summaryrefslogtreecommitdiffstats
path: root/services/surfaceflinger/DispSync.cpp
blob: 192d74608542e4630b15335df22bf9eeb6c91666 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define ATRACE_TAG ATRACE_TAG_GRAPHICS

// This is needed for stdint.h to define INT64_MAX in C++
#define __STDC_LIMIT_MACROS

#include <math.h>

#include <cutils/iosched_policy.h>
#include <cutils/log.h>

#include <ui/Fence.h>

#include <utils/String8.h>
#include <utils/Thread.h>
#include <utils/Trace.h>
#include <utils/Vector.h>

#include "DispSync.h"
#include "EventLog/EventLog.h"

namespace android {

// Setting this to true enables verbose tracing that can be used to debug
// vsync event model or phase issues.
static const bool kTraceDetailedInfo = false;

// This is the threshold used to determine when hardware vsync events are
// needed to re-synchronize the software vsync model with the hardware.  The
// error metric used is the mean of the squared difference between each
// present time and the nearest software-predicted vsync.
static const nsecs_t kErrorThreshold = 160000000000;    // 400 usec squared

// This is the offset from the present fence timestamps to the corresponding
// vsync event.
static const int64_t kPresentTimeOffset = PRESENT_TIME_OFFSET_FROM_VSYNC_NS;

class DispSyncThread: public Thread {
public:

    DispSyncThread():
            mStop(false),
            mPeriod(0),
            mPhase(0),
            mReferenceTime(0),
            mWakeupLatency(0) {
    }

    virtual ~DispSyncThread() {}

    void updateModel(nsecs_t period, nsecs_t phase, nsecs_t referenceTime) {
        Mutex::Autolock lock(mMutex);
        mPeriod = period;
        mPhase = phase;
        mReferenceTime = referenceTime;
        mCond.signal();
    }

    void stop() {
        Mutex::Autolock lock(mMutex);
        mStop = true;
        mCond.signal();
    }

    virtual bool threadLoop() {
        status_t err;
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        nsecs_t nextEventTime = 0;

        while (true) {
            Vector<CallbackInvocation> callbackInvocations;

            nsecs_t targetTime = 0;

            { // Scope for lock
                Mutex::Autolock lock(mMutex);

                if (mStop) {
                    return false;
                }

                if (mPeriod == 0) {
                    err = mCond.wait(mMutex);
                    if (err != NO_ERROR) {
                        ALOGE("error waiting for new events: %s (%d)",
                                strerror(-err), err);
                        return false;
                    }
                    continue;
                }

                nextEventTime = computeNextEventTimeLocked(now);
                targetTime = nextEventTime;

                bool isWakeup = false;

                if (now < targetTime) {
                    err = mCond.waitRelative(mMutex, targetTime - now);

                    if (err == TIMED_OUT) {
                        isWakeup = true;
                    } else if (err != NO_ERROR) {
                        ALOGE("error waiting for next event: %s (%d)",
                                strerror(-err), err);
                        return false;
                    }
                }

                now = systemTime(SYSTEM_TIME_MONOTONIC);

                if (isWakeup) {
                    mWakeupLatency = ((mWakeupLatency * 63) +
                            (now - targetTime)) / 64;
                    if (mWakeupLatency > 500000) {
                        // Don't correct by more than 500 us
                        mWakeupLatency = 500000;
                    }
                    if (kTraceDetailedInfo) {
                        ATRACE_INT64("DispSync:WakeupLat", now - nextEventTime);
                        ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency);
                    }
                }

                callbackInvocations = gatherCallbackInvocationsLocked(now);
            }

            if (callbackInvocations.size() > 0) {
                fireCallbackInvocations(callbackInvocations);
            }
        }

        return false;
    }

    status_t addEventListener(nsecs_t phase, const sp<DispSync::Callback>& callback) {
        Mutex::Autolock lock(mMutex);

        for (size_t i = 0; i < mEventListeners.size(); i++) {
            if (mEventListeners[i].mCallback == callback) {
                return BAD_VALUE;
            }
        }

        EventListener listener;
        listener.mPhase = phase;
        listener.mCallback = callback;

        // We want to allow the firstmost future event to fire without
        // allowing any past events to fire.  Because
        // computeListenerNextEventTimeLocked filters out events within a half
        // a period of the last event time, we need to initialize the last
        // event time to a half a period in the past.
        listener.mLastEventTime = systemTime(SYSTEM_TIME_MONOTONIC) - mPeriod / 2;

        mEventListeners.push(listener);

        mCond.signal();

        return NO_ERROR;
    }

    status_t removeEventListener(const sp<DispSync::Callback>& callback) {
        Mutex::Autolock lock(mMutex);

        for (size_t i = 0; i < mEventListeners.size(); i++) {
            if (mEventListeners[i].mCallback == callback) {
                mEventListeners.removeAt(i);
                mCond.signal();
                return NO_ERROR;
            }
        }

        return BAD_VALUE;
    }

    // This method is only here to handle the kIgnorePresentFences case.
    bool hasAnyEventListeners() {
        Mutex::Autolock lock(mMutex);
        return !mEventListeners.empty();
    }

private:

    struct EventListener {
        nsecs_t mPhase;
        nsecs_t mLastEventTime;
        sp<DispSync::Callback> mCallback;
    };

    struct CallbackInvocation {
        sp<DispSync::Callback> mCallback;
        nsecs_t mEventTime;
    };

    nsecs_t computeNextEventTimeLocked(nsecs_t now) {
        nsecs_t nextEventTime = INT64_MAX;
        for (size_t i = 0; i < mEventListeners.size(); i++) {
            nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i],
                    now);

            if (t < nextEventTime) {
                nextEventTime = t;
            }
        }

        return nextEventTime;
    }

    Vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now) {
        Vector<CallbackInvocation> callbackInvocations;
        nsecs_t ref = now - mPeriod;

        for (size_t i = 0; i < mEventListeners.size(); i++) {
            nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i],
                    ref);

            if (t < now) {
                CallbackInvocation ci;
                ci.mCallback = mEventListeners[i].mCallback;
                ci.mEventTime = t;
                callbackInvocations.push(ci);
                mEventListeners.editItemAt(i).mLastEventTime = t;
            }
        }

        return callbackInvocations;
    }

    nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener,
            nsecs_t ref) {

        nsecs_t lastEventTime = listener.mLastEventTime;
        if (ref < lastEventTime) {
            ref = lastEventTime;
        }

        nsecs_t phase = mReferenceTime + mPhase + listener.mPhase;
        nsecs_t t = (((ref - phase) / mPeriod) + 1) * mPeriod + phase;

        if (t - listener.mLastEventTime < mPeriod / 2) {
            t += mPeriod;
        }

        return t;
    }

    void fireCallbackInvocations(const Vector<CallbackInvocation>& callbacks) {
        for (size_t i = 0; i < callbacks.size(); i++) {
            callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime);
        }
    }

    bool mStop;

    nsecs_t mPeriod;
    nsecs_t mPhase;
    nsecs_t mReferenceTime;
    nsecs_t mWakeupLatency;

    Vector<EventListener> mEventListeners;

    Mutex mMutex;
    Condition mCond;
};

class ZeroPhaseTracer : public DispSync::Callback {
public:
    ZeroPhaseTracer() : mParity(false) {}

    virtual void onDispSyncEvent(nsecs_t /*when*/) {
        mParity = !mParity;
        ATRACE_INT("ZERO_PHASE_VSYNC", mParity ? 1 : 0);
    }

private:
    bool mParity;
};

DispSync::DispSync() :
        mRefreshSkipCount(0),
        mThread(new DispSyncThread()) {

    mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);
    android_set_rt_ioprio(mThread->getTid(), 1);

    reset();
    beginResync();

    if (kTraceDetailedInfo) {
        // If we're not getting present fences then the ZeroPhaseTracer
        // would prevent HW vsync event from ever being turned off.
        // Even if we're just ignoring the fences, the zero-phase tracing is
        // not needed because any time there is an event registered we will
        // turn on the HW vsync events.
        if (!kIgnorePresentFences) {
            addEventListener(0, new ZeroPhaseTracer());
        }
    }
}

DispSync::~DispSync() {}

void DispSync::reset() {
    Mutex::Autolock lock(mMutex);

    mPhase = 0;
    mReferenceTime = 0;
    mModelUpdated = false;
    mNumResyncSamples = 0;
    mFirstResyncSample = 0;
    mNumResyncSamplesSincePresent = 0;
    resetErrorLocked();
}

bool DispSync::addPresentFence(const sp<Fence>& fence) {
    Mutex::Autolock lock(mMutex);

    mPresentFences[mPresentSampleOffset] = fence;
    mPresentTimes[mPresentSampleOffset] = 0;
    mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES;
    mNumResyncSamplesSincePresent = 0;

    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
        const sp<Fence>& f(mPresentFences[i]);
        if (f != NULL) {
            nsecs_t t = f->getSignalTime();
            if (t < INT64_MAX) {
                mPresentFences[i].clear();
                mPresentTimes[i] = t + kPresentTimeOffset;
            }
        }
    }

    updateErrorLocked();

    return !mModelUpdated || mError > kErrorThreshold;
}

void DispSync::beginResync() {
    Mutex::Autolock lock(mMutex);

    mModelUpdated = false;
    mNumResyncSamples = 0;
}

bool DispSync::addResyncSample(nsecs_t timestamp) {
    Mutex::Autolock lock(mMutex);

    size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES;
    mResyncSamples[idx] = timestamp;
    if (mNumResyncSamples == 0) {
        mPhase = 0;
        mReferenceTime = timestamp;
    }

    if (mNumResyncSamples < MAX_RESYNC_SAMPLES) {
        mNumResyncSamples++;
    } else {
        mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES;
    }

    updateModelLocked();

    if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) {
        resetErrorLocked();
    }

    if (kIgnorePresentFences) {
        // If we don't have the sync framework we will never have
        // addPresentFence called.  This means we have no way to know whether
        // or not we're synchronized with the HW vsyncs, so we just request
        // that the HW vsync events be turned on whenever we need to generate
        // SW vsync events.
        return mThread->hasAnyEventListeners();
    }

    return !mModelUpdated || mError > kErrorThreshold;
}

void DispSync::endResync() {
}

status_t DispSync::addEventListener(nsecs_t phase,
        const sp<Callback>& callback) {

    Mutex::Autolock lock(mMutex);
    return mThread->addEventListener(phase, callback);
}

void DispSync::setRefreshSkipCount(int count) {
    Mutex::Autolock lock(mMutex);
    ALOGD("setRefreshSkipCount(%d)", count);
    mRefreshSkipCount = count;
    updateModelLocked();
}

status_t DispSync::removeEventListener(const sp<Callback>& callback) {
    Mutex::Autolock lock(mMutex);
    return mThread->removeEventListener(callback);
}

void DispSync::setPeriod(nsecs_t period) {
    Mutex::Autolock lock(mMutex);
    mPeriod = period;
    mPhase = 0;
    mReferenceTime = 0;
    mThread->updateModel(mPeriod, mPhase, mReferenceTime);
}

nsecs_t DispSync::getPeriod() {
    // lock mutex as mPeriod changes multiple times in updateModelLocked
    Mutex::Autolock lock(mMutex);
    return mPeriod;
}

void DispSync::updateModelLocked() {
    if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) {
        nsecs_t durationSum = 0;
        for (size_t i = 1; i < mNumResyncSamples; i++) {
            size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
            size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES;
            durationSum += mResyncSamples[idx] - mResyncSamples[prev];
        }

        mPeriod = durationSum / (mNumResyncSamples - 1);

        double sampleAvgX = 0;
        double sampleAvgY = 0;
        double scale = 2.0 * M_PI / double(mPeriod);
        for (size_t i = 0; i < mNumResyncSamples; i++) {
            size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
            nsecs_t sample = mResyncSamples[idx] - mReferenceTime;
            double samplePhase = double(sample % mPeriod) * scale;
            sampleAvgX += cos(samplePhase);
            sampleAvgY += sin(samplePhase);
        }

        sampleAvgX /= double(mNumResyncSamples);
        sampleAvgY /= double(mNumResyncSamples);

        mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale);

        if (mPhase < 0) {
            mPhase += mPeriod;
        }

        if (kTraceDetailedInfo) {
            ATRACE_INT64("DispSync:Period", mPeriod);
            ATRACE_INT64("DispSync:Phase", mPhase);
        }

        // Artificially inflate the period if requested.
        mPeriod += mPeriod * mRefreshSkipCount;

        mThread->updateModel(mPeriod, mPhase, mReferenceTime);
        mModelUpdated = true;
    }
}

void DispSync::updateErrorLocked() {
    if (!mModelUpdated) {
        return;
    }

    // Need to compare present fences against the un-adjusted refresh period,
    // since they might arrive between two events.
    nsecs_t period = mPeriod / (1 + mRefreshSkipCount);

    int numErrSamples = 0;
    nsecs_t sqErrSum = 0;

    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
        nsecs_t sample = mPresentTimes[i] - mReferenceTime;
        if (sample > mPhase) {
            nsecs_t sampleErr = (sample - mPhase) % period;
            if (sampleErr > period / 2) {
                sampleErr -= period;
            }
            sqErrSum += sampleErr * sampleErr;
            numErrSamples++;
        }
    }

    if (numErrSamples > 0) {
        mError = sqErrSum / numErrSamples;
    } else {
        mError = 0;
    }

    if (kTraceDetailedInfo) {
        ATRACE_INT64("DispSync:Error", mError);
    }
}

void DispSync::resetErrorLocked() {
    mPresentSampleOffset = 0;
    mError = 0;
    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
        mPresentFences[i].clear();
        mPresentTimes[i] = 0;
    }
}

nsecs_t DispSync::computeNextRefresh(int periodOffset) const {
    Mutex::Autolock lock(mMutex);
    nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
    nsecs_t phase = mReferenceTime + mPhase;
    return (((now - phase) / mPeriod) + periodOffset + 1) * mPeriod + phase;
}

void DispSync::dump(String8& result) const {
    Mutex::Autolock lock(mMutex);
    result.appendFormat("present fences are %s\n",
            kIgnorePresentFences ? "ignored" : "used");
    result.appendFormat("mPeriod: %" PRId64 " ns (%.3f fps; skipCount=%d)\n",
            mPeriod, 1000000000.0 / mPeriod, mRefreshSkipCount);
    result.appendFormat("mPhase: %" PRId64 " ns\n", mPhase);
    result.appendFormat("mError: %" PRId64 " ns (sqrt=%.1f)\n",
            mError, sqrt(mError));
    result.appendFormat("mNumResyncSamplesSincePresent: %d (limit %d)\n",
            mNumResyncSamplesSincePresent, MAX_RESYNC_SAMPLES_WITHOUT_PRESENT);
    result.appendFormat("mNumResyncSamples: %zd (max %d)\n",
            mNumResyncSamples, MAX_RESYNC_SAMPLES);

    result.appendFormat("mResyncSamples:\n");
    nsecs_t previous = -1;
    for (size_t i = 0; i < mNumResyncSamples; i++) {
        size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
        nsecs_t sampleTime = mResyncSamples[idx];
        if (i == 0) {
            result.appendFormat("  %" PRId64 "\n", sampleTime);
        } else {
            result.appendFormat("  %" PRId64 " (+%" PRId64 ")\n",
                    sampleTime, sampleTime - previous);
        }
        previous = sampleTime;
    }

    result.appendFormat("mPresentFences / mPresentTimes [%d]:\n",
            NUM_PRESENT_SAMPLES);
    nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
    previous = 0;
    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
        size_t idx = (i + mPresentSampleOffset) % NUM_PRESENT_SAMPLES;
        bool signaled = mPresentFences[idx] == NULL;
        nsecs_t presentTime = mPresentTimes[idx];
        if (!signaled) {
            result.appendFormat("  [unsignaled fence]\n");
        } else if (presentTime == 0) {
            result.appendFormat("  0\n");
        } else if (previous == 0) {
            result.appendFormat("  %" PRId64 "  (%.3f ms ago)\n", presentTime,
                    (now - presentTime) / 1000000.0);
        } else {
            result.appendFormat("  %" PRId64 " (+%" PRId64 " / %.3f)  (%.3f ms ago)\n",
                    presentTime, presentTime - previous,
                    (presentTime - previous) / (double) mPeriod,
                    (now - presentTime) / 1000000.0);
        }
        previous = presentTime;
    }

    result.appendFormat("current monotonic time: %" PRId64 "\n", now);
}

} // namespace android