summaryrefslogtreecommitdiffstats
path: root/include
diff options
context:
space:
mode:
authorZhijun He <zhijunhe@google.com>2015-01-16 16:44:40 -0800
committerZhijun He <zhijunhe@google.com>2015-03-17 20:02:34 -0700
commitec39d182075dfbfd97bd62921bb15f104630018e (patch)
tree93c21d21ba6ae734ce2388d9003399bdde00edc6 /include
parent126867ea94f97d1d480fe77e17546a5d4726c71d (diff)
downloadhardware_libhardware-ec39d182075dfbfd97bd62921bb15f104630018e.zip
hardware_libhardware-ec39d182075dfbfd97bd62921bb15f104630018e.tar.gz
hardware_libhardware-ec39d182075dfbfd97bd62921bb15f104630018e.tar.bz2
camera3: update reprocessing spec
Also bump the HAL version to 3.3 for reprocessing spec update Change-Id: I37eda90970eace23c42ba9106d4db1587df8d1b4
Diffstat (limited to 'include')
-rw-r--r--include/hardware/camera3.h160
-rw-r--r--include/hardware/camera_common.h5
2 files changed, 161 insertions, 4 deletions
diff --git a/include/hardware/camera3.h b/include/hardware/camera3.h
index 2bb3ba1..5fcbf0f 100644
--- a/include/hardware/camera3.h
+++ b/include/hardware/camera3.h
@@ -21,7 +21,7 @@
#include "camera_common.h"
/**
- * Camera device HAL 3.2 [ CAMERA_DEVICE_API_VERSION_3_2 ]
+ * Camera device HAL 3.3 [ CAMERA_DEVICE_API_VERSION_3_3 ]
*
* This is the current recommended version of the camera device HAL.
*
@@ -29,9 +29,14 @@
* android.hardware.camera2 API in LIMITED or FULL modes.
*
* Camera devices that support this version of the HAL must return
- * CAMERA_DEVICE_API_VERSION_3_2 in camera_device_t.common.version and in
+ * CAMERA_DEVICE_API_VERSION_3_3 in camera_device_t.common.version and in
* camera_info_t.device_version (from camera_module_t.get_camera_info).
*
+ * CAMERA_DEVICE_API_VERSION_3_3:
+ * Camera modules that may contain version 3.3 devices must implement at
+ * least version 2.2 of the camera module interface (as defined by
+ * camera_module_t.common.module_api_version).
+ *
* CAMERA_DEVICE_API_VERSION_3_2:
* Camera modules that may contain version 3.2 devices must implement at
* least version 2.2 of the camera module interface (as defined by
@@ -54,6 +59,7 @@
* S7. Key Performance Indicator (KPI) glossary
* S8. Sample Use Cases
* S9. Notes on Controls and Metadata
+ * S10. Reprocessing flow and controls
*/
/**
@@ -119,6 +125,9 @@
* - change the input buffer return path. The buffer is returned in
* process_capture_result instead of process_capture_request.
*
+ * 3.3: Minor revision of expanded-capability HAL:
+ *
+ * - OPAQUE and YUV reprocessing API updates.
*/
/**
@@ -1109,6 +1118,56 @@
* as input.
* - And a HAL_PIXEL_FORMAT_BLOB (JPEG) output stream.
*
+ * S8.2 ZSL (OPAQUE) reprocessing with CAMERA3_STREAM_INPUT stream.
+ *
+ * CAMERA_DEVICE_API_VERSION_3_3:
+ * When OPAQUE_REPROCESSING capability is supported by the camera device, the INPUT stream
+ * can be used for application/framework implemented use case like Zero Shutter Lag (ZSL).
+ * This kind of stream will be used by the framework as follows:
+ *
+ * 1. Application/framework configures an opaque (RAW or YUV based) format output stream that is
+ * used to produce the ZSL output buffers. The stream pixel format will be
+ * HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED.
+ *
+ * 2. Application/framework configures an opaque format input stream that is used to
+ * send the reprocessing ZSL buffers to the HAL. The stream pixel format will
+ * also be HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED.
+ *
+ * 3. Application/framework configures a YUV/JPEG output stream that is used to receive the
+ * reprocessed data. The stream pixel format will be YCbCr_420/HAL_PIXEL_FORMAT_BLOB.
+ *
+ * 4. Application/framework picks a ZSL buffer from the ZSL output stream when a ZSL capture is
+ * issued by the application, and sends the data back as an input buffer in a
+ * reprocessing request, then sends to the HAL for reprocessing.
+ *
+ * 5. The HAL sends back the output YUV/JPEG result to framework.
+ *
+ * The HAL can select the actual opaque buffer format and configure the ISP pipeline
+ * appropriately based on the HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED format and
+ * the gralloc usage flag GRALLOC_USAGE_HW_CAMERA_ZSL.
+
+ * S8.3 YUV reprocessing with CAMERA3_STREAM_INPUT stream.
+ *
+ * When YUV reprocessing is supported by the HAL, the INPUT stream
+ * can be used for the YUV reprocessing use cases like lucky-shot and image fusion.
+ * This kind of stream will be used by the framework as follows:
+ *
+ * 1. Application/framework configures an YCbCr_420 format output stream that is
+ * used to produce the output buffers.
+ *
+ * 2. Application/framework configures an YCbCr_420 format input stream that is used to
+ * send the reprocessing YUV buffers to the HAL.
+ *
+ * 3. Application/framework configures a YUV/JPEG output stream that is used to receive the
+ * reprocessed data. The stream pixel format will be YCbCr_420/HAL_PIXEL_FORMAT_BLOB.
+ *
+ * 4. Application/framework processes the output buffers (could be as simple as picking
+ * an output buffer directly) from the output stream when a capture is issued, and sends
+ * the data back as an input buffer in a reprocessing request, then sends to the HAL
+ * for reprocessing.
+ *
+ * 5. The HAL sends back the output YUV/JPEG result to framework.
+ *
*/
/**
@@ -1137,6 +1196,100 @@
* be included in the 'available modes' tag to represent this operating
* mode.
*/
+
+/**
+ * S10. Reprocessing flow and controls
+ *
+ * This section describes the OPAQUE and YUV reprocessing flow and controls. OPAQUE reprocessing
+ * uses an opaque format that is not directly application-visible, and the application can
+ * only select some of the output buffers and send back to HAL for reprocessing, while YUV
+ * reprocessing gives the application opportunity to process the buffers before reprocessing.
+ *
+ * S8 gives the stream configurations for the typical reprocessing uses cases,
+ * this section specifies the buffer flow and controls in more details.
+ *
+ * S10.1 OPAQUE (typically for ZSL use case) reprocessing flow and controls
+ *
+ * For OPAQUE reprocessing (e.g. ZSL) use case, after the application creates the specific
+ * output and input streams, runtime buffer flow and controls are specified as below:
+ *
+ * 1. Application starts output streaming by sending repeating requests for output
+ * opaque buffers and preview. The buffers are held by an application
+ * maintained circular buffer. The requests are based on CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG
+ * capture template, which should have all necessary settings that guarantee output
+ * frame rate is not slowed down relative to sensor output frame rate.
+ *
+ * 2. When a capture is issued, the application selects one output buffer based
+ * on application buffer selection logic, e.g. good AE and AF statistics etc.
+ * Application then creates an reprocess request based on the capture result associated
+ * with this selected buffer. The selected output buffer is now added to this reprocess
+ * request as an input buffer, the output buffer of this reprocess request should be
+ * either JPEG output buffer or YUV output buffer, or both, depending on the application
+ * choice.
+ *
+ * 3. Application then alters the reprocess settings to get best image quality. The HAL must
+ * support and only support below controls if the HAL support OPAQUE_REPROCESSING capability:
+ * - android.jpeg.* (if JPEG buffer is included as one of the output)
+ * - android.noiseReduction.mode (change to HIGH_QUALITY if it is supported)
+ * - android.edge.mode (change to HIGH_QUALITY if it is supported)
+ * All other controls must be ignored by the HAL.
+ * 4. HAL processed the input buffer and return the output buffers in the capture results
+ * as normal.
+ *
+ * S10.2 YUV reprocessing flow and controls
+ *
+ * The YUV reprocessing buffer flow is similar as OPAQUE reprocessing, with below difference:
+ *
+ * 1. Application may want to have finer granularity control of the intermediate YUV images
+ * (before reprocessing). For example, application may choose
+ * - android.noiseReduction.mode == MINIMAL
+ * to make sure the no YUV domain noise reduction has applied to the output YUV buffers,
+ * then it can do its own advanced noise reduction on them. For OPAQUE reprocessing case, this
+ * doesn't matter, as long as the final reprocessed image has the best quality.
+ * 2. Application may modify the YUV output buffer data. For example, for image fusion use
+ * case, where multiple output images are merged together to improve the signal-to-noise
+ * ratio (SNR). The input buffer may be generated from multiple buffers by the application.
+ * To avoid excessive amount of noise reduction and insufficient amount of edge enhancement
+ * being applied to the input buffer, the application can hint the HAL how much effective
+ * exposure time improvement has been done by the application, then the HAL can adjust the
+ * noise reduction and edge enhancement paramters to get best reprocessed image quality.
+ * Below tag can be used for this purpose:
+ * - android.reprocess.effectiveExposureFactor
+ * The value would be exposure time increase factor applied to the original output image,
+ * for example, if there are N image merged, the exposure time increase factor would be up
+ * to sqrt(N). See this tag spec for more details.
+ *
+ * S10.3 Reprocessing pipeline characteristics
+ *
+ * Reprocessing pipeline has below different characteristics comparing with normal output
+ * pipeline:
+ *
+ * 1. The reprocessing result can be returned ahead of the pending normal output results. But
+ * the FIFO ordering must be maintained for all reprocessing results. For example, there are
+ * below requests (A stands for output requests, B stands for reprocessing requests)
+ * being processed by the HAL:
+ * A1, A2, A3, A4, B1, A5, B2, A6...
+ * result of B1 can be returned before A1-A4, but result of B2 must be returned after B1.
+ * 2. Single input rule: For a given reprocessing request, all output buffers must be from the
+ * input buffer, rather than sensor output. For example, if a reprocess request include both
+ * JPEG and preview buffers, all output buffers must be produced from the input buffer
+ * included by the reprocessing request, rather than sensor. The HAL must not output preview
+ * buffers from sensor, while output JPEG buffer from the input buffer.
+ * 3. Input buffer will be from camera output directly (ZSL case) or indirectly(image fusion
+ * case). For the case where buffer is modified, the size will remain same. The HAL can
+ * notify CAMERA3_MSG_ERROR_REQUEST if buffer from unknown source is sent.
+ * 4. Result as reprocessing request: The HAL can expect that a reprocessing request is a copy
+ * of one of the output results with minor allowed setting changes. The HAL can notify
+ * CAMERA3_MSG_ERROR_REQUEST if a request from unknown source is issued.
+ * 5. Output buffers may not be used as inputs across the configure stream boundary, This is
+ * because an opaque stream like the ZSL output stream may have different actual image size
+ * inside of the ZSL buffer to save power and bandwidth for smaller resolution JPEG capture.
+ * The HAL may notify CAMERA3_MSG_ERROR_REQUEST if this case occurs.
+ * 6. HAL Reprocess requests error reporting during flush should follow the same rule specified
+ * by flush() method.
+ *
+ */
+
__BEGIN_DECLS
struct camera3_device;
@@ -1184,6 +1337,9 @@ typedef enum camera3_stream_type {
* quality images (that otherwise would cause a frame rate performance
* loss), or to do off-line reprocessing.
*
+ * CAMERA_DEVICE_API_VERSION_3_3:
+ * The typical use cases are OPAQUE (typically ZSL) and YUV reprocessing,
+ * see S8.2, S8.3 and S10 for more details.
*/
CAMERA3_STREAM_INPUT = 1,
diff --git a/include/hardware/camera_common.h b/include/hardware/camera_common.h
index 47a01c9..7d5dce5 100644
--- a/include/hardware/camera_common.h
+++ b/include/hardware/camera_common.h
@@ -142,10 +142,11 @@ __BEGIN_DECLS
#define CAMERA_DEVICE_API_VERSION_3_0 HARDWARE_DEVICE_API_VERSION(3, 0)
#define CAMERA_DEVICE_API_VERSION_3_1 HARDWARE_DEVICE_API_VERSION(3, 1)
#define CAMERA_DEVICE_API_VERSION_3_2 HARDWARE_DEVICE_API_VERSION(3, 2)
+#define CAMERA_DEVICE_API_VERSION_3_3 HARDWARE_DEVICE_API_VERSION(3, 3)
-// Device version 3.2 is current, older HAL camera device versions are not
+// Device version 3.3 is current, older HAL camera device versions are not
// recommended for new devices.
-#define CAMERA_DEVICE_API_VERSION_CURRENT CAMERA_DEVICE_API_VERSION_3_2
+#define CAMERA_DEVICE_API_VERSION_CURRENT CAMERA_DEVICE_API_VERSION_3_3
/**
* Defined in /system/media/camera/include/system/camera_metadata.h