, flags, keyEntry->keyCode, keyEntry->scanCode,
keyEntry->metaState, keyEntry->repeatCount, keyEntry->downTime,
keyEntry->eventTime);
if (status) {
LOGE("channel '%s' ~ Could not publish key event, "
"status=%d", connection->getInputChannelName(), status);
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
return;
}
break;
}
case EventEntry::TYPE_MOTION: {
MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry);
// Apply target flags.
int32_t action = motionEntry->action;
int32_t flags = motionEntry->flags;
if (dispatchEntry->targetFlags & InputTarget::FLAG_OUTSIDE) {
action = AMOTION_EVENT_ACTION_OUTSIDE;
}
if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_OBSCURED) {
flags |= AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED;
}
// If headMotionSample is non-NULL, then it points to the first new sample that we
// were unable to dispatch during the previous cycle so we resume dispatching from
// that point in the list of motion samples.
// Otherwise, we just start from the first sample of the motion event.
MotionSample* firstMotionSample = dispatchEntry->headMotionSample;
if (! firstMotionSample) {
firstMotionSample = & motionEntry->firstSample;
}
// Set the X and Y offset depending on the input source.
float xOffset, yOffset;
if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) {
xOffset = dispatchEntry->xOffset;
yOffset = dispatchEntry->yOffset;
} else {
xOffset = 0.0f;
yOffset = 0.0f;
}
// Publish the motion event and the first motion sample.
status = connection->inputPublisher.publishMotionEvent(motionEntry->deviceId,
motionEntry->source, action, flags, motionEntry->edgeFlags, motionEntry->metaState,
xOffset, yOffset,
motionEntry->xPrecision, motionEntry->yPrecision,
motionEntry->downTime, firstMotionSample->eventTime,
motionEntry->pointerCount, motionEntry->pointerIds,
firstMotionSample->pointerCoords);
if (status) {
LOGE("channel '%s' ~ Could not publish motion event, "
"status=%d", connection->getInputChannelName(), status);
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
return;
}
// Append additional motion samples.
MotionSample* nextMotionSample = firstMotionSample->next;
for (; nextMotionSample != NULL; nextMotionSample = nextMotionSample->next) {
status = connection->inputPublisher.appendMotionSample(
nextMotionSample->eventTime, nextMotionSample->pointerCoords);
if (status == NO_MEMORY) {
#if DEBUG_DISPATCH_CYCLE
LOGD("channel '%s' ~ Shared memory buffer full. Some motion samples will "
"be sent in the next dispatch cycle.",
connection->getInputChannelName());
#endif
break;
}
if (status != OK) {
LOGE("channel '%s' ~ Could not append motion sample "
"for a reason other than out of memory, status=%d",
connection->getInputChannelName(), status);
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
return;
}
}
// Remember the next motion sample that we could not dispatch, in case we ran out
// of space in the shared memory buffer.
dispatchEntry->tailMotionSample = nextMotionSample;
break;
}
default: {
assert(false);
}
}
// Send the dispatch signal.
status = connection->inputPublisher.sendDispatchSignal();
if (status) {
LOGE("channel '%s' ~ Could not send dispatch signal, status=%d",
connection->getInputChannelName(), status);
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
return;
}
// Record information about the newly started dispatch cycle.
connection->lastEventTime = eventEntry->eventTime;
connection->lastDispatchTime = currentTime;
// Notify other system components.
onDispatchCycleStartedLocked(currentTime, connection);
}
void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection) {
#if DEBUG_DISPATCH_CYCLE
LOGD("channel '%s' ~ finishDispatchCycle - %01.1fms since event, "
"%01.1fms since dispatch",
connection->getInputChannelName(),
connection->getEventLatencyMillis(currentTime),
connection->getDispatchLatencyMillis(currentTime));
#endif
if (connection->status == Connection::STATUS_BROKEN
|| connection->status == Connection::STATUS_ZOMBIE) {
return;
}
// Notify other system components.
onDispatchCycleFinishedLocked(currentTime, connection);
// Reset the publisher since the event has been consumed.
// We do this now so that the publisher can release some of its internal resources
// while waiting for the next dispatch cycle to begin.
status_t status = connection->inputPublisher.reset();
if (status) {
LOGE("channel '%s' ~ Could not reset publisher, status=%d",
connection->getInputChannelName(), status);
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
return;
}
startNextDispatchCycleLocked(currentTime, connection);
}
void InputDispatcher::startNextDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection) {
// Start the next dispatch cycle for this connection.
while (! connection->outboundQueue.isEmpty()) {
DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next;
if (dispatchEntry->inProgress) {
// Finish or resume current event in progress.
if (dispatchEntry->tailMotionSample) {
// We have a tail of undispatched motion samples.
// Reuse the same DispatchEntry and start a new cycle.
dispatchEntry->inProgress = false;
dispatchEntry->headMotionSample = dispatchEntry->tailMotionSample;
dispatchEntry->tailMotionSample = NULL;
startDispatchCycleLocked(currentTime, connection);
return;
}
// Finished.
connection->outboundQueue.dequeueAtHead();
if (dispatchEntry->hasForegroundTarget()) {
decrementPendingForegroundDispatchesLocked(dispatchEntry->eventEntry);
}
mAllocator.releaseDispatchEntry(dispatchEntry);
} else {
// If the head is not in progress, then we must have already dequeued the in
// progress event, which means we actually aborted it.
// So just start the next event for this connection.
startDispatchCycleLocked(currentTime, connection);
return;
}
}
// Outbound queue is empty, deactivate the connection.
deactivateConnectionLocked(connection.get());
}
void InputDispatcher::abortDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, bool broken) {
#if DEBUG_DISPATCH_CYCLE
LOGD("channel '%s' ~ abortDispatchCycle - broken=%s",
connection->getInputChannelName(), toString(broken));
#endif
// Input state will no longer be realistic.
connection->inputState.setOutOfSync();
// Clear the outbound queue.
drainOutboundQueueLocked(connection.get());
// Handle the case where the connection appears to be unrecoverably broken.
// Ignore already broken or zombie connections.
if (broken) {
if (connection->status == Connection::STATUS_NORMAL) {
connection->status = Connection::STATUS_BROKEN;
// Notify other system components.
onDispatchCycleBrokenLocked(currentTime, connection);
}
}
}
void InputDispatcher::drainOutboundQueueLocked(Connection* connection) {
while (! connection->outboundQueue.isEmpty()) {
DispatchEntry* dispatchEntry = connection->outboundQueue.dequeueAtHead();
if (dispatchEntry->hasForegroundTarget()) {
decrementPendingForegroundDispatchesLocked(dispatchEntry->eventEntry);
}
mAllocator.releaseDispatchEntry(dispatchEntry);
}
deactivateConnectionLocked(connection);
}
int InputDispatcher::handleReceiveCallback(int receiveFd, int events, void* data) {
InputDispatcher* d = static_cast<InputDispatcher*>(data);
{ // acquire lock
AutoMutex _l(d->mLock);
ssize_t connectionIndex = d->mConnectionsByReceiveFd.indexOfKey(receiveFd);
if (connectionIndex < 0) {
LOGE("Received spurious receive callback for unknown input channel. "
"fd=%d, events=0x%x", receiveFd, events);
return 0; // remove the callback
}
nsecs_t currentTime = now();
sp<Connection> connection = d->mConnectionsByReceiveFd.valueAt(connectionIndex);
if (events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP)) {
LOGE("channel '%s' ~ Consumer closed input channel or an error occurred. "
"events=0x%x", connection->getInputChannelName(), events);
d->abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
d->runCommandsLockedInterruptible();
return 0; // remove the callback
}
if (! (events & ALOOPER_EVENT_INPUT)) {
LOGW("channel '%s' ~ Received spurious callback for unhandled poll event. "
"events=0x%x", connection->getInputChannelName(), events);
return 1;
}
status_t status = connection->inputPublisher.receiveFinishedSignal();
if (status) {
LOGE("channel '%s' ~ Failed to receive finished signal. status=%d",
connection->getInputChannelName(), status);
d->abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
d->runCommandsLockedInterruptible();
return 0; // remove the callback
}
d->finishDispatchCycleLocked(currentTime, connection);
d->runCommandsLockedInterruptible();
return 1;
} // release lock
}
InputDispatcher::MotionEntry*
InputDispatcher::splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds) {
assert(pointerIds.value != 0);
uint32_t splitPointerIndexMap[MAX_POINTERS];
int32_t splitPointerIds[MAX_POINTERS];
PointerCoords splitPointerCoords[MAX_POINTERS];
uint32_t originalPointerCount = originalMotionEntry->pointerCount;
uint32_t splitPointerCount = 0;
for (uint32_t originalPointerIndex = 0; originalPointerIndex < originalPointerCount;
originalPointerIndex++) {
int32_t pointerId = uint32_t(originalMotionEntry->pointerIds[originalPointerIndex]);
if (pointerIds.hasBit(pointerId)) {
splitPointerIndexMap[splitPointerCount] = originalPointerIndex;
splitPointerIds[splitPointerCount] = pointerId;
splitPointerCoords[splitPointerCount] =
originalMotionEntry->firstSample.pointerCoords[originalPointerIndex];
splitPointerCount += 1;
}
}
assert(splitPointerCount == pointerIds.count());
int32_t action = originalMotionEntry->action;
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
if (maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN
|| maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
int32_t originalPointerIndex = getMotionEventActionPointerIndex(action);
int32_t pointerId = originalMotionEntry->pointerIds[originalPointerIndex];
if (pointerIds.hasBit(pointerId)) {
if (pointerIds.count() == 1) {
// The first/last pointer went down/up.
action = maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN
? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP;
} else {
// A secondary pointer went down/up.
uint32_t splitPointerIndex = 0;
while (pointerId != splitPointerIds[splitPointerIndex]) {
splitPointerIndex += 1;
}
action = maskedAction | (splitPointerIndex
<< AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
}
} else {
// An unrelated pointer changed.
action = AMOTION_EVENT_ACTION_MOVE;
}
}
MotionEntry* splitMotionEntry = mAllocator.obtainMotionEntry(
originalMotionEntry->eventTime,
originalMotionEntry->deviceId,
originalMotionEntry->source,
originalMotionEntry->policyFlags,
action,
originalMotionEntry->flags,
originalMotionEntry->metaState,
originalMotionEntry->edgeFlags,
originalMotionEntry->xPrecision,
originalMotionEntry->yPrecision,
originalMotionEntry->downTime,
splitPointerCount, splitPointerIds, splitPointerCoords);
for (MotionSample* originalMotionSample = originalMotionEntry->firstSample.next;
originalMotionSample != NULL; originalMotionSample = originalMotionSample->next) {
for (uint32_t splitPointerIndex = 0; splitPointerIndex < splitPointerCount;
splitPointerIndex++) {
uint32_t originalPointerIndex = splitPointerIndexMap[splitPointerIndex];
splitPointerCoords[splitPointerIndex] =
originalMotionSample->pointerCoords[originalPointerIndex];
}
mAllocator.appendMotionSample(splitMotionEntry, originalMotionSample->eventTime,
splitPointerCoords);
}
return splitMotionEntry;
}
void InputDispatcher::notifyConfigurationChanged(nsecs_t eventTime) {
#if DEBUG_INBOUND_EVENT_DETAILS
LOGD("notifyConfigurationChanged - eventTime=%lld", eventTime);
#endif
bool needWake;
{ // acquire lock
AutoMutex _l(mLock);
ConfigurationChangedEntry* newEntry = mAllocator.obtainConfigurationChangedEntry(eventTime);
needWake = enqueueInboundEventLocked(newEntry);
} // release lock
if (needWake) {
mLooper->wake();
}
}
void InputDispatcher::notifyKey(nsecs_t eventTime, int32_t deviceId, int32_t source,
uint32_t policyFlags, int32_t action, int32_t flags,
int32_t keyCode, int32_t scanCode, int32_t metaState, nsecs_t downTime) {
#if DEBUG_INBOUND_EVENT_DETAILS
LOGD("notifyKey - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, action=0x%x, "
"flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%lld",
eventTime, deviceId, source, policyFlags, action, flags,
keyCode, scanCode, metaState, downTime);
#endif
if (! validateKeyEvent(action)) {
return;
}
bool needWake;
{ // acquire lock
AutoMutex _l(mLock);
int32_t repeatCount = 0;
KeyEntry* newEntry = mAllocator.obtainKeyEntry(eventTime,
deviceId, source, policyFlags, action, flags, keyCode, scanCode,
metaState, repeatCount, downTime);
needWake = enqueueInboundEventLocked(newEntry);
} // release lock
if (needWake) {
mLooper->wake();
}
}
void InputDispatcher::notifyMotion(nsecs_t eventTime, int32_t deviceId, int32_t source,
uint32_t policyFlags, int32_t action, int32_t flags, int32_t metaState, int32_t edgeFlags,
uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
float xPrecision, float yPrecision, nsecs_t downTime) {
#if DEBUG_INBOUND_EVENT_DETAILS
LOGD("notifyMotion - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, "
"action=0x%x, flags=0x%x, metaState=0x%x, edgeFlags=0x%x, "
"xPrecision=%f, yPrecision=%f, downTime=%lld",
eventTime, deviceId, source, policyFlags, action, flags, metaState, edgeFlags,
xPrecision, yPrecision, downTime);
for (uint32_t i = 0; i < pointerCount; i++) {
LOGD(" Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, "
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
"orientation=%f",
i, pointerIds[i], pointerCoords[i].x, pointerCoords[i].y,
pointerCoords[i].pressure, pointerCoords[i].size,
pointerCoords[i].touchMajor, pointerCoords[i].touchMinor,
pointerCoords[i].toolMajor, pointerCoords[i].toolMinor,
pointerCoords[i].orientation);
}
#endif
if (! validateMotionEvent(action, pointerCount, pointerIds)) {
return;
}
bool needWake;
{ // acquire lock
AutoMutex _l(mLock);
// Attempt batching and streaming of move events.
if (action == AMOTION_EVENT_ACTION_MOVE) {
// BATCHING CASE
//
// Try to append a move sample to the tail of the inbound queue for this device.
// Give up if we encounter a non-move motion event for this device since that
// means we cannot append any new samples until a new motion event has started.
for (EventEntry* entry = mInboundQueue.tailSentinel.prev;
entry != & mInboundQueue.headSentinel; entry = entry->prev) {
if (entry->type != EventEntry::TYPE_MOTION) {
// Keep looking for motion events.
continue;
}
MotionEntry* motionEntry = static_cast<MotionEntry*>(entry);
if (motionEntry->deviceId != deviceId) {
// Keep looking for this device.
continue;
}
if (motionEntry->action != AMOTION_EVENT_ACTION_MOVE
|| motionEntry->pointerCount != pointerCount
|| motionEntry->isInjected()) {
// Last motion event in the queue for this device is not compatible for
// appending new samples. Stop here.
goto NoBatchingOrStreaming;
}
// The last motion event is a move and is compatible for appending.
// Do the batching magic.
mAllocator.appendMotionSample(motionEntry, eventTime, pointerCoords);
#if DEBUG_BATCHING
LOGD("Appended motion sample onto batch for most recent "
"motion event for this device in the inbound queue.");
#endif
return; // done!
}
// STREAMING CASE
//
// There is no pending motion event (of any kind) for this device in the inbound queue.
// Search the outbound queue for the current foreground targets to find a dispatched
// motion event that is still in progress. If found, then, appen the new sample to
// that event and push it out to all current targets. The logic in
// prepareDispatchCycleLocked takes care of the case where some targets may
// already have consumed the motion event by starting a new dispatch cycle if needed.
if (mCurrentInputTargetsValid) {
for (size_t i = 0; i < mCurrentInputTargets.size(); i++) {
const InputTarget& inputTarget = mCurrentInputTargets[i];
if ((inputTarget.flags & InputTarget::FLAG_FOREGROUND) == 0) {
// Skip non-foreground targets. We only want to stream if there is at
// least one foreground target whose dispatch is still in progress.
continue;
}
ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel);
if (connectionIndex < 0) {
// Connection must no longer be valid.
continue;
}
sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
if (connection->outboundQueue.isEmpty()) {
// This foreground target has an empty outbound queue.
continue;
}
DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next;
if (! dispatchEntry->inProgress
|| dispatchEntry->eventEntry->type != EventEntry::TYPE_MOTION
|| dispatchEntry->isSplit()) {
// No motion event is being dispatched, or it is being split across
// windows in which case we cannot stream.
continue;
}
MotionEntry* motionEntry = static_cast<MotionEntry*>(
dispatchEntry->eventEntry);
if (motionEntry->action != AMOTION_EVENT_ACTION_MOVE
|| motionEntry->deviceId != deviceId
|| motionEntry->pointerCount != pointerCount
|| motionEntry->isInjected()) {
// The motion event is not compatible with this move.
continue;
}
// Hurray! This foreground target is currently dispatching a move event
// that we can stream onto. Append the motion sample and resume dispatch.
mAllocator.appendMotionSample(motionEntry, eventTime, pointerCoords);
#if DEBUG_BATCHING
LOGD("Appended motion sample onto batch for most recently dispatched "
"motion event for this device in the outbound queues. "
"Attempting to stream the motion sample.");
#endif
nsecs_t currentTime = now();
dispatchEventToCurrentInputTargetsLocked(currentTime, motionEntry,
true /*resumeWithAppendedMotionSample*/);
runCommandsLockedInterruptible();
return; // done!
}
}
NoBatchingOrStreaming:;
}
// Just enqueue a new motion event.
MotionEntry* newEntry = mAllocator.obtainMotionEntry(eventTime,
deviceId, source, policyFlags, action, flags, metaState, edgeFlags,
xPrecision, yPrecision, downTime,
pointerCount, pointerIds, pointerCoords);
needWake = enqueueInboundEventLocked(newEntry);
} // release lock
if (needWake) {
mLooper->wake();
}
}
int32_t InputDispatcher::injectInputEvent(const InputEvent* event,
int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis) {
#if DEBUG_INBOUND_EVENT_DETAILS
LOGD("injectInputEvent - eventType=%d, injectorPid=%d, injectorUid=%d, "
"syncMode=%d, timeoutMillis=%d",
event->getType(), injectorPid, injectorUid, syncMode, timeoutMillis);
#endif
nsecs_t endTime = now() + milliseconds_to_nanoseconds(timeoutMillis);
InjectionState* injectionState;
bool needWake;
{ // acquire lock
AutoMutex _l(mLock);
EventEntry* injectedEntry = createEntryFromInjectedInputEventLocked(event);
if (! injectedEntry) {
return INPUT_EVENT_INJECTION_FAILED;
}
injectionState = mAllocator.obtainInjectionState(injectorPid, injectorUid);
if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) {
injectionState->injectionIsAsync = true;
}
injectionState->refCount += 1;
injectedEntry->injectionState = injectionState;
needWake = enqueueInboundEventLocked(injectedEntry);
} // release lock
if (needWake) {
mLooper->wake();
}
int32_t injectionResult;
{ // acquire lock
AutoMutex _l(mLock);
if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) {
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
} else {
for (;;) {
injectionResult = injectionState->injectionResult;
if (injectionResult != INPUT_EVENT_INJECTION_PENDING) {
break;
}
nsecs_t remainingTimeout = endTime - now();
if (remainingTimeout <= 0) {
#if DEBUG_INJECTION
LOGD("injectInputEvent - Timed out waiting for injection result "
"to become available.");
#endif
injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT;
break;
}
mInjectionResultAvailableCondition.waitRelative(mLock, remainingTimeout);
}
if (injectionResult == INPUT_EVENT_INJECTION_SUCCEEDED
&& syncMode == INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED) {
while (injectionState->pendingForegroundDispatches != 0) {
#if DEBUG_INJECTION
LOGD("injectInputEvent - Waiting for %d pending foreground dispatches.",
injectionState->pendingForegroundDispatches);
#endif
nsecs_t remainingTimeout = endTime - now();
if (remainingTimeout <= 0) {
#if DEBUG_INJECTION
LOGD("injectInputEvent - Timed out waiting for pending foreground "
"dispatches to finish.");
#endif
injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT;
break;
}
mInjectionSyncFinishedCondition.waitRelative(mLock, remainingTimeout);
}
}
}
mAllocator.releaseInjectionState(injectionState);
} // release lock
#if DEBUG_INJECTION
LOGD("injectInputEvent - Finished with result %d. "
"injectorPid=%d, injectorUid=%d",
injectionResult, injectorPid, injectorUid);
#endif
return injectionResult;
}
void InputDispatcher::setInjectionResultLocked(EventEntry* entry, int32_t injectionResult) {
InjectionState* injectionState = entry->injectionState;
if (injectionState) {
#if DEBUG_INJECTION
LOGD("Setting input event injection result to %d. "
"injectorPid=%d, injectorUid=%d",
injectionResult, injectionState->injectorPid, injectionState->injectorUid);
#endif
if (injectionState->injectionIsAsync) {
// Log the outcome since the injector did not wait for the injection result.
switch (injectionResult) {
case INPUT_EVENT_INJECTION_SUCCEEDED:
LOGV("Asynchronous input event injection succeeded.");
break;
case INPUT_EVENT_INJECTION_FAILED:
LOGW("Asynchronous input event injection failed.");
break;
case INPUT_EVENT_INJECTION_PERMISSION_DENIED:
LOGW("Asynchronous input event injection permission denied.");
break;
case INPUT_EVENT_INJECTION_TIMED_OUT:
LOGW("Asynchronous input event injection timed out.");
break;
}
}
injectionState->injectionResult = injectionResult;
mInjectionResultAvailableCondition.broadcast();
}
}
void InputDispatcher::incrementPendingForegroundDispatchesLocked(EventEntry* entry) {
InjectionState* injectionState = entry->injectionState;
if (injectionState) {
injectionState->pendingForegroundDispatches += 1;
}
}
void InputDispatcher::decrementPendingForegroundDispatchesLocked(EventEntry* entry) {
InjectionState* injectionState = entry->injectionState;
if (injectionState) {
injectionState->pendingForegroundDispatches -= 1;
if (injectionState->pendingForegroundDispatches == 0) {
mInjectionSyncFinishedCondition.broadcast();
}
}
}
InputDispatcher::EventEntry* InputDispatcher::createEntryFromInjectedInputEventLocked(
const InputEvent* event) {
switch (event->getType()) {
case AINPUT_EVENT_TYPE_KEY: {
const KeyEvent* keyEvent = static_cast<const KeyEvent*>(event);
if (! validateKeyEvent(keyEvent->getAction())) {
return NULL;
}
uint32_t policyFlags = POLICY_FLAG_INJECTED;
KeyEntry* keyEntry = mAllocator.obtainKeyEntry(keyEvent->getEventTime(),
keyEvent->getDeviceId(), keyEvent->getSource(), policyFlags,
keyEvent->getAction(), keyEvent->getFlags(),
keyEvent->getKeyCode(), keyEvent->getScanCode(), keyEvent->getMetaState(),
keyEvent->getRepeatCount(), keyEvent->getDownTime());
return keyEntry;
}
case AINPUT_EVENT_TYPE_MOTION: {
const MotionEvent* motionEvent = static_cast<const MotionEvent*>(event);
if (! validateMotionEvent(motionEvent->getAction(),
motionEvent->getPointerCount(), motionEvent->getPointerIds())) {
return NULL;
}
uint32_t policyFlags = POLICY_FLAG_INJECTED;
const nsecs_t* sampleEventTimes = motionEvent->getSampleEventTimes();
const PointerCoords* samplePointerCoords = motionEvent->getSamplePointerCoords();
size_t pointerCount = motionEvent->getPointerCount();
MotionEntry* motionEntry = mAllocator.obtainMotionEntry(*sampleEventTimes,
motionEvent->getDeviceId(), motionEvent->getSource(), policyFlags,
motionEvent->getAction(), motionEvent->getFlags(),
motionEvent->getMetaState(), motionEvent->getEdgeFlags(),
motionEvent->getXPrecision(), motionEvent->getYPrecision(),
motionEvent->getDownTime(), uint32_t(pointerCount),
motionEvent->getPointerIds(), samplePointerCoords);
for (size_t i = motionEvent->getHistorySize(); i > 0; i--) {
sampleEventTimes += 1;
samplePointerCoords += pointerCount;
mAllocator.appendMotionSample(motionEntry, *sampleEventTimes, samplePointerCoords);
}
return motionEntry;
}
default:
assert(false);
return NULL;
}
}
const InputWindow* InputDispatcher::getWindowLocked(const sp<InputChannel>& inputChannel) {
for (size_t i = 0; i < mWindows.size(); i++) {
const InputWindow* window = & mWindows[i];
if (window->inputChannel == inputChannel) {
return window;
}
}
return NULL;
}
void InputDispatcher::setInputWindows(const Vector<InputWindow>& inputWindows) {
#if DEBUG_FOCUS
LOGD("setInputWindows");
#endif
{ // acquire lock
AutoMutex _l(mLock);
// Clear old window pointers.
mFocusedWindow = NULL;
mWindows.clear();
// Loop over new windows and rebuild the necessary window pointers for
// tracking focus and touch.
mWindows.appendVector(inputWindows);
size_t numWindows = mWindows.size();
for (size_t i = 0; i < numWindows; i++) {
const InputWindow* window = & mWindows.itemAt(i);
if (window->hasFocus) {
mFocusedWindow = window;
break;
}
}
for (size_t i = 0; i < mTouchState.windows.size(); ) {
TouchedWindow& touchedWindow = mTouchState.windows.editItemAt(i);
const InputWindow* window = getWindowLocked(touchedWindow.channel);
if (window) {
touchedWindow.window = window;
i += 1;
} else {
mTouchState.windows.removeAt(i);
}
}
#if DEBUG_FOCUS
logDispatchStateLocked();
#endif
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
void InputDispatcher::setFocusedApplication(const InputApplication* inputApplication) {
#if DEBUG_FOCUS
LOGD("setFocusedApplication");
#endif
{ // acquire lock
AutoMutex _l(mLock);
releaseFocusedApplicationLocked();
if (inputApplication) {
mFocusedApplicationStorage = *inputApplication;
mFocusedApplication = & mFocusedApplicationStorage;
}
#if DEBUG_FOCUS
logDispatchStateLocked();
#endif
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
void InputDispatcher::releaseFocusedApplicationLocked() {
if (mFocusedApplication) {
mFocusedApplication = NULL;
mFocusedApplicationStorage.handle.clear();
}
}
void InputDispatcher::setInputDispatchMode(bool enabled, bool frozen) {
#if DEBUG_FOCUS
LOGD("setInputDispatchMode: enabled=%d, frozen=%d", enabled, frozen);
#endif
bool changed;
{ // acquire lock
AutoMutex _l(mLock);
if (mDispatchEnabled != enabled || mDispatchFrozen != frozen) {
if (mDispatchFrozen && ! frozen) {
resetANRTimeoutsLocked();
}
mDispatchEnabled = enabled;
mDispatchFrozen = frozen;
changed = true;
} else {
changed = false;
}
#if DEBUG_FOCUS
logDispatchStateLocked();
#endif
} // release lock
if (changed) {
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
}
void InputDispatcher::logDispatchStateLocked() {
String8 dump;
dumpDispatchStateLocked(dump);
char* text = dump.lockBuffer(dump.size());
char* start = text;
while (*start != '\0') {
char* end = strchr(start, '\n');
if (*end == '\n') {
*(end++) = '\0';
}
LOGD("%s", start);
start = end;
}
}
void InputDispatcher::dumpDispatchStateLocked(String8& dump) {
dump.appendFormat(" dispatchEnabled: %d\n", mDispatchEnabled);
dump.appendFormat(" dispatchFrozen: %d\n", mDispatchFrozen);
if (mFocusedApplication) {
dump.appendFormat(" focusedApplication: name='%s', dispatchingTimeout=%0.3fms\n",
mFocusedApplication->name.string(),
mFocusedApplication->dispatchingTimeout / 1000000.0);
} else {
dump.append(" focusedApplication: <null>\n");
}
dump.appendFormat(" focusedWindow: name='%s'\n",
mFocusedWindow != NULL ? mFocusedWindow->name.string() : "<null>");
dump.appendFormat(" touchState: down=%s, split=%s\n", toString(mTouchState.down),
toString(mTouchState.split));
for (size_t i = 0; i < mTouchState.windows.size(); i++) {
const TouchedWindow& touchedWindow = mTouchState.windows[i];
dump.appendFormat(" touchedWindow[%d]: name='%s', pointerIds=0x%0x, targetFlags=0x%x\n",
i, touchedWindow.window->name.string(), touchedWindow.pointerIds.value,
touchedWindow.targetFlags);
}
for (size_t i = 0; i < mWindows.size(); i++) {
dump.appendFormat(" windows[%d]: name='%s', paused=%s, hasFocus=%s, hasWallpaper=%s, "
"visible=%s, canReceiveKeys=%s, flags=0x%08x, type=0x%08x, layer=%d, "
"frame=[%d,%d][%d,%d], "
"visibleFrame=[%d,%d][%d,%d], "
"touchableArea=[%d,%d][%d,%d], "
"ownerPid=%d, ownerUid=%d, dispatchingTimeout=%0.3fms\n",
i, mWindows[i].name.string(),
toString(mWindows[i].paused),
toString(mWindows[i].hasFocus),
toString(mWindows[i].hasWallpaper),
toString(mWindows[i].visible),
toString(mWindows[i].canReceiveKeys),
mWindows[i].layoutParamsFlags, mWindows[i].layoutParamsType,
mWindows[i].layer,
mWindows[i].frameLeft, mWindows[i].frameTop,
mWindows[i].frameRight, mWindows[i].frameBottom,
mWindows[i].visibleFrameLeft, mWindows[i].visibleFrameTop,
mWindows[i].visibleFrameRight, mWindows[i].visibleFrameBottom,
mWindows[i].touchableAreaLeft, mWindows[i].touchableAreaTop,
mWindows[i].touchableAreaRight, mWindows[i].touchableAreaBottom,
mWindows[i].ownerPid, mWindows[i].ownerUid,
mWindows[i].dispatchingTimeout / 1000000.0);
}
for (size_t i = 0; i < mMonitoringChannels.size(); i++) {
const sp<InputChannel>& channel = mMonitoringChannels[i];
dump.appendFormat(" monitoringChannel[%d]: '%s'\n",
i, channel->getName().string());
}
dump.appendFormat(" inboundQueue: length=%u", mInboundQueue.count());
for (size_t i = 0; i < mActiveConnections.size(); i++) {
const Connection* connection = mActiveConnections[i];
dump.appendFormat(" activeConnection[%d]: '%s', status=%s, outboundQueueLength=%u"
"inputState.isNeutral=%s, inputState.isOutOfSync=%s\n",
i, connection->getInputChannelName(), connection->getStatusLabel(),
connection->outboundQueue.count(),
toString(connection->inputState.isNeutral()),
toString(connection->inputState.isOutOfSync()));
}
if (isAppSwitchPendingLocked()) {
dump.appendFormat(" appSwitch: pending, due in %01.1fms\n",
(mAppSwitchDueTime - now()) / 1000000.0);
} else {
dump.append(" appSwitch: not pending\n");
}
}
status_t InputDispatcher::registerInputChannel(const sp<InputChannel>& inputChannel, bool monitor) {
#if DEBUG_REGISTRATION
LOGD("channel '%s' ~ registerInputChannel - monitor=%s", inputChannel->getName().string(),
toString(monitor));
#endif
{ // acquire lock
AutoMutex _l(mLock);
if (getConnectionIndexLocked(inputChannel) >= 0) {
LOGW("Attempted to register already registered input channel '%s'",
inputChannel->getName().string());
return BAD_VALUE;
}
sp<Connection> connection = new Connection(inputChannel);
status_t status = connection->initialize();
if (status) {
LOGE("Failed to initialize input publisher for input channel '%s', status=%d",
inputChannel->getName().string(), status);
return status;
}
int32_t receiveFd = inputChannel->getReceivePipeFd();
mConnectionsByReceiveFd.add(receiveFd, connection);
if (monitor) {
mMonitoringChannels.push(inputChannel);
}
mLooper->addFd(receiveFd, 0, ALOOPER_EVENT_INPUT, handleReceiveCallback, this);
runCommandsLockedInterruptible();
} // release lock
return OK;
}
status_t InputDispatcher::unregisterInputChannel(const sp<InputChannel>& inputChannel) {
#if DEBUG_REGISTRATION
LOGD("channel '%s' ~ unregisterInputChannel", inputChannel->getName().string());
#endif
{ // acquire lock
AutoMutex _l(mLock);
ssize_t connectionIndex = getConnectionIndexLocked(inputChannel);
if (connectionIndex < 0) {
LOGW("Attempted to unregister already unregistered input channel '%s'",
inputChannel->getName().string());
return BAD_VALUE;
}
sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
mConnectionsByReceiveFd.removeItemsAt(connectionIndex);
connection->status = Connection::STATUS_ZOMBIE;
for (size_t i = 0; i < mMonitoringChannels.size(); i++) {
if (mMonitoringChannels[i] == inputChannel) {
mMonitoringChannels.removeAt(i);
break;
}
}
mLooper->removeFd(inputChannel->getReceivePipeFd());
nsecs_t currentTime = now();
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
runCommandsLockedInterruptible();
} // release lock
// Wake the poll loop because removing the connection may have changed the current
// synchronization state.
mLooper->wake();
return OK;
}
ssize_t InputDispatcher::getConnectionIndexLocked(const sp<InputChannel>& inputChannel) {
ssize_t connectionIndex = mConnectionsByReceiveFd.indexOfKey(inputChannel->getReceivePipeFd());
if (connectionIndex >= 0) {
sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
if (connection->inputChannel.get() == inputChannel.get()) {
return connectionIndex;
}
}
return -1;
}
void InputDispatcher::activateConnectionLocked(Connection* connection) {
for (size_t i = 0; i < mActiveConnections.size(); i++) {
if (mActiveConnections.itemAt(i) == connection) {
return;
}
}
mActiveConnections.add(connection);
}
void InputDispatcher::deactivateConnectionLocked(Connection* connection) {
for (size_t i = 0; i < mActiveConnections.size(); i++) {
if (mActiveConnections.itemAt(i) == connection) {
mActiveConnections.removeAt(i);
return;
}
}
}
void InputDispatcher::onDispatchCycleStartedLocked(
nsecs_t currentTime, const sp<Connection>& connection) {
}
void InputDispatcher::onDispatchCycleFinishedLocked(
nsecs_t currentTime, const sp<Connection>& connection) {
}
void InputDispatcher::onDispatchCycleBrokenLocked(
nsecs_t currentTime, const sp<Connection>& connection) {
LOGE("channel '%s' ~ Channel is unrecoverably broken and will be disposed!",
connection->getInputChannelName());
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible);
commandEntry->connection = connection;
}
void InputDispatcher::onANRLocked(
nsecs_t currentTime, const InputApplication* application, const InputWindow* window,
nsecs_t eventTime, nsecs_t waitStartTime) {
LOGI("Application is not responding: %s. "
"%01.1fms since event, %01.1fms since wait started",
getApplicationWindowLabelLocked(application, window).string(),
(currentTime - eventTime) / 1000000.0,
(currentTime - waitStartTime) / 1000000.0);
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doNotifyANRLockedInterruptible);
if (application) {
commandEntry->inputApplicationHandle = application->handle;
}
if (window) {
commandEntry->inputChannel = window->inputChannel;
}
}
void InputDispatcher::doNotifyConfigurationChangedInterruptible(
CommandEntry* commandEntry) {
mLock.unlock();
mPolicy->notifyConfigurationChanged(commandEntry->eventTime);
mLock.lock();
}
void InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible(
CommandEntry* commandEntry) {
sp<Connection> connection = commandEntry->connection;
if (connection->status != Connection::STATUS_ZOMBIE) {
mLock.unlock();
mPolicy->notifyInputChannelBroken(connection->inputChannel);
mLock.lock();
}
}
void InputDispatcher::doNotifyANRLockedInterruptible(
CommandEntry* commandEntry) {
mLock.unlock();
nsecs_t newTimeout = mPolicy->notifyANR(
commandEntry->inputApplicationHandle, commandEntry->inputChannel);
mLock.lock();
resumeAfterTargetsNotReadyTimeoutLocked(newTimeout, commandEntry->inputChannel);
}
void InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible(
CommandEntry* commandEntry) {
KeyEntry* entry = commandEntry->keyEntry;
mReusableKeyEvent.initialize(entry->deviceId, entry->source, entry->action, entry->flags,
entry->keyCode, entry->scanCode, entry->metaState, entry->repeatCount,
entry->downTime, entry->eventTime);
mLock.unlock();
bool consumed = mPolicy->interceptKeyBeforeDispatching(commandEntry->inputChannel,
& mReusableKeyEvent, entry->policyFlags);
mLock.lock();
entry->interceptKeyResult = consumed
? KeyEntry::INTERCEPT_KEY_RESULT_SKIP
: KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
mAllocator.releaseKeyEntry(entry);
}
void InputDispatcher::doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry) {
mLock.unlock();
mPolicy->pokeUserActivity(commandEntry->eventTime, commandEntry->userActivityEventType);
mLock.lock();
}
void InputDispatcher::updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry,
int32_t injectionResult, nsecs_t timeSpentWaitingForApplication) {
// TODO Write some statistics about how long we spend waiting.
}
void InputDispatcher::dump(String8& dump) {
dumpDispatchStateLocked(dump);
}
// --- InputDispatcher::Queue ---
template <typename T>
uint32_t InputDispatcher::Queue<T>::count() const {
uint32_t result = 0;
for (const T* entry = headSentinel.next; entry != & tailSentinel; entry = entry->next) {
result += 1;
}
return result;
}
// --- InputDispatcher::Allocator ---
InputDispatcher::Allocator::Allocator() {
}
InputDispatcher::InjectionState*
InputDispatcher::Allocator::obtainInjectionState(int32_t injectorPid, int32_t injectorUid) {
InjectionState* injectionState = mInjectionStatePool.alloc();
injectionState->refCount = 1;
injectionState->injectorPid = injectorPid;
injectionState->injectorUid = injectorUid;
injectionState->injectionIsAsync = false;
injectionState->injectionResult = INPUT_EVENT_INJECTION_PENDING;
injectionState->pendingForegroundDispatches = 0;
return injectionState;
}
void InputDispatcher::Allocator::initializeEventEntry(EventEntry* entry, int32_t type,
nsecs_t eventTime) {
entry->type = type;
entry->refCount = 1;
entry->dispatchInProgress = false;
entry->eventTime = eventTime;
entry->injectionState = NULL;
}
void InputDispatcher::Allocator::releaseEventEntryInjectionState(EventEntry* entry) {
if (entry->injectionState) {
releaseInjectionState(entry->injectionState);
entry->injectionState = NULL;
}
}
InputDispatcher::ConfigurationChangedEntry*
InputDispatcher::Allocator::obtainConfigurationChangedEntry(nsecs_t eventTime) {
ConfigurationChangedEntry* entry = mConfigurationChangeEntryPool.alloc();
initializeEventEntry(entry, EventEntry::TYPE_CONFIGURATION_CHANGED, eventTime);
return entry;
}
InputDispatcher::KeyEntry* InputDispatcher::Allocator::obtainKeyEntry(nsecs_t eventTime,
int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action,
int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
int32_t repeatCount, nsecs_t downTime) {
KeyEntry* entry = mKeyEntryPool.alloc();
initializeEventEntry(entry, EventEntry::TYPE_KEY, eventTime);
entry->deviceId = deviceId;
entry->source = source;
entry->policyFlags = policyFlags;
entry->action = action;
entry->flags = flags;
entry->keyCode = keyCode;
entry->scanCode = scanCode;
entry->metaState = metaState;
entry->repeatCount = repeatCount;
entry->downTime = downTime;
entry->syntheticRepeat = false;
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN;
return entry;
}
InputDispatcher::MotionEntry* InputDispatcher::Allocator::obtainMotionEntry(nsecs_t eventTime,
int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action, int32_t flags,
int32_t metaState, int32_t edgeFlags, float xPrecision, float yPrecision,
nsecs_t downTime, uint32_t pointerCount,
const int32_t* pointerIds, const PointerCoords* pointerCoords) {
MotionEntry* entry = mMotionEntryPool.alloc();
initializeEventEntry(entry, EventEntry::TYPE_MOTION, eventTime);
entry->eventTime = eventTime;
entry->deviceId = deviceId;
entry->source = source;
entry->policyFlags = policyFlags;
entry->action = action;
entry->flags = flags;
entry->metaState = metaState;
entry->edgeFlags = edgeFlags;
entry->xPrecision = xPrecision;
entry->yPrecision = yPrecision;
entry->downTime = downTime;
entry->pointerCount = pointerCount;
entry->firstSample.eventTime = eventTime;
entry->firstSample.next = NULL;
entry->lastSample = & entry->firstSample;
for (uint32_t i = 0; i < pointerCount; i++) {
entry->pointerIds[i] = pointerIds[i];
entry->firstSample.pointerCoords[i] = pointerCoords[i];
}
return entry;
}
InputDispatcher::DispatchEntry* InputDispatcher::Allocator::obtainDispatchEntry(
EventEntry* eventEntry,
int32_t targetFlags, float xOffset, float yOffset) {
DispatchEntry* entry = mDispatchEntryPool.alloc();
entry->eventEntry = eventEntry;
eventEntry->refCount += 1;
entry->targetFlags = targetFlags;
entry->xOffset = xOffset;
entry->yOffset = yOffset;
entry->inProgress = false;
entry->headMotionSample = NULL;
entry->tailMotionSample = NULL;
return entry;
}
InputDispatcher::CommandEntry* InputDispatcher::Allocator::obtainCommandEntry(Command command) {
CommandEntry* entry = mCommandEntryPool.alloc();
entry->command = command;
return entry;
}
void InputDispatcher::Allocator::releaseInjectionState(InjectionState* injectionState) {
injectionState->refCount -= 1;
if (injectionState->refCount == 0) {
mInjectionStatePool.free(injectionState);
} else {
assert(injectionState->refCount > 0);
}
}
void InputDispatcher::Allocator::releaseEventEntry(EventEntry* entry) {
switch (entry->type) {
case EventEntry::TYPE_CONFIGURATION_CHANGED:
releaseConfigurationChangedEntry(static_cast<ConfigurationChangedEntry*>(entry));
break;
case EventEntry::TYPE_KEY:
releaseKeyEntry(static_cast<KeyEntry*>(entry));
break;
case EventEntry::TYPE_MOTION:
releaseMotionEntry(static_cast<MotionEntry*>(entry));
break;
default:
assert(false);
break;
}
}
void InputDispatcher::Allocator::releaseConfigurationChangedEntry(
ConfigurationChangedEntry* entry) {
entry->refCount -= 1;
if (entry->refCount == 0) {
releaseEventEntryInjectionState(entry);
mConfigurationChangeEntryPool.free(entry);
} else {
assert(entry->refCount > 0);
}
}
void InputDispatcher::Allocator::releaseKeyEntry(KeyEntry* entry) {
entry->refCount -= 1;
if (entry->refCount == 0) {
releaseEventEntryInjectionState(entry);
mKeyEntryPool.free(entry);
} else {
assert(entry->refCount > 0);
}
}
void InputDispatcher::Allocator::releaseMotionEntry(MotionEntry* entry) {
entry->refCount -= 1;
if (entry->refCount == 0) {
releaseEventEntryInjectionState(entry);
for (MotionSample* sample = entry->firstSample.next; sample != NULL; ) {
MotionSample* next = sample->next;
mMotionSamplePool.free(sample);
sample = next;
}
mMotionEntryPool.free(entry);
} else {
assert(entry->refCount > 0);
}
}
void InputDispatcher::Allocator::releaseDispatchEntry(DispatchEntry* entry) {
releaseEventEntry(entry->eventEntry);
mDispatchEntryPool.free(entry);
}
void InputDispatcher::Allocator::releaseCommandEntry(CommandEntry* entry) {
mCommandEntryPool.free(entry);
}
void InputDispatcher::Allocator::appendMotionSample(MotionEntry* motionEntry,
nsecs_t eventTime, const PointerCoords* pointerCoords) {
MotionSample* sample = mMotionSamplePool.alloc();
sample->eventTime = eventTime;
uint32_t pointerCount = motionEntry->pointerCount;
for (uint32_t i = 0; i < pointerCount; i++) {
sample->pointerCoords[i] = pointerCoords[i];
}
sample->next = NULL;
motionEntry->lastSample->next = sample;
motionEntry->lastSample = sample;
}
void InputDispatcher::Allocator::recycleKeyEntry(KeyEntry* keyEntry) {
releaseEventEntryInjectionState(keyEntry);
keyEntry->dispatchInProgress = false;
keyEntry->syntheticRepeat = false;
keyEntry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN;
}
// --- InputDispatcher::MotionEntry ---
uint32_t InputDispatcher::MotionEntry::countSamples() const {
uint32_t count = 1;
for (MotionSample* sample = firstSample.next; sample != NULL; sample = sample->next) {
count += 1;
}
return count;
}
// --- InputDispatcher::InputState ---
InputDispatcher::InputState::InputState() :
mIsOutOfSync(false) {
}
InputDispatcher::InputState::~InputState() {
}
bool InputDispatcher::InputState::isNeutral() const {
return mKeyMementos.isEmpty() && mMotionMementos.isEmpty();
}
bool InputDispatcher::InputState::isOutOfSync() const {
return mIsOutOfSync;
}
void InputDispatcher::InputState::setOutOfSync() {
if (! isNeutral()) {
mIsOutOfSync = true;
}
}
void InputDispatcher::InputState::resetOutOfSync() {
mIsOutOfSync = false;
}
InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackEvent(
const EventEntry* entry) {
switch (entry->type) {
case EventEntry::TYPE_KEY:
return trackKey(static_cast<const KeyEntry*>(entry));
case EventEntry::TYPE_MOTION:
return trackMotion(static_cast<const MotionEntry*>(entry));
default:
return CONSISTENT;
}
}
InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackKey(
const KeyEntry* entry) {
int32_t action = entry->action;
for (size_t i = 0; i < mKeyMementos.size(); i++) {
KeyMemento& memento = mKeyMementos.editItemAt(i);
if (memento.deviceId == entry->deviceId
&& memento.source == entry->source
&& memento.keyCode == entry->keyCode
&& memento.scanCode == entry->scanCode) {
switch (action) {
case AKEY_EVENT_ACTION_UP:
mKeyMementos.removeAt(i);
if (isNeutral()) {
mIsOutOfSync = false;
}
return CONSISTENT;
case AKEY_EVENT_ACTION_DOWN:
return TOLERABLE;
default:
return BROKEN;
}
}
}
switch (action) {
case AKEY_EVENT_ACTION_DOWN: {
mKeyMementos.push();
KeyMemento& memento = mKeyMementos.editTop();
memento.deviceId = entry->deviceId;
memento.source = entry->source;
memento.keyCode = entry->keyCode;
memento.scanCode = entry->scanCode;
memento.downTime = entry->downTime;
return CONSISTENT;
}
default:
return BROKEN;
}
}
InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackMotion(
const MotionEntry* entry) {
int32_t action = entry->action & AMOTION_EVENT_ACTION_MASK;
for (size_t i = 0; i < mMotionMementos.size(); i++) {
MotionMemento& memento = mMotionMementos.editItemAt(i);
if (memento.deviceId == entry->deviceId
&& memento.source == entry->source) {
switch (action) {
case AMOTION_EVENT_ACTION_UP:
case AMOTION_EVENT_ACTION_CANCEL:
mMotionMementos.removeAt(i);
if (isNeutral()) {
mIsOutOfSync = false;
}
return CONSISTENT;
case AMOTION_EVENT_ACTION_DOWN:
return TOLERABLE;
case AMOTION_EVENT_ACTION_POINTER_DOWN:
if (entry->pointerCount == memento.pointerCount + 1) {
memento.setPointers(entry);
return CONSISTENT;
}
return BROKEN;
case AMOTION_EVENT_ACTION_POINTER_UP:
if (entry->pointerCount == memento.pointerCount - 1) {
memento.setPointers(entry);
return CONSISTENT;
}
return BROKEN;
case AMOTION_EVENT_ACTION_MOVE:
if (entry->pointerCount == memento.pointerCount) {
return CONSISTENT;
}
return BROKEN;
default:
return BROKEN;
}
}
}
switch (action) {
case AMOTION_EVENT_ACTION_DOWN: {
mMotionMementos.push();
MotionMemento& memento = mMotionMementos.editTop();
memento.deviceId = entry->deviceId;
memento.source = entry->source;
memento.xPrecision = entry->xPrecision;
memento.yPrecision = entry->yPrecision;
memento.downTime = entry->downTime;
memento.setPointers(entry);
return CONSISTENT;
}
default:
return BROKEN;
}
}
void InputDispatcher::InputState::MotionMemento::setPointers(const MotionEntry* entry) {
pointerCount = entry->pointerCount;
for (uint32_t i = 0; i < entry->pointerCount; i++) {
pointerIds[i] = entry->pointerIds[i];
pointerCoords[i] = entry->lastSample->pointerCoords[i];
}
}
void InputDispatcher::InputState::synthesizeCancelationEvents(
Allocator* allocator, Vector<EventEntry*>& outEvents) const {
for (size_t i = 0; i < mKeyMementos.size(); i++) {
const KeyMemento& memento = mKeyMementos.itemAt(i);
outEvents.push(allocator->obtainKeyEntry(now(),
memento.deviceId, memento.source, 0,
AKEY_EVENT_ACTION_UP, AKEY_EVENT_FLAG_CANCELED,
memento.keyCode, memento.scanCode, 0, 0, memento.downTime));
}
for (size_t i = 0; i < mMotionMementos.size(); i++) {
const MotionMemento& memento = mMotionMementos.itemAt(i);
outEvents.push(allocator->obtainMotionEntry(now(),
memento.deviceId, memento.source, 0,
AMOTION_EVENT_ACTION_CANCEL, 0, 0, 0,
memento.xPrecision, memento.yPrecision, memento.downTime,
memento.pointerCount, memento.pointerIds, memento.pointerCoords));
}
}
void InputDispatcher::InputState::clear() {
mKeyMementos.clear();
mMotionMementos.clear();
mIsOutOfSync = false;
}
// --- InputDispatcher::Connection ---
InputDispatcher::Connection::Connection(const sp<InputChannel>& inputChannel) :
status(STATUS_NORMAL), inputChannel(inputChannel), inputPublisher(inputChannel),
lastEventTime(LONG_LONG_MAX), lastDispatchTime(LONG_LONG_MAX) {
}
InputDispatcher::Connection::~Connection() {
}
status_t InputDispatcher::Connection::initialize() {
return inputPublisher.initialize();
}
const char* InputDispatcher::Connection::getStatusLabel() const {
switch (status) {
case STATUS_NORMAL:
return "NORMAL";
case STATUS_BROKEN:
return "BROKEN";
case STATUS_ZOMBIE:
return "ZOMBIE";
default:
return "UNKNOWN";
}
}
InputDispatcher::DispatchEntry* InputDispatcher::Connection::findQueuedDispatchEntryForEvent(
const EventEntry* eventEntry) const {
for (DispatchEntry* dispatchEntry = outboundQueue.tailSentinel.prev;
dispatchEntry != & outboundQueue.headSentinel; dispatchEntry = dispatchEntry->prev) {
if (dispatchEntry->eventEntry == eventEntry) {
return dispatchEntry;
}
}
return NULL;
}
// --- InputDispatcher::CommandEntry ---
InputDispatcher::CommandEntry::CommandEntry() :
keyEntry(NULL) {
}
InputDispatcher::CommandEntry::~CommandEntry() {
}
// --- InputDispatcher::TouchState ---
InputDispatcher::TouchState::TouchState() :
down(false), split(false) {
}
InputDispatcher::TouchState::~TouchState() {
}
void InputDispatcher::TouchState::reset() {
down = false;
split = false;
windows.clear();
}
void InputDispatcher::TouchState::copyFrom(const TouchState& other) {
down = other.down;
split = other.split;
windows.clear();
windows.appendVector(other.windows);
}
void InputDispatcher::TouchState::addOrUpdateWindow(const InputWindow* window,
int32_t targetFlags, BitSet32 pointerIds) {
if (targetFlags & InputTarget::FLAG_SPLIT) {
split = true;
}
for (size_t i = 0; i < windows.size(); i++) {
TouchedWindow& touchedWindow = windows.editItemAt(i);
if (touchedWindow.window == window) {
touchedWindow.targetFlags |= targetFlags;
touchedWindow.pointerIds.value |= pointerIds.value;
return;
}
}
windows.push();
TouchedWindow& touchedWindow = windows.editTop();
touchedWindow.window = window;
touchedWindow.targetFlags = targetFlags;
touchedWindow.pointerIds = pointerIds;
touchedWindow.channel = window->inputChannel;
}
void InputDispatcher::TouchState::removeOutsideTouchWindows() {
for (size_t i = 0 ; i < windows.size(); ) {
if (windows[i].targetFlags & InputTarget::FLAG_OUTSIDE) {
windows.removeAt(i);
} else {
i += 1;
}
}
}
const InputWindow* InputDispatcher::TouchState::getFirstForegroundWindow() {
for (size_t i = 0; i < windows.size(); i++) {
if (windows[i].targetFlags & InputTarget::FLAG_FOREGROUND) {
return windows[i].window;
}
}
return NULL;
}
// --- InputDispatcherThread ---
InputDispatcherThread::InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher) :
Thread(/*canCallJava*/ true), mDispatcher(dispatcher) {
}
InputDispatcherThread::~InputDispatcherThread() {
}
bool InputDispatcherThread::threadLoop() {
mDispatcher->dispatchOnce();
return true;
}
} // namespace android
|