summaryrefslogtreecommitdiffstats
path: root/sensors/sensors_trout.c
blob: f3c0b3a51c948291ea8060c650d6be078cedf004 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
/*
 * Copyright 2008, The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "Sensors"

#include <hardware/sensors.h>
#include <fcntl.h>
#include <errno.h>
#include <dirent.h>
#include <math.h>
#include <poll.h>

#include <linux/input.h>
#include <linux/akm8976.h>

#include <cutils/log.h>
#include <cutils/atomic.h>

/*****************************************************************************/

#define AKM_DEVICE_NAME             "/dev/akm8976_aot"

#define SUPPORTED_SENSORS  (SENSORS_ORIENTATION  |  \
                            SENSORS_ACCELERATION |  \
                            SENSORS_MAGNETIC_FIELD | \
                            SENSORS_ORIENTATION_RAW)


// sensor IDs must be a power of two and
// must match values in SensorManager.java
#define EVENT_TYPE_ACCEL_X          ABS_X
#define EVENT_TYPE_ACCEL_Y          ABS_Z
#define EVENT_TYPE_ACCEL_Z          ABS_Y
#define EVENT_TYPE_ACCEL_STATUS     ABS_WHEEL

#define EVENT_TYPE_YAW              ABS_RX
#define EVENT_TYPE_PITCH            ABS_RY
#define EVENT_TYPE_ROLL             ABS_RZ
#define EVENT_TYPE_ORIENT_STATUS    ABS_RUDDER

#define EVENT_TYPE_MAGV_X           ABS_HAT0X
#define EVENT_TYPE_MAGV_Y           ABS_HAT0Y
#define EVENT_TYPE_MAGV_Z           ABS_BRAKE

#define EVENT_TYPE_TEMPERATURE      ABS_THROTTLE
#define EVENT_TYPE_STEP_COUNT       ABS_GAS

// 720 LSG = 1G
#define LSG                         (720.0f)

// conversion of acceleration data to SI units (m/s^2)
#define CONVERT_A                   (GRAVITY_EARTH / LSG)
#define CONVERT_A_X                 (CONVERT_A)
#define CONVERT_A_Y                 (-CONVERT_A)
#define CONVERT_A_Z                 (CONVERT_A)

// conversion of magnetic data to uT units
#define CONVERT_M                   (1.0f/16.0f)
#define CONVERT_M_X                 (CONVERT_M)
#define CONVERT_M_Y                 (CONVERT_M)
#define CONVERT_M_Z                 (CONVERT_M)

#define SENSOR_STATE_MASK           (0x7FFF)

/*****************************************************************************/

static int sAkmFD = -1;
static uint32_t sActiveSensors = 0;

/*****************************************************************************/

/*
 * We use a Least Mean Squares filter to smooth out the output of the yaw
 * sensor.
 *
 * The goal is to estimate the output of the sensor based on previous acquired
 * samples.
 *
 * We approximate the input by a line with the equation:
 *      Z(t) = a * t + b
 *
 * We use the Least Mean Squares method to calculate a and b so that the
 * distance between the line and the measured COUNT inputs Z(t) is minimal.
 *
 * In practice we only need to compute b, which is the value we're looking for
 * (it's the estimated Z at t=0). However, to improve the latency a little bit,
 * we're going to discard a certain number of samples that are too far from
 * the estimated line and compute b again with the new (trimmed down) samples.
 *
 * notes:
 * 'a' is the slope of the line, and physicaly represent how fast the input
 * is changing. In our case, how fast the yaw is changing, that is, how fast the
 * user is spinning the device (in degre / nanosecond). This value should be
 * zero when the device is not moving.
 *
 * The minimum distance between the line and the samples (which we are not
 * explicitely computing here), is an indication of how bad the samples are
 * and gives an idea of the "quality" of the estimation (well, really of the
 * sensor values).
 *
 */

/* sensor rate in me */
#define SENSORS_RATE_MS     20
/* timeout (constant value) in ms */
#define SENSORS_TIMEOUT_MS  100
/* # of samples to look at in the past for filtering */
#define COUNT               24
/* prediction ratio */
#define PREDICTION_RATIO    (1.0f/3.0f)
/* prediction time in seconds (>=0) */
#define PREDICTION_TIME     ((SENSORS_RATE_MS*COUNT/1000.0f)*PREDICTION_RATIO)

static float mV[COUNT*2];
static float mT[COUNT*2];
static int mIndex;

static inline
float normalize(float x)
{
    x *= (1.0f / 360.0f);
    if (fabsf(x) >= 0.5f)
        x = x - ceilf(x + 0.5f) + 1.0f;
    if (x < 0)
        x += 1.0f;
    x *= 360.0f;
    return x;
}

static void LMSInit(void)
{
    memset(mV, 0, sizeof(mV));
    memset(mT, 0, sizeof(mT));
    mIndex = COUNT;
}

static float LMSFilter(int64_t time, int v)
{
    const float ns = 1.0f / 1000000000.0f;
    const float t = time*ns;
    float v1 = mV[mIndex];
    if ((v-v1) > 180) {
        v -= 360;
    } else if ((v1-v) > 180) {
        v += 360;
    }
    /* Manage the circular buffer, we write the data twice spaced by COUNT
     * values, so that we don't have to memcpy() the array when it's full */
    mIndex++;
    if (mIndex >= COUNT*2)
        mIndex = COUNT;
    mV[mIndex] = v;
    mT[mIndex] = t;
    mV[mIndex-COUNT] = v;
    mT[mIndex-COUNT] = t;

    float A, B, C, D, E;
    float a, b;
    int i;

    A = B = C = D = E = 0;
    for (i=0 ; i<COUNT-1 ; i++) {
        const int j = mIndex - 1 - i;
        const float Z = mV[j];
        const float T = 0.5f*(mT[j] + mT[j+1]) - t;
        float dT = mT[j] - mT[j+1];
        dT *= dT;
        A += Z*dT;
        B += T*(T*dT);
        C +=   (T*dT);
        D += Z*(T*dT);
        E += dT;
    }
    b = (A*B + C*D) / (E*B + C*C);
    a = (E*b - A) / C;
    float f = b + PREDICTION_TIME*a;

    //LOGD("A=%f, B=%f, C=%f, D=%f, E=%f", A,B,C,D,E);
    //LOGD("%lld  %d  %f  %f", time, v, f, a);

    f = normalize(f);
    return f;
}

/*****************************************************************************/

static int open_input()
{
    /* scan all input drivers and look for "compass" */
    int fd = -1;
    const char *dirname = "/dev/input";
    char devname[PATH_MAX];
    char *filename;
    DIR *dir;
    struct dirent *de;
    dir = opendir(dirname);
    if(dir == NULL)
        return -1;
    strcpy(devname, dirname);
    filename = devname + strlen(devname);
    *filename++ = '/';
    while((de = readdir(dir))) {
        if(de->d_name[0] == '.' &&
           (de->d_name[1] == '\0' ||
            (de->d_name[1] == '.' && de->d_name[2] == '\0')))
            continue;
        strcpy(filename, de->d_name);
        fd = open(devname, O_RDONLY);
        if (fd>=0) {
            char name[80];
            if (ioctl(fd, EVIOCGNAME(sizeof(name) - 1), &name) < 1) {
                name[0] = '\0';
            }
            if (!strcmp(name, "compass")) {
                LOGD("using %s (name=%s)", devname, name);
                break;
            }
            close(fd);
            fd = -1;
        }
    }
    closedir(dir);

    if (fd < 0) {
        LOGE("Couldn't find or open 'compass' driver (%s)", strerror(errno));
    }
    return fd;
}

static int open_akm()
{
    if (sAkmFD <= 0) {
        sAkmFD = open(AKM_DEVICE_NAME, O_RDONLY);
        LOGD("%s, fd=%d", __PRETTY_FUNCTION__, sAkmFD);
        LOGE_IF(sAkmFD<0, "Couldn't open %s (%s)",
                AKM_DEVICE_NAME, strerror(errno));
        if (sAkmFD >= 0) {
            sActiveSensors = 0;
        }
    }
    return sAkmFD;
}

static void close_akm()
{
    if (sAkmFD > 0) {
        LOGD("%s, fd=%d", __PRETTY_FUNCTION__, sAkmFD);
        close(sAkmFD);
        sAkmFD = -1;
    }
}

static void enable_disable(int fd, uint32_t sensors, uint32_t mask)
{
    if (fd<0) return;
    short flags;
    
    if (sensors & SENSORS_ORIENTATION_RAW) {
        sensors |= SENSORS_ORIENTATION;
        mask |= SENSORS_ORIENTATION;
    } else if (mask & SENSORS_ORIENTATION_RAW) {
        mask |= SENSORS_ORIENTATION;
    }
    
    if (mask & SENSORS_ORIENTATION) {
        flags = (sensors & SENSORS_ORIENTATION) ? 1 : 0;
        if (ioctl(fd, ECS_IOCTL_APP_SET_MFLAG, &flags) < 0) {
            LOGE("ECS_IOCTL_APP_SET_MFLAG error (%s)", strerror(errno));
        }
    }
    if (mask & SENSORS_ACCELERATION) {
        flags = (sensors & SENSORS_ACCELERATION) ? 1 : 0;
        if (ioctl(fd, ECS_IOCTL_APP_SET_AFLAG, &flags) < 0) {
            LOGE("ECS_IOCTL_APP_SET_AFLAG error (%s)", strerror(errno));
        }
    }
    if (mask & SENSORS_TEMPERATURE) {
        flags = (sensors & SENSORS_TEMPERATURE) ? 1 : 0;
        if (ioctl(fd, ECS_IOCTL_APP_SET_TFLAG, &flags) < 0) {
            LOGE("ECS_IOCTL_APP_SET_TFLAG error (%s)", strerror(errno));
        }
    }
#ifdef ECS_IOCTL_APP_SET_MVFLAG
    if (mask & SENSORS_MAGNETIC_FIELD) {
        flags = (sensors & SENSORS_MAGNETIC_FIELD) ? 1 : 0;
        if (ioctl(fd, ECS_IOCTL_APP_SET_MVFLAG, &flags) < 0) {
            LOGE("ECS_IOCTL_APP_SET_MVFLAG error (%s)", strerror(errno));
        }
    }
#endif
}

static uint32_t read_sensors_state(int fd)
{
    if (fd<0) return 0;
    short flags;
    uint32_t sensors = 0;
    // read the actual value of all sensors
    if (!ioctl(fd, ECS_IOCTL_APP_GET_MFLAG, &flags)) {
        if (flags)  sensors |= SENSORS_ORIENTATION;
        else        sensors &= ~SENSORS_ORIENTATION;
    }
    if (!ioctl(fd, ECS_IOCTL_APP_GET_AFLAG, &flags)) {
        if (flags)  sensors |= SENSORS_ACCELERATION;
        else        sensors &= ~SENSORS_ACCELERATION;
    }
    if (!ioctl(fd, ECS_IOCTL_APP_GET_TFLAG, &flags)) {
        if (flags)  sensors |= SENSORS_TEMPERATURE;
        else        sensors &= ~SENSORS_TEMPERATURE;
    }
#ifdef ECS_IOCTL_APP_SET_MVFLAG
    if (!ioctl(fd, ECS_IOCTL_APP_GET_MVFLAG, &flags)) {
        if (flags)  sensors |= SENSORS_MAGNETIC_FIELD;
        else        sensors &= ~SENSORS_MAGNETIC_FIELD;
    }
#endif
    return sensors;
}

/*****************************************************************************/

uint32_t sensors_control_init()
{
    return SUPPORTED_SENSORS;
}

int sensors_control_open()
{
    return open_input();
}

uint32_t sensors_control_activate(uint32_t sensors, uint32_t mask)
{
    mask &= SUPPORTED_SENSORS;
    uint32_t active = sActiveSensors;
    uint32_t new_sensors = (active & ~mask) | (sensors & mask);
    uint32_t changed = active ^ new_sensors;
    if (changed) {
        int fd = open_akm();
        if (fd < 0) return 0;

        if (!active && new_sensors) {
            // force all sensors to be updated
            changed = SUPPORTED_SENSORS;
        }

        enable_disable(fd, new_sensors, changed);

        if (active && !new_sensors) {
            // close the driver
            close_akm();
        }
        sActiveSensors = active = new_sensors;
        LOGD("sensors=%08x, real=%08x",
                sActiveSensors, read_sensors_state(fd));
    }
    return active;
}

int sensors_control_delay(int32_t ms)
{
#ifdef ECS_IOCTL_APP_SET_DELAY
    if (sAkmFD <= 0) {
        return -1;
    }
    short delay = ms;
    if (!ioctl(sAkmFD, ECS_IOCTL_APP_SET_DELAY, &delay)) {
        return -errno;
    }
    return 0;
#else
    return -1;
#endif
}

/*****************************************************************************/

#define MAX_NUM_SENSORS 8
static int sInputFD = -1;
static const int ID_O  = 0;
static const int ID_A  = 1;
static const int ID_T  = 2;
static const int ID_M  = 3;
static const int ID_OR = 7; // orientation raw
static sensors_data_t sSensors[MAX_NUM_SENSORS];
static uint32_t sPendingSensors;

int sensors_data_open(int fd)
{
    int i;
    LMSInit();
    memset(&sSensors, 0, sizeof(sSensors));
    for (i=0 ; i<MAX_NUM_SENSORS ; i++) {
        // by default all sensors have high accuracy
        // (we do this because we don't get an update if the value doesn't
        // change).
        sSensors[i].vector.status = SENSOR_STATUS_ACCURACY_HIGH;
    }
    sPendingSensors = 0;
    sInputFD = dup(fd);
    LOGD("sensors_data_open: fd = %d", sInputFD);
    return 0;
}

int sensors_data_close()
{
    close(sInputFD);
    sInputFD = -1;
    return 0;
}

static int pick_sensor(sensors_data_t* values)
{
    uint32_t mask = SENSORS_MASK;
    while(mask) {
        uint32_t i = 31 - __builtin_clz(mask);
        mask &= ~(1<<i);
        if (sPendingSensors & (1<<i)) {
            sPendingSensors &= ~(1<<i);
            *values = sSensors[i];
            values->sensor = (1<<i);
            LOGD_IF(0, "%d [%f, %f, %f]", (1<<i),
                    values->vector.x,
                    values->vector.y,
                    values->vector.z);
            return (1<<i);
        }
    }
    LOGE("No sensor to return!!! sPendingSensors=%08x", sPendingSensors);
    // we may end-up in a busy loop, slow things down, just in case.
    usleep(100000);
    return -1;
}

int sensors_data_poll(sensors_data_t* values, uint32_t sensors_of_interest)
{
    struct input_event event;
    int nread;
    int64_t t;

    int fd = sInputFD;
    if (fd <= 0)
        return -1;

    // there are pending sensors, returns them now...
    if (sPendingSensors) {
        return pick_sensor(values);
    }

    uint32_t new_sensors = 0;
    struct pollfd fds;
    fds.fd = fd;
    fds.events = POLLIN;
    fds.revents = 0;

    // wait until we get a complete event for an enabled sensor
    while (1) {
        nread = 0;
        if (sensors_of_interest & SENSORS_ORIENTATION) {
            /* We do some special processing if the orientation sensor is
             * activated. In particular the yaw value is filtered with a
             * LMS filter. Since the kernel only sends an event when the
             * value changes, we need to wake up at regular intervals to
             * generate an output value (the output value may not be
             * constant when the input value is constant)
             */
            int err = poll(&fds, 1, SENSORS_TIMEOUT_MS);
            if (err == 0) {
                struct timespec time;
                time.tv_sec = time.tv_nsec = 0;
                clock_gettime(CLOCK_MONOTONIC, &time);

                /* generate an output value */
                t = time.tv_sec*1000000000LL+time.tv_nsec;
                new_sensors |= SENSORS_ORIENTATION;
                sSensors[ID_O].orientation.yaw =
                        LMSFilter(t, sSensors[ID_O].orientation.yaw);

                /* generate a fake sensors event */
                event.type = EV_SYN;
                event.time.tv_sec = time.tv_sec;
                event.time.tv_usec = time.tv_nsec/1000;
                nread = sizeof(event);
            }
        }
        if (nread == 0) {
            /* read the next event */
            nread = read(fd, &event, sizeof(event));
        }
        if (nread == sizeof(event)) {
            uint32_t v;
            if (event.type == EV_ABS) {
                //LOGD("type: %d code: %d value: %-5d time: %ds",
                //        event.type, event.code, event.value,
                //      (int)event.time.tv_sec);
                switch (event.code) {

                    case EVENT_TYPE_ACCEL_X:
                        new_sensors |= SENSORS_ACCELERATION;
                        sSensors[ID_A].acceleration.x = event.value * CONVERT_A_X;
                        break;
                    case EVENT_TYPE_ACCEL_Y:
                        new_sensors |= SENSORS_ACCELERATION;
                        sSensors[ID_A].acceleration.y = event.value * CONVERT_A_Y;
                        break;
                    case EVENT_TYPE_ACCEL_Z:
                        new_sensors |= SENSORS_ACCELERATION;
                        sSensors[ID_A].acceleration.z = event.value * CONVERT_A_Z;
                        break;

                    case EVENT_TYPE_MAGV_X:
                        new_sensors |= SENSORS_MAGNETIC_FIELD;
                        sSensors[ID_M].magnetic.x = event.value * CONVERT_M_X;
                        break;
                    case EVENT_TYPE_MAGV_Y:
                        new_sensors |= SENSORS_MAGNETIC_FIELD;
                        sSensors[ID_M].magnetic.y = event.value * CONVERT_M_Y;
                        break;
                    case EVENT_TYPE_MAGV_Z:
                        new_sensors |= SENSORS_MAGNETIC_FIELD;
                        sSensors[ID_M].magnetic.z = event.value * CONVERT_M_Z;
                        break;

                    case EVENT_TYPE_YAW:
                        new_sensors |= SENSORS_ORIENTATION | SENSORS_ORIENTATION_RAW;
                        t = event.time.tv_sec*1000000000LL +
                                event.time.tv_usec*1000;
                        sSensors[ID_O].orientation.yaw = 
                            (sensors_of_interest & SENSORS_ORIENTATION) ?
                                    LMSFilter(t, event.value) : event.value;
                        sSensors[ID_OR].orientation.yaw = event.value;
                        break;
                    case EVENT_TYPE_PITCH:
                        new_sensors |= SENSORS_ORIENTATION | SENSORS_ORIENTATION_RAW;
                        sSensors[ID_O].orientation.pitch = event.value;
                        sSensors[ID_OR].orientation.pitch = event.value;
                        break;
                    case EVENT_TYPE_ROLL:
                        new_sensors |= SENSORS_ORIENTATION | SENSORS_ORIENTATION_RAW;
                        sSensors[ID_O].orientation.roll = event.value;
                        sSensors[ID_OR].orientation.roll = event.value;
                        break;

                    case EVENT_TYPE_TEMPERATURE:
                        new_sensors |= SENSORS_TEMPERATURE;
                        sSensors[ID_T].temperature = event.value;
                        break;

                    case EVENT_TYPE_STEP_COUNT:
                        // step count (only reported in MODE_FFD)
                        // we do nothing with it for now.
                        break;
                    case EVENT_TYPE_ACCEL_STATUS:
                        // accuracy of the calibration (never returned!)
                        //LOGD("G-Sensor status %d", event.value);
                        break;
                    case EVENT_TYPE_ORIENT_STATUS:
                        // accuracy of the calibration
                        v = (uint32_t)(event.value & SENSOR_STATE_MASK);
                        LOGD_IF(sSensors[ID_O].orientation.status != (uint8_t)v,
                                "M-Sensor status %d", v);
                        sSensors[ID_O].orientation.status = (uint8_t)v;
                        sSensors[ID_OR].orientation.status = (uint8_t)v;
                        break;
                }
            } else if (event.type == EV_SYN) {
                if (new_sensors) {
                    sPendingSensors = new_sensors;
                    int64_t t = event.time.tv_sec*1000000000LL +
                            event.time.tv_usec*1000;
                    while (new_sensors) {
                        uint32_t i = 31 - __builtin_clz(new_sensors);
                        new_sensors &= ~(1<<i);
                        sSensors[i].time = t;
                    }
                    return pick_sensor(values);
                }
            }
        }
    }
}

uint32_t sensors_data_get_sensors() {
    return SUPPORTED_SENSORS;
}