summaryrefslogtreecommitdiffstats
path: root/include/hardware/sensors.h
blob: 4a8ce3e124cf7beefd5d1d606a450189236e7939 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ANDROID_SENSORS_INTERFACE_H
#define ANDROID_SENSORS_INTERFACE_H

#include <stdint.h>
#include <sys/cdefs.h>
#include <sys/types.h>

#include <hardware/hardware.h>
#include <cutils/native_handle.h>

__BEGIN_DECLS

/**
 * The id of this module
 */
#define SENSORS_HARDWARE_MODULE_ID "sensors"

/**
 * Name of the sensors device to open
 */
#define SENSORS_HARDWARE_POLL       "poll"

/**
 * Handles must be higher than SENSORS_HANDLE_BASE and must be unique.
 * A Handle identifies a given sensors. The handle is used to activate
 * and/or deactivate sensors.
 * In this version of the API there can only be 256 handles.
 */
#define SENSORS_HANDLE_BASE             0
#define SENSORS_HANDLE_BITS             8
#define SENSORS_HANDLE_COUNT            (1<<SENSORS_HANDLE_BITS)


/**
 * Sensor types
 */
#define SENSOR_TYPE_ACCELEROMETER       1
#define SENSOR_TYPE_MAGNETIC_FIELD      2
#define SENSOR_TYPE_ORIENTATION         3
#define SENSOR_TYPE_GYROSCOPE           4
#define SENSOR_TYPE_LIGHT               5
#define SENSOR_TYPE_PRESSURE            6
#define SENSOR_TYPE_TEMPERATURE         7   // deprecated
#define SENSOR_TYPE_PROXIMITY           8
#define SENSOR_TYPE_GRAVITY             9
#define SENSOR_TYPE_LINEAR_ACCELERATION 10
#define SENSOR_TYPE_ROTATION_VECTOR     11
#define SENSOR_TYPE_RELATIVE_HUMIDITY   12
#define SENSOR_TYPE_AMBIENT_TEMPERATURE 13

/**
 * Values returned by the accelerometer in various locations in the universe.
 * all values are in SI units (m/s^2)
 */

#define GRAVITY_SUN             (275.0f)
#define GRAVITY_EARTH           (9.80665f)

/** Maximum magnetic field on Earth's surface */
#define MAGNETIC_FIELD_EARTH_MAX    (60.0f)

/** Minimum magnetic field on Earth's surface */
#define MAGNETIC_FIELD_EARTH_MIN    (30.0f)


/**
 * status of each sensor
 */

#define SENSOR_STATUS_UNRELIABLE        0
#define SENSOR_STATUS_ACCURACY_LOW      1
#define SENSOR_STATUS_ACCURACY_MEDIUM   2
#define SENSOR_STATUS_ACCURACY_HIGH     3

/**
 * Definition of the axis
 * ----------------------
 *
 * This API is relative to the screen of the device in its default orientation,
 * that is, if the device can be used in portrait or landscape, this API
 * is only relative to the NATURAL orientation of the screen. In other words,
 * the axis are not swapped when the device's screen orientation changes.
 * Higher level services /may/ perform this transformation.
 *
 *   x<0         x>0
 *                ^
 *                |
 *    +-----------+-->  y>0
 *    |           |
 *    |           |
 *    |           |
 *    |           |   / z<0
 *    |           |  /
 *    |           | /
 *    O-----------+/
 *    |[]  [ ]  []/
 *    +----------/+     y<0
 *              /
 *             /
 *           |/ z>0 (toward the sky)
 *
 *    O: Origin (x=0,y=0,z=0)
 *
 *
 * Orientation
 * ----------- 
 * 
 * All values are angles in degrees.
 * 
 * Orientation sensors return sensor events for all 3 axes at a constant
 * rate defined by setDelay().
 *
 * azimuth: angle between the magnetic north direction and the Y axis, around 
 *  the Z axis (0<=azimuth<360).
 *      0=North, 90=East, 180=South, 270=West
 * 
 * pitch: Rotation around X axis (-180<=pitch<=180), with positive values when
 *  the z-axis moves toward the y-axis.
 *
 * roll: Rotation around Y axis (-90<=roll<=90), with positive values when
 *  the x-axis moves towards the z-axis.
 *
 * Note: For historical reasons the roll angle is positive in the clockwise
 *  direction (mathematically speaking, it should be positive in the
 *  counter-clockwise direction):
 *
 *                Z
 *                ^
 *  (+roll)  .--> |
 *          /     |
 *         |      |  roll: rotation around Y axis
 *     X <-------(.)
 *                 Y
 *       note that +Y == -roll
 *
 *
 *
 * Note: This definition is different from yaw, pitch and roll used in aviation
 *  where the X axis is along the long side of the plane (tail to nose).
 *  
 *  
 * Acceleration
 * ------------
 *
 *  All values are in SI units (m/s^2) and measure the acceleration of the
 *  device minus the force of gravity.
 *  
 *  Acceleration sensors return sensor events for all 3 axes at a constant
 *  rate defined by setDelay().
 *
 *  x: Acceleration minus Gx on the x-axis 
 *  y: Acceleration minus Gy on the y-axis 
 *  z: Acceleration minus Gz on the z-axis
 *  
 *  Examples:
 *    When the device lies flat on a table and is pushed on its left side
 *    toward the right, the x acceleration value is positive.
 *    
 *    When the device lies flat on a table, the acceleration value is +9.81,
 *    which correspond to the acceleration of the device (0 m/s^2) minus the
 *    force of gravity (-9.81 m/s^2).
 *    
 *    When the device lies flat on a table and is pushed toward the sky, the
 *    acceleration value is greater than +9.81, which correspond to the
 *    acceleration of the device (+A m/s^2) minus the force of 
 *    gravity (-9.81 m/s^2).
 *    
 *    
 * Magnetic Field
 * --------------
 * 
 *  All values are in micro-Tesla (uT) and measure the ambient magnetic
 *  field in the X, Y and Z axis.
 *
 *  Magnetic Field sensors return sensor events for all 3 axes at a constant
 *  rate defined by setDelay().
 *
 * Gyroscope
 * ---------
 *  All values are in radians/second and measure the rate of rotation
 *  around the X, Y and Z axis.  The coordinate system is the same as is
 *  used for the acceleration sensor. Rotation is positive in the
 *  counter-clockwise direction (right-hand rule). That is, an observer
 *  looking from some positive location on the x, y or z axis at a device
 *  positioned on the origin would report positive rotation if the device
 *  appeared to be rotating counter clockwise. Note that this is the
 *  standard mathematical definition of positive rotation and does not agree
 *  with the definition of roll given earlier.
 *  The range should at least be 17.45 rad/s (ie: ~1000 deg/s).
 *
 * Proximity
 * ---------
 *
 * The distance value is measured in centimeters.  Note that some proximity
 * sensors only support a binary "close" or "far" measurement.  In this case,
 * the sensor should report its maxRange value in the "far" state and a value
 * less than maxRange in the "near" state.
 *
 * Proximity sensors report a value only when it changes and each time the
 * sensor is enabled.
 *
 * Light
 * -----
 *
 * The light sensor value is returned in SI lux units.
 *
 * Light sensors report a value only when it changes and each time the
 * sensor is enabled.
 *
 * Pressure
 * --------
 *
 * The pressure sensor value is returned in hectopascal (hPa)
 *
 * Pressure sensors report events at a constant rate defined by setDelay().
 *
 * Gyro
 * --------
 *
 * The gyroscope sensor values are returned in degrees per second (dps)
 *
 * Gyroscope sensor report events at a constant rate defined by setDelay().
 *
 * Gravity
 * -------
 * A gravity output indicates the direction of and magnitude of gravity in the devices's
 * coordinates.  On Earth, the magnitude is 9.8.  Units are m/s^2.  The coordinate system
 * is the same as is used for the acceleration sensor.
 * When the device is at rest, the output of the gravity sensor should be identical
 * to that of the accelerometer.
 *
 * Linear Acceleration
 * -------------------
 * Indicates the linear acceleration of the device in device coordinates, not including gravity.
 * This output is essentially Acceleration - Gravity.  Units are m/s^2.  The coordinate system is
 * the same as is used for the acceleration sensor.
 * The output of the accelerometer, gravity and  linear-acceleration sensors must obey the
 * following relation:
 *
 *   acceleration = gravity + linear-acceleration
 *
 *
 * Rotation Vector
 * ---------------
 * A rotation vector represents the orientation of the device as a combination
 * of an angle and an axis, in which the device has rotated through an angle
 * theta around an axis <x, y, z>. The three elements of the rotation vector
 * are <x*sin(theta/2), y*sin(theta/2), z*sin(theta/2)>, such that the magnitude
 * of the rotation vector is equal to sin(theta/2), and the direction of the
 * rotation vector is equal to the direction of the axis of rotation. The three
 * elements of the rotation vector are equal to the last three components of a
 * unit quaternion <cos(theta/2), x*sin(theta/2), y*sin(theta/2), z*sin(theta/2)>.
 * Elements of the rotation vector are unitless.  The x, y, and z axis are defined
 * in the same was as for the acceleration sensor.
 *
 * The reference coordinate system is defined as a direct orthonormal basis,
 * where:
 *
 * - X is defined as the vector product Y.Z (It is tangential to
 * the ground at the device's current location and roughly points East).
 *
 * - Y is tangential to the ground at the device's current location and
 * points towards the magnetic North Pole.
 *
 * - Z points towards the sky and is perpendicular to the ground.
 *
 *
 * The rotation-vector is stored as:
 *
 *   sensors_event_t.data[0] = x*sin(theta/2)
 *   sensors_event_t.data[1] = y*sin(theta/2)
 *   sensors_event_t.data[2] = z*sin(theta/2)
 *   sensors_event_t.data[3] =   cos(theta/2)
 *
 *
 * Relative Humidity
 * -----------------
 *
 * A relative humidity sensor measures relative ambient air humidity and
 * returns a value in percent.
 *
 * Relative humidity sensors report a value only when it changes and each
 * time the sensor is enabled.
 *
 *
 * Ambient Temperature
 * -------------------
 *
 * The ambient (room) temperature in degree Celsius.
 *
 * Temperature sensors report a value only when it changes and each time the
 * sensor is enabled.
 *
 */

typedef struct {
    union {
        float v[3];
        struct {
            float x;
            float y;
            float z;
        };
        struct {
            float azimuth;
            float pitch;
            float roll;
        };
    };
    int8_t status;
    uint8_t reserved[3];
} sensors_vec_t;

/**
 * Union of the various types of sensor data
 * that can be returned.
 */
typedef struct sensors_event_t {
    /* must be sizeof(struct sensors_event_t) */
    int32_t version;

    /* sensor identifier */
    int32_t sensor;

    /* sensor type */
    int32_t type;

    /* reserved */
    int32_t reserved0;

    /* time is in nanosecond */
    int64_t timestamp;

    union {
        float           data[16];

        /* acceleration values are in meter per second per second (m/s^2) */
        sensors_vec_t   acceleration;

        /* magnetic vector values are in micro-Tesla (uT) */
        sensors_vec_t   magnetic;

        /* orientation values are in degrees */
        sensors_vec_t   orientation;

        /* gyroscope values are in rad/s */
        sensors_vec_t   gyro;

        /* temperature is in degrees centigrade (Celsius) */
        float           temperature;

        /* distance in centimeters */
        float           distance;

        /* light in SI lux units */
        float           light;

        /* pressure in hectopascal (hPa) */
        float           pressure;

        /* relative humidity in percent */
        float           relative_humidity;
    };
    uint32_t        reserved1[4];
} sensors_event_t;



struct sensor_t;

/**
 * Every hardware module must have a data structure named HAL_MODULE_INFO_SYM
 * and the fields of this data structure must begin with hw_module_t
 * followed by module specific information.
 */
struct sensors_module_t {
    struct hw_module_t common;

    /**
     * Enumerate all available sensors. The list is returned in "list".
     * @return number of sensors in the list
     */
    int (*get_sensors_list)(struct sensors_module_t* module,
            struct sensor_t const** list);
};

struct sensor_t {
    /* name of this sensors */
    const char*     name;
    /* vendor of the hardware part */
    const char*     vendor;
    /* version of the hardware part + driver. The value of this field is
     * left to the implementation and doesn't have to be monotonically
     * increasing.
     */    
    int             version;
    /* handle that identifies this sensors. This handle is used to activate
     * and deactivate this sensor. The value of the handle must be 8 bits
     * in this version of the API. 
     */
    int             handle;
    /* this sensor's type. */
    int             type;
    /* maximaum range of this sensor's value in SI units */
    float           maxRange;
    /* smallest difference between two values reported by this sensor */
    float           resolution;
    /* rough estimate of this sensor's power consumption in mA */
    float           power;
    /* minimum delay allowed between events in microseconds. A value of zero
     * means that this sensor doesn't report events at a constant rate, but
     * rather only when a new data is available */
    int32_t         minDelay;
    /* reserved fields, must be zero */
    void*           reserved[8];
};


/**
 * Every device data structure must begin with hw_device_t
 * followed by module specific public methods and attributes.
 */
struct sensors_poll_device_t {
    struct hw_device_t common;

    /** Activate/deactivate one sensor.
     *
     * @param handle is the handle of the sensor to change.
     * @param enabled set to 1 to enable, or 0 to disable the sensor.
     *
     * @return 0 on success, negative errno code otherwise
     */
    int (*activate)(struct sensors_poll_device_t *dev,
            int handle, int enabled);

    /**
     * Set the delay between sensor events in nanoseconds for a given sensor.
     *
     * It is an error to set a delay inferior to the value defined by
     * sensor_t::minDelay.
     *
     * If sensor_t::minDelay is zero, setDelay() returns an error if the
     * requested delay is inferior to 1ms.
     *
     * @return 0 if successful, < 0 on error
     */
    int (*setDelay)(struct sensors_poll_device_t *dev,
            int handle, int64_t ns);

    /**
     * Returns an array of sensor data.
     * This function must block until events are available.
     *
     * @return the number of events read on success, or -errno in case of an error.
     * This function should never return 0 (no event).
     *
     */
    int (*poll)(struct sensors_poll_device_t *dev,
            sensors_event_t* data, int count);
};

/** convenience API for opening and closing a device */

static inline int sensors_open(const struct hw_module_t* module,
        struct sensors_poll_device_t** device) {
    return module->methods->open(module,
            SENSORS_HARDWARE_POLL, (struct hw_device_t**)device);
}

static inline int sensors_close(struct sensors_poll_device_t* device) {
    return device->common.close(&device->common);
}

__END_DECLS

#endif  // ANDROID_SENSORS_INTERFACE_H