summaryrefslogtreecommitdiffstats
path: root/include/hardware/sensors.h
blob: c9ff6689d29a8fc30d9b5d3e8bb768a22d5f5339 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ANDROID_SENSORS_INTERFACE_H
#define ANDROID_SENSORS_INTERFACE_H

#include <stdint.h>
#include <sys/cdefs.h>
#include <sys/types.h>

#include <hardware/hardware.h>
#include <cutils/native_handle.h>

__BEGIN_DECLS

/*****************************************************************************/

#define SENSORS_HEADER_VERSION          1
#define SENSORS_MODULE_API_VERSION_0_1  HARDWARE_MODULE_API_VERSION(0, 1)
#define SENSORS_DEVICE_API_VERSION_0_1  HARDWARE_DEVICE_API_VERSION_2(0, 1, SENSORS_HEADER_VERSION)
#define SENSORS_DEVICE_API_VERSION_1_0  HARDWARE_DEVICE_API_VERSION_2(1, 0, SENSORS_HEADER_VERSION)

/**
 * The id of this module
 */
#define SENSORS_HARDWARE_MODULE_ID "sensors"

/**
 * Name of the sensors device to open
 */
#define SENSORS_HARDWARE_POLL       "poll"

/**
 * Handles must be higher than SENSORS_HANDLE_BASE and must be unique.
 * A Handle identifies a given sensors. The handle is used to activate
 * and/or deactivate sensors.
 * In this version of the API there can only be 256 handles.
 */
#define SENSORS_HANDLE_BASE             0
#define SENSORS_HANDLE_BITS             8
#define SENSORS_HANDLE_COUNT            (1<<SENSORS_HANDLE_BITS)


/* attributes queriable with query() */
enum {
    /*
     * Availability: SENSORS_DEVICE_API_VERSION_1_0
     * return the maximum number of events that can be returned
     * in a single call to (*poll)(). This value is used by the
     * framework to adequately dimension the buffer passed to
     * (*poll)(), note that (*poll)() still needs to pay attention to
     * the count parameter passed to it, it cannot blindly expect that
     * this value will be used for all calls to (*poll)().
     *
     * Generally this value should be set to match the sum of the internal
     * FIFOs of all available sensors.
     */
    SENSORS_QUERY_MAX_EVENTS_BATCH_COUNT     = 0
};

/*
 * flags for (*batch)()
 * Availability: SENSORS_DEVICE_API_VERSION_1_0
 * see (*batch)() documentation for details
 */
enum {
    SENSORS_BATCH_DRY_RUN               = 0x00000001,
    SENSORS_BATCH_WAKE_UPON_FIFO_FULL   = 0x00000002
};

/**
 * Definition of the axis used by the sensor HAL API
 *
 * This API is relative to the screen of the device in its default orientation,
 * that is, if the device can be used in portrait or landscape, this API
 * is only relative to the NATURAL orientation of the screen. In other words,
 * the axis are not swapped when the device's screen orientation changes.
 * Higher level services /may/ perform this transformation.
 *
 *   x<0         x>0
 *                ^
 *                |
 *    +-----------+-->  y>0
 *    |           |
 *    |           |
 *    |           |
 *    |           |   / z<0
 *    |           |  /
 *    |           | /
 *    O-----------+/
 *    |[]  [ ]  []/
 *    +----------/+     y<0
 *              /
 *             /
 *           |/ z>0 (toward the sky)
 *
 *    O: Origin (x=0,y=0,z=0)
 *
 */

/*
 * Interaction with suspend mode
 *
 * Unless otherwise noted, an enabled sensor shall not prevent the
 * SoC to go into suspend mode. It is the responsibility of applications
 * to keep a partial wake-lock should they wish to receive sensor
 * events while the screen is off. While in suspend mode, and unless
 * otherwise noted, enabled sensors' events are lost.
 *
 * Note that conceptually, the sensor itself is not de-activated while in
 * suspend mode -- it's just that the data it returns are lost. As soon as
 * the SoC gets out of suspend mode, operations resume as usual. Of course,
 * in practice sensors shall be disabled while in suspend mode to
 * save power, unless batch mode is active, in which case they must
 * continue fill their internal FIFO (see the documentation of batch() to
 * learn how suspend interacts with batch mode).
 *
 * In batch mode and only when the flag SENSORS_BATCH_WAKE_UPON_FIFO_FULL is
 * set and supported, the specified sensor must be able to wake-up the SoC.
 *
 * There are notable exceptions to this behavior, which are sensor-dependent
 * (see sensor types definitions below)
 *
 *
 * The sensor type documentation below specifies the wake-up behavior of
 * each sensor:
 *   wake-up: yes     this sensor must wake-up the SoC to deliver events
 *   wake-up: no      this sensor shall not wake-up the SoC, events are dropped
 *
 */

/*
 * Sensor type
 *
 * Each sensor has a type which defines what this sensor measures and how
 * measures are reported. All types are defined below.
 */

/*
 * Sensor fusion and virtual sensors
 *
 * Many sensor types are or can be implemented as virtual sensors from
 * physical sensors on the device. For instance the rotation vector sensor,
 * orientation sensor, pedometer, step-counter, etc...
 *
 * From the point of view of this API these virtual sensors MUST appear as
 * real, individual sensors. It is the responsibility of the driver and HAL
 * to make sure this is the case.
 *
 * In particular, all sensors must be able to function concurrently.
 * For example, if defining both an accelerometer and a step counter,
 * then both must be able to work concurrently.
 */

/*
 * Trigger modes
 *
 * Sensors can report events in different ways called trigger modes,
 * each sensor type has one and only one trigger mode associated to it.
 * Currently there are four trigger modes defined:
 *
 * continuous: events are reported at a constant rate defined by setDelay().
 *             eg: accelerometers, gyroscopes.
 * on-change:  events are reported only if the sensor's value has changed.
 *             setDelay() is used to set a lower limit to the reporting
 *             period (minimum time between two events).
 *             The HAL must return an event immediately when an on-change
 *             sensor is activated.
 *             eg: proximity, light sensors
 * one-shot:   a single event is reported and the sensor returns to the
 *             disabled state, no further events are reported. setDelay() is
 *             ignored.
 *             eg: significant motion sensor
 * special:    see details in the sensor type specification below
 *
 */

/*
 * SENSOR_TYPE_ACCELEROMETER
 * trigger-mode: continuous
 * wake-up sensor: no
 *
 *  All values are in SI units (m/s^2) and measure the acceleration of the
 *  device minus the force of gravity.
 *
 *  Acceleration sensors return sensor events for all 3 axes at a constant
 *  rate defined by setDelay().
 *
 *  x: Acceleration on the x-axis
 *  y: Acceleration on the y-axis
 *  z: Acceleration on the z-axis
 *
 * Note that the readings from the accelerometer include the acceleration
 * due to gravity (which is opposite to the direction of the gravity vector).
 *
 *  Examples:
 *    The norm of <x, y, z>  should be close to 0 when in free fall.
 *
 *    When the device lies flat on a table and is pushed on its left side
 *    toward the right, the x acceleration value is positive.
 *
 *    When the device lies flat on a table, the acceleration value is +9.81,
 *    which correspond to the acceleration of the device (0 m/s^2) minus the
 *    force of gravity (-9.81 m/s^2).
 *
 *    When the device lies flat on a table and is pushed toward the sky, the
 *    acceleration value is greater than +9.81, which correspond to the
 *    acceleration of the device (+A m/s^2) minus the force of
 *    gravity (-9.81 m/s^2).
 */
#define SENSOR_TYPE_ACCELEROMETER                    (1)

/*
 * SENSOR_TYPE_GEOMAGNETIC_FIELD
 * trigger-mode: continuous
 * wake-up sensor: no
 *
 *  All values are in micro-Tesla (uT) and measure the geomagnetic
 *  field in the X, Y and Z axis.
 *
 *  Returned values include calibration mechanisms such that the vector is
 *  aligned with the magnetic declination and heading of the earth's
 *  geomagnetic field.
 *
 *  Magnetic Field sensors return sensor events for all 3 axes at a constant
 *  rate defined by setDelay().
 */
#define SENSOR_TYPE_GEOMAGNETIC_FIELD                (2)
#define SENSOR_TYPE_MAGNETIC_FIELD  SENSOR_TYPE_GEOMAGNETIC_FIELD

/*
 * SENSOR_TYPE_ORIENTATION
 * trigger-mode: continuous
 * wake-up sensor: no
 * 
 * All values are angles in degrees.
 * 
 * Orientation sensors return sensor events for all 3 axes at a constant
 * rate defined by setDelay().
 *
 * azimuth: angle between the magnetic north direction and the Y axis, around 
 *  the Z axis (0<=azimuth<360).
 *      0=North, 90=East, 180=South, 270=West
 * 
 * pitch: Rotation around X axis (-180<=pitch<=180), with positive values when
 *  the z-axis moves toward the y-axis.
 *
 * roll: Rotation around Y axis (-90<=roll<=90), with positive values when
 *  the x-axis moves towards the z-axis.
 *
 * Note: For historical reasons the roll angle is positive in the clockwise
 *  direction (mathematically speaking, it should be positive in the
 *  counter-clockwise direction):
 *
 *                Z
 *                ^
 *  (+roll)  .--> |
 *          /     |
 *         |      |  roll: rotation around Y axis
 *     X <-------(.)
 *                 Y
 *       note that +Y == -roll
 *
 *
 *
 * Note: This definition is different from yaw, pitch and roll used in aviation
 *  where the X axis is along the long side of the plane (tail to nose).
 */
#define SENSOR_TYPE_ORIENTATION                      (3)

/*
 * SENSOR_TYPE_GYROSCOPE
 * trigger-mode: continuous
 * wake-up sensor: no
 *
 *  All values are in radians/second and measure the rate of rotation
 *  around the X, Y and Z axis.  The coordinate system is the same as is
 *  used for the acceleration sensor. Rotation is positive in the
 *  counter-clockwise direction (right-hand rule). That is, an observer
 *  looking from some positive location on the x, y or z axis at a device
 *  positioned on the origin would report positive rotation if the device
 *  appeared to be rotating counter clockwise. Note that this is the
 *  standard mathematical definition of positive rotation and does not agree
 *  with the definition of roll given earlier.
 *  The range should at least be 17.45 rad/s (ie: ~1000 deg/s).
 *
 *  automatic gyro-drift compensation is allowed but not required.
 */
#define SENSOR_TYPE_GYROSCOPE                        (4)

/*
 * SENSOR_TYPE_LIGHT
 * trigger-mode: on-change
 * wake-up sensor: no
 *
 * The light sensor value is returned in SI lux units.
 */
#define SENSOR_TYPE_LIGHT                            (5)

/*
 * SENSOR_TYPE_PRESSURE
 * trigger-mode: continuous
 * wake-up sensor: no
 *
 * The pressure sensor return the athmospheric pressure in hectopascal (hPa)
 */
#define SENSOR_TYPE_PRESSURE                         (6)

/* SENSOR_TYPE_TEMPERATURE is deprecated in the HAL */
#define SENSOR_TYPE_TEMPERATURE                      (7)

/*
 * SENSOR_TYPE_PROXIMITY
 * trigger-mode: on-change
 * wake-up sensor: yes
 *
 * The distance value is measured in centimeters.  Note that some proximity
 * sensors only support a binary "close" or "far" measurement.  In this case,
 * the sensor should report its maxRange value in the "far" state and a value
 * less than maxRange in the "near" state.
 */
#define SENSOR_TYPE_PROXIMITY                        (8)

/*
 * SENSOR_TYPE_GRAVITY
 * trigger-mode: continuous
 * wake-up sensor: no
 *
 * A gravity output indicates the direction of and magnitude of gravity in
 * the devices's coordinates.  On Earth, the magnitude is 9.8 m/s^2.
 * Units are m/s^2.  The coordinate system is the same as is used for the
 * acceleration sensor. When the device is at rest, the output of the
 * gravity sensor should be identical to that of the accelerometer.
 */
#define SENSOR_TYPE_GRAVITY                          (9)

/*
 * SENSOR_TYPE_LINEAR_ACCELERATION
 * trigger-mode: continuous
 * wake-up sensor: no
 *
 * Indicates the linear acceleration of the device in device coordinates,
 * not including gravity.
 *
 * The output is conceptually:
 *    output of TYPE_ACCELERATION - output of TYPE_GRAVITY
 *
 * Readings on all axes should be close to 0 when device lies on a table.
 * Units are m/s^2.
 * The coordinate system is the same as is used for the acceleration sensor.
 */
#define SENSOR_TYPE_LINEAR_ACCELERATION             (10)


/*
 * SENSOR_TYPE_ROTATION_VECTOR
 * trigger-mode: continuous
 * wake-up sensor: no
 *
 * A rotation vector represents the orientation of the device as a combination
 * of an angle and an axis, in which the device has rotated through an angle
 * theta around an axis <x, y, z>. The three elements of the rotation vector
 * are <x*sin(theta/2), y*sin(theta/2), z*sin(theta/2)>, such that the magnitude
 * of the rotation vector is equal to sin(theta/2), and the direction of the
 * rotation vector is equal to the direction of the axis of rotation. The three
 * elements of the rotation vector are equal to the last three components of a
 * unit quaternion <cos(theta/2), x*sin(theta/2), y*sin(theta/2), z*sin(theta/2)>.
 * Elements of the rotation vector are unitless.  The x, y, and z axis are defined
 * in the same was as for the acceleration sensor.
 *
 * The reference coordinate system is defined as a direct orthonormal basis,
 * where:
 *
 * - X is defined as the vector product Y.Z (It is tangential to
 * the ground at the device's current location and roughly points East).
 *
 * - Y is tangential to the ground at the device's current location and
 * points towards the magnetic North Pole.
 *
 * - Z points towards the sky and is perpendicular to the ground.
 *
 *
 * The rotation-vector is stored as:
 *
 *   sensors_event_t.data[0] = x*sin(theta/2)
 *   sensors_event_t.data[1] = y*sin(theta/2)
 *   sensors_event_t.data[2] = z*sin(theta/2)
 *   sensors_event_t.data[3] =   cos(theta/2)
 */
#define SENSOR_TYPE_ROTATION_VECTOR                 (11)

/*
 * SENSOR_TYPE_RELATIVE_HUMIDITY
 * trigger-mode: on-change
 * wake-up sensor: no
 *
 * A relative humidity sensor measures relative ambient air humidity and
 * returns a value in percent.
 */
#define SENSOR_TYPE_RELATIVE_HUMIDITY               (12)

/*
 * SENSOR_TYPE_AMBIENT_TEMPERATURE
 * trigger-mode: on-change
 * wake-up sensor: no
 *
 * The ambient (room) temperature in degree Celsius.
 */
#define SENSOR_TYPE_AMBIENT_TEMPERATURE             (13)

/*
 * SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED
 * trigger-mode: continuous
 * wake-up sensor: no
 *
 *  All values are in micro-Tesla (uT) and measure the ambient magnetic
 *  field in the X, Y and Z axis.
 *
 *  No periodic calibration is performed (ie: there are no discontinuities
 *  in the data stream while using this sensor). Assumptions that the the
 *  magnetic field is due to the Earth's poles should be avoided.
 *
 *  Factory calibration and temperature compensation should still be applied.
 */
#define SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED     (14)

/*
 * SENSOR_TYPE_GAME_ROTATION_VECTOR
 * trigger-mode: continuous
 * wake-up sensor: no
 *
 * SENSOR_TYPE_GAME_ROTATION_VECTOR is identical to SENSOR_TYPE_ROTATION_VECTOR,
 * except that it doesn't use the geomagnetic field. Therefore the Y axis doesn't
 * point north, but instead to some other reference, that reference is allowed
 * to drift by the same order of magnitude than the gyroscope drift around
 * the Z axis.
 *
 * In the ideal case, a phone rotated and returning to the same real-world
 * orientation should report the same game rotation vector
 * (without using the earth's geomagnetic field).
 *
 * see SENSOR_TYPE_ROTATION_VECTOR for more details
 */
#define SENSOR_TYPE_GAME_ROTATION_VECTOR            (15)

/*
 * SENSOR_TYPE_GYROSCOPE_UNCALIBRATED
 * trigger-mode: continuous
 * wake-up sensor: no
 *
 *  All values are in radians/second and measure the rate of rotation
 *  around the X, Y and Z axis.  The coordinate system is the same as is
 *  used for the acceleration sensor. Rotation is positive in the
 *  counter-clockwise direction (right-hand rule). That is, an observer
 *  looking from some positive location on the x, y or z axis at a device
 *  positioned on the origin would report positive rotation if the device
 *  appeared to be rotating counter clockwise. Note that this is the
 *  standard mathematical definition of positive rotation and does not agree
 *  with the definition of roll given earlier.
 *  The range should at least be 17.45 rad/s (ie: ~1000 deg/s).
 *
 *  No gyro-drift compensation shall be performed.
 *  Factory calibration and temperature compensation should still be applied.
 */
#define SENSOR_TYPE_GYROSCOPE_UNCALIBRATED          (16)


/*
 * SENSOR_TYPE_SIGNIFICANT_MOTION
 * trigger-mode: one-shot
 * wake-up sensor: yes
 *
 * A sensor of this type triggers an event each time significant motion
 * is detected and automatically disables itself.
 * The only allowed value to return is 1.0.
 *
 *
 * TODO: give more details about what constitute significant motion
 *       and/or what algorithm is to be used
 *
 *
 *  IMPORTANT NOTE: this sensor type is very different from other types
 *  in that it must work when the screen is off without the need of
 *  holding a partial wake-lock and MUST allow the SoC to go into suspend.
 *  When significant motion is detected, the sensor must awaken the SoC and
 *  the event be reported.
 *
 *  If a particular hardware cannot support this mode of operation then this
 *  sensor type MUST NOT be reported by the HAL. ie: it is not acceptable
 *  to "emulate" this sensor in the HAL.
 *
 *  The whole point of this sensor type is to save power by keeping the
 *  SoC in suspend mode when the device is at rest.
 *
 *  When the sensor is not activated, it must also be deactivated in the
 *  hardware: it must not wake up the SoC anymore, even in case of
 *  significant motion.
 *
 *  setDelay() has no effect and is ignored.
 *  Once a "significant motion" event is returned, a sensor of this type
 *  must disables itself automatically, as if activate(..., 0) had been called.
 */

#define SENSOR_TYPE_SIGNIFICANT_MOTION              (17)


/*
 * SENSOR_TYPE_PEDOMETER
 * trigger-mode: special
 * wake-up sensor: no
 *
 * A sensor of this type triggers an event each time a step is taken
 * by the user. The only allowed value to return is 1.0 and an event is
 * generated for each step. Like with any other event, the timestamp
 * indicates when the event (here the step) occurred, this corresponds to when
 * the foot hit the ground, generating a high variation in acceleration.
 *
 * While this sensor operates, it shall not disrupt any other sensors, in
 * particular, but not limited to, the accelerometer; which might very well
 * be in use as well.
 *
 * This sensor must be low power. That is, if the step detection cannot be
 * done in hardware, this sensor should not be defined. Also, when the
 * pedometer is activated and the accelerometer is not, only steps should
 * trigger interrupts (not accelerometer data).
 *
 * setDelay() has no impact on this sensor type
 */

#define SENSOR_TYPE_PEDOMETER                       (18)


/*
 * SENSOR_TYPE_STEP_COUNTER
 * trigger-mode: on-change
 * wake-up sensor: no
 *
 * A sensor of this type returns the number of steps taken by the user since
 * the last reboot. The value is returned as a uint64_t and is reset to
 * zero only on a system reboot.
 *
 * The timestamp of the event is set to the time when the first step
 * for that event was taken.
 * See SENSOR_TYPE_PEDOMETER for the signification of the time of a step.
 *
 *  The minimum size of the hardware's internal counter shall be 16 bits
 *  (this restriction is here to avoid too frequent wake-ups when the
 *  delay is very large).
 *
 *  IMPORTANT NOTE: this sensor type is different from other types
 *  in that it must work when the screen is off without the need of
 *  holding a partial wake-lock and MUST allow the SoC to go into suspend.
 *  Unlike other sensors, while in suspend mode this sensor must stay active,
 *  no events are reported during that time but, steps continue to be
 *  accounted for; an event will be reported as soon as the SoC resumes if
 *  the timeout has expired.
 *
 *    In other words, when the screen is off and the device allowed to
 *    go into suspend mode, we don't want to be woken up, regardless of the
 *    setDelay() value, but the steps shall continue to be counted.
 *
 *    The driver must however ensure that the internal step count never
 *    overflows. It is allowed in this situation to wake the SoC up so the
 *    driver can do the counter maintenance.
 *
 *  While this sensor operates, it shall not disrupt any other sensors, in
 *  particular, but not limited to, the accelerometer; which might very well
 *  be in use as well.
 *
 *  If a particular hardware cannot support these modes of operation then this
 *  sensor type MUST NOT be reported by the HAL. ie: it is not acceptable
 *  to "emulate" this sensor in the HAL.
 *
 * This sensor must be low power. That is, if the step detection cannot be
 * done in hardware, this sensor should not be defined. Also, when the
 * step counter is activated and the accelerometer is not, only steps should
 * trigger interrupts (not accelerometer data).
 *
 *  The whole point of this sensor type is to save power by keeping the
 *  SoC in suspend mode when the device is at rest.
 */

#define SENSOR_TYPE_STEP_COUNTER                    (19)


/**
 * Values returned by the accelerometer in various locations in the universe.
 * all values are in SI units (m/s^2)
 */
#define GRAVITY_SUN             (275.0f)
#define GRAVITY_EARTH           (9.80665f)

/** Maximum magnetic field on Earth's surface */
#define MAGNETIC_FIELD_EARTH_MAX    (60.0f)

/** Minimum magnetic field on Earth's surface */
#define MAGNETIC_FIELD_EARTH_MIN    (30.0f)


/**
 * status of orientation sensor
 */

#define SENSOR_STATUS_UNRELIABLE        0
#define SENSOR_STATUS_ACCURACY_LOW      1
#define SENSOR_STATUS_ACCURACY_MEDIUM   2
#define SENSOR_STATUS_ACCURACY_HIGH     3


/**
 * sensor event data
 */
typedef struct {
    union {
        float v[3];
        struct {
            float x;
            float y;
            float z;
        };
        struct {
            float azimuth;
            float pitch;
            float roll;
        };
    };
    int8_t status;
    uint8_t reserved[3];
} sensors_vec_t;

/**
 * Union of the various types of sensor data
 * that can be returned.
 */
typedef struct sensors_event_t {
    /* must be sizeof(struct sensors_event_t) */
    int32_t version;

    /* sensor identifier */
    int32_t sensor;

    /* sensor type */
    int32_t type;

    /* reserved */
    int32_t reserved0;

    /* time is in nanosecond */
    int64_t timestamp;

    union {
        float           data[16];

        /* acceleration values are in meter per second per second (m/s^2) */
        sensors_vec_t   acceleration;

        /* magnetic vector values are in micro-Tesla (uT) */
        sensors_vec_t   magnetic;

        /* orientation values are in degrees */
        sensors_vec_t   orientation;

        /* gyroscope values are in rad/s */
        sensors_vec_t   gyro;

        /* temperature is in degrees centigrade (Celsius) */
        float           temperature;

        /* distance in centimeters */
        float           distance;

        /* light in SI lux units */
        float           light;

        /* pressure in hectopascal (hPa) */
        float           pressure;

        /* relative humidity in percent */
        float           relative_humidity;

        /* step-counter */
        uint64_t        step_counter;
    };
    uint32_t        reserved1[4];
} sensors_event_t;



struct sensor_t;

/**
 * Every hardware module must have a data structure named HAL_MODULE_INFO_SYM
 * and the fields of this data structure must begin with hw_module_t
 * followed by module specific information.
 */
struct sensors_module_t {
    struct hw_module_t common;

    /**
     * Enumerate all available sensors. The list is returned in "list".
     * @return number of sensors in the list
     */
    int (*get_sensors_list)(struct sensors_module_t* module,
            struct sensor_t const** list);
};

struct sensor_t {
    /* name of this sensor */
    const char*     name;

    /* vendor of the hardware part */
    const char*     vendor;

    /* version of the hardware part + driver. The value of this field
     * must increase when the driver is updated in a way that changes the
     * output of this sensor. This is important for fused sensors when the
     * fusion algorithm is updated.
     */    
    int             version;

    /* handle that identifies this sensors. This handle is used to reference
     * this sensor throughout the HAL API.
     */
    int             handle;

    /* this sensor's type. */
    int             type;

    /* maximum range of this sensor's value in SI units */
    float           maxRange;

    /* smallest difference between two values reported by this sensor */
    float           resolution;

    /* rough estimate of this sensor's power consumption in mA */
    float           power;

    /* this value depends on the trigger mode:
     *
     *   continuous: minimum sample period allowed in microseconds
     *   on-change : 0
     *   one-shot  :-1
     *   special   : 0, unless otherwise noted
     */
    int32_t         minDelay;

    /* reserved fields, must be zero */
    void*           reserved[8];
};


/*
 * sensors_poll_device_t is used with SENSORS_DEVICE_API_VERSION_0_1
 * and is present for backward binary and source compatibility.
 * (see documentation of the hooks in struct sensors_poll_device_1 below)
 */
struct sensors_poll_device_t {
    struct hw_device_t common;
    int (*activate)(struct sensors_poll_device_t *dev,
            int handle, int enabled);
    int (*setDelay)(struct sensors_poll_device_t *dev,
            int handle, int64_t ns);
    int (*poll)(struct sensors_poll_device_t *dev,
            sensors_event_t* data, int count);
};

/*
 * struct sensors_poll_device_1 is used with SENSORS_DEVICE_API_VERSION_1_0
 */
typedef struct sensors_poll_device_1 {
    union {
        /* sensors_poll_device_1 is compatible with sensors_poll_device_t,
         * and can be down-cast to it
         */
        sensors_poll_device_t v0;

        struct {
            struct hw_device_t common;

            /* Activate/de-activate one sensor.
             *
             * handle is the handle of the sensor to change.
             * enabled set to 1 to enable, or 0 to disable the sensor.
             *
             * unless otherwise noted in the sensor types definitions, an
             * activated sensor never prevents the SoC to go into suspend
             * mode; that is, the HAL shall not hold a partial wake-lock on
             * behalf of applications.
             *
             * one-shot sensors de-activate themselves automatically upon
             * receiving an event and they must still accept to be deactivated
             * through a call to activate(..., ..., 0).
             *
             * if "enabled" is true and the sensor is already activated, this
             * function is a no-op and succeeds.
             *
             * if "enabled" is false and the sensor is already de-activated,
             * this function is a no-op and succeeds.
             *
             * return 0 on success, negative errno code otherwise
             */
            int (*activate)(struct sensors_poll_device_t *dev,
                    int handle, int enabled);

            /**
             * Set the delay between sensor events in nanoseconds for a given sensor.
             *
             * What the delay parameter means depends on the specified
             * sensor's trigger mode:
             *
             * continuous: setDelay() sets the sampling rate.
             * on-change: setDelay() limits the delivery rate of events
             * one-shot: setDelay() is ignored. it has no effect.
             * special: see specific sensor type definitions
             *
             * For continuous and on-change sensors, if the requested value is
             * less than sensor_t::minDelay, then it's silently clamped to
             * sensor_t::minDelay unless sensor_t::minDelay is 0, in which
             * case it is clamped to >= 1ms.
             *
             * @return 0 if successful, < 0 on error
             */
            int (*setDelay)(struct sensors_poll_device_t *dev,
                    int handle, int64_t ns);

            /**
             * Returns an array of sensor data.
             * This function must block until events are available.
             *
             * return the number of events read on success, or -errno in case
             * of an error.
             *
             * The number of events returned in data must be less or equal
             * to SENSORS_QUERY_MAX_EVENTS_BATCH_COUNT.
             *
             * This function shall never return 0 (no event).
             */
            int (*poll)(struct sensors_poll_device_t *dev,
                    sensors_event_t* data, int count);
        };
    };

    /*
     * Used to retrieve information about the sensor HAL
     *
     * Returns 0 on success or -errno on error.
     */
    int (*query)(struct sensors_poll_device_1* dev, int what, int* value);


    /*
     * Enables batch mode for the given sensor.
     *
     * A timeout value of zero disables batch mode for the given sensor.
     *
     * While in batch mode sensor events are reported in batches at least
     * every "timeout" nanosecond; that is all events since the previous batch
     * are recorded and returned all at once. Batches can be interleaved and
     * split, and as usual events of the same sensor type are time-ordered.
     *
     * setDelay() is not affected and it behaves as usual.
     *
     * Each event has a timestamp associated with it, the timestamp
     * must be accurate and correspond to the time at which the event
     * physically happened.
     *
     * If internal h/w FIFOs fill-up before the timeout, then events are
     * reported at that point. No event shall be dropped or lost,
     *
     * By default batch mode doesn't significantly change the interaction with
     * suspend mode, that is, sensors must continue to allow the SoC to
     * go into suspend mode and sensors must stay active to fill their
     * internal FIFO, in this mode, when the FIFO fills-up, it shall wrap
     * around (basically behave like a circular buffer, overwriting events).
     * As soon as the SoC comes out of suspend mode, a batch is produced with
     * as much as the recent history as possible, and batch operation
     * resumes as usual.
     *
     * The behavior described above allows applications to record the recent
     * history of a set of sensor while keeping the SoC into suspend. It
     * also allows the hardware to not have to rely on a wake-up interrupt line.
     *
     * There are cases however where an application cannot afford to lose
     * any events, even when the device goes into suspend mode. The behavior
     * specified above can be altered by setting the
     * SENSORS_BATCH_WAKE_UPON_FIFO_FULL flag. If this flag is set, the SoC
     * must be woken up from suspend and a batch must be returned before
     * the FIFO fills-up. Enough head room must be allocated in the FIFO to allow
     * the device to entirely come out of suspend (which might take a while and
     * is device dependent) such that no event are lost.
     *
     *   If the hardware cannot support this mode, or, if the physical
     *   FIFO is so small that the device would never be allowed to go into
     *   suspend for long enough (typically 4 to 10 seconds), then this
     *   function MUST fail when the flag SENSORS_BATCH_WAKE_UPON_FIFO_FULL
     *   is set.
     *
     *
     * If the flag SENSORS_BATCH_DRY_RUN is set, this function returns
     * without modifying the batch mode and has no side effects, but returns
     * errors as usual (as it would if this flag was not set). This flag
     * is used to check if batch mode is available for a given configuration.
     *
     * Return values:
     *
     * If successful, 0 is returned.
     * If the specified sensor doesn't support batch mode, -EINVAL is returned.
     * If the specified sensor's trigger-mode is one-shot, -EINVAL is returned.
     * If any of the constraint above cannot be satisfied, -EINVAL is returned.
     *
     * If timeout is set to 0, this function must succeed.
     *
     *
     * IMPLEMENTATION NOTES:
     *
     * batch mode, if supported, should happen at the hardware level,
     * typically using hardware FIFOs. In particular, it SHALL NOT be
     * implemented in the HAL, as this would be counter productive.
     * The goal here is to save significant amounts of power.
     *
     * In SENSORS_BATCH_WAKE_UPON_FIFO_FULL, if the hardware has a
     * limited FIFO size that wouldn't permit significant savings
     * (typical on some gyroscopes), because it wouldn't allow the SoC to go
     * into suspend mode for enough time, then it is imperative to NOT SUPPORT
     * batch mode for that sensor.
     *
     * batch mode can be enabled or disabled at any time, in particular
     * while the specified sensor is already enabled and this shall not
     * result in the loss of events.
     *
     */
    int (*batch)(struct sensors_poll_device_1* dev,
            int handle, int flags, int64_t timeout);

    void (*reserved_procs[8])(void);

} sensors_poll_device_1_t;



/** convenience API for opening and closing a device */

static inline int sensors_open(const struct hw_module_t* module,
        struct sensors_poll_device_t** device) {
    return module->methods->open(module,
            SENSORS_HARDWARE_POLL, (struct hw_device_t**)device);
}

static inline int sensors_close(struct sensors_poll_device_t* device) {
    return device->common.close(&device->common);
}

static inline int sensors_open_1(const struct hw_module_t* module,
        sensors_poll_device_1** device) {
    return module->methods->open(module,
            SENSORS_HARDWARE_POLL, (struct hw_device_t**)device);
}

static inline int sensors_close_1(sensors_poll_device_1* device) {
    return device->common.close(&device->common);
}

__END_DECLS

#endif  // ANDROID_SENSORS_INTERFACE_H